In order to study the aqueous stability of rare earth and thorium elements and the reaction mechanism of hydrochloric acid leaching of roasted bastnaesite,Eh-pH diagrams for La-,Nd-,Ce-,Th-(Cl)-(F)-H2 O systems at...In order to study the aqueous stability of rare earth and thorium elements and the reaction mechanism of hydrochloric acid leaching of roasted bastnaesite,Eh-pH diagrams for La-,Nd-,Ce-,Th-(Cl)-(F)-H2 O systems at 20 ℃ were depicted using HSC Chemistry 6.0 software. Eh-pH diagrams of La-, Ce-,Nd-and Th-Cl-H2 O systems show that trivalent rare earth would be leached into solution by adjusting the acidity of the leaching solution, while tetravalent cerium and thorium would be remained in the leaching residue. And in the case that the pH value of the leaching solution is lower than 2, tetravalent cerium would be partially reduced by chlorine ions(Cl^-), which is well agreed with the industrial production. It can be inferred from Eh-pH diagrams for the systems La-, Nd-,Ce-, Th-F-H2 O that the leached trivalent rare earth ions(RE^(3+)) and tetravalent thorium ions(Th^(4+)) are preferentially combined with fluorine ions(F) to form sediment during non-reductive acid leaching of roasted bastnaesite. However,when controlling the pH value of the leaching solution below 0, fluorine and tetravalent cerium in the roasted bastnaesite would be leached out in the form of soluble [CeF3]~+ complex. That means the precipitation of REF3 and ThF4·2.5 H2 O can be avoided in the leaching step. According to Eh-pH diagrams for the system Ce-F-Cl-H2 O, [CeF3]~+ in the leaching solution would be reduced to CeF3 precipitate in the presence of Cl^-, that is to say, tetravalent cerium and fluorine would be firstly leached out to form[CeF3]~+,which would then be reduced to CeF3 precipitate by Cl^-in the hydrochloric acid leaching process of roasted bastnaesite.展开更多
The effective leaching of rare earth elements(La, Ce, Y and Eu) from simulated contaminated soil using bio-surfactant was investigated in a lab-scale column leaching experiment, where anionic biosurfactant rhamnolip...The effective leaching of rare earth elements(La, Ce, Y and Eu) from simulated contaminated soil using bio-surfactant was investigated in a lab-scale column leaching experiment, where anionic biosurfactant rhamnolipid and non-ionic biosurfactant saponin were used as washing solutions. Soil properties and the rare earth element fractions were analysed to define the effect of leaching on soil and elemental speciation. Column leaching results showed that saponin solution was more effective than rhamnolipid in the removal of the four rare earth elements tested, with the accumulative removal efficiency of La, Ce, Y and Eu following flushing with 400 mL of 25 g/L saponin, reaching 35.258%, 26.072%, 31.476% and 30.849%, respectively. The change in REE speciation showed that REE removed from soils were mainly derived from the acid-soluble and residual fractions released when rhamnolipid solution was used as a leaching agent. However, for saponin leaching, removed REE amounts were derived from acid-soluble and reducible fractions. Complexation interactions were identified between saponin and REEs, according to infrared spectroscopy and ion exchange data, with saponin complexing with La, Ce, Y, and Eu at a complex ratio of 1:1.展开更多
In order to intensify the leaching process of rare earth(RE) and reduce the impurities in the leachate, ammonium chloride(NH4Cl) and ammonium nitrate(NH4NO3) were mixed as a compound leaching agent to treat the ...In order to intensify the leaching process of rare earth(RE) and reduce the impurities in the leachate, ammonium chloride(NH4Cl) and ammonium nitrate(NH4NO3) were mixed as a compound leaching agent to treat the weathered crust elution-deposited RE ore. Effects of molar ratio of NH~+_4Cl and NH_4NO_3, ammonium(NH_4) concentration, leaching agent pH and flow rate on the leaching process of RE were studied and evaluated by the chromatographic plate theory. Leaching process of the main impurity aluminium(Al) was also discussed in detail. Results showed that a higher initial ammonium concentration in a certain range could enhance the mass transfer process of RE and Al by providing a driving force to overcome the resistance of diffusion. pH almost had no effects on the mass transfer efficiency of RE and Al in the range of 4 to 8. The relationship between the flow rate and height equivalent to a theoretical plate(HETP) could fit well with the Van Deemter equation, and the flow rate at the lowest HETP was determined. The optimum conditions of column leaching for RE and Al were 1:1(molar ratio) of NH_4Cl and NH_4NO_3, 0.2 mol/L of ammonium concentration, pH 4–8 of leaching agent and 0.5 mL /min of flow rate. Under this condition, the mass transfer efficiency of RE was improved, but no change was observed for Al compared with the most widely used ammonium sulfate. Moreover, the significant difference value(around 20 mL) of retention volume at the peak concentration between RE and Al provided a possibility for their separation. It suggested the potential application of the novel compound leaching agent(NH_4Cl/NH_4NO_3). It was found that the relative concentration of RE in the leachate could be easily obtained by monitoring the pH of leachate.展开更多
The lattice Boltzmann model with coupled chemical reaction was proposed to simulate the ion exchange process of rare earth leaching and verified by comparison with both empirical correlation of mass transfer coefficie...The lattice Boltzmann model with coupled chemical reaction was proposed to simulate the ion exchange process of rare earth leaching and verified by comparison with both empirical correlation of mass transfer coefficient and unreacted-core shrinking model. By simulation, the zonation phenomenon of leaching reagent in the leaching column was presented, and the breakthrough curve of leaching reagent was obtained. When t=50 s, there existed the saturated and exchange zones, and the leaching reagent concentration decreased gradually from 20 to 9.3 g/L. In accordance with the breakthrough curve, the breakthrough capacity of ion-type rare earth ore and the adsorbed ion concentration of leaching reagent were derived, the time of t=25 s was the breakthrough point of ammonium ion in leaching reagent and the breakthrough capacity of the rare earth ore was 125 g/L. Besides, the chemical kinetics parameters used for the solute transfer process of rare earth leaching were obtained by the simulation and then were used to determine the rate-limiting steps of rare earth leaching process.展开更多
Waste management of rare earth metals(REMs) containing materials and recycling of rare earth metals(REM) from waste materials are becoming more and more important due to high demand and resource exhaustion. Howeve...Waste management of rare earth metals(REMs) containing materials and recycling of rare earth metals(REM) from waste materials are becoming more and more important due to high demand and resource exhaustion. However, extraction of REM from waste fluorescent powder materials is difficult because of their special aluminate structure. A novel "alkaline roasting-acid leaching" process was developed in this study. The alkaline roasting process mechanism was examined using differential thermal analysis(DTA)-thermogravimetric(TG) measurements, and the roasting product was characterized by XRD analysis. In this process, Al_2O_3 was converted into water soluble NaAlO_2 via alkaline roasting, and NaAlO_ 2 in the roasting product could be easily dissolved in water, while the rare earth oxide(REOs) remained as solid. After filtration, REOs cake was leached using hydrochloric acid to achieve 99.8% of REM recovery. It was concluded that the alkaline roasting-acid leaching process could effectively separate Al_2O_3 and REOs with high REM recovery.展开更多
Weathered crust elution-deposited rare earth ore is an important resource of rare earths, including grantic weathered crust elution-deposited rare earth ore and volcanic weathered crust elution-deposited rare earth or...Weathered crust elution-deposited rare earth ore is an important resource of rare earths, including grantic weathered crust elution-deposited rare earth ore and volcanic weathered crust elution-deposited rare earth ore. The development condition of the weathered crust, weathering degree and mineral composition of these ores will be different because of the differences between their parent rocks and weathered crust causes of mineralogy path. Therefore, mineral properties and leaching characteristics of volcanic weathered crust elution-deposited rare earth ore from Chongzuo(CZ), Guangxi province were investigated. It was found that the CZ rare earth ore was a typical mid-yttrium and rich-europium ore, with the overall rare earth(REE) grade in ion-exchangeable phase of 0.15%. Partide size classification showed that finer particle had a higher REE grade. Column leaching tests showed that the leaching efficiency of REE was above 94% with leaching agent concentration of 0.20 mol/L, liquid-solid ratio of 4:3, flow rate of 0.60 mL/min, and initial pH value around 5.67. Compared to ammonium sulfate leaching, magnesium sulfate leaching was advantaged by nearly zero ammonia nitrogen emission while their REE leaching was almost equivalent.展开更多
Leaching behavior and gastrointestinal bioaccessibility of rare earth elements (REEs) from hospital waste incineration (HWI) fly and bottom ash samples collected from Beijing and Nanjing Cities were assessed. In t...Leaching behavior and gastrointestinal bioaccessibility of rare earth elements (REEs) from hospital waste incineration (HWI) fly and bottom ash samples collected from Beijing and Nanjing Cities were assessed. In the same ash sample, the leaching concentrations of individual REEs determined by the Toxicity Characteristic Leaching Procedure (TCLP) were higher than those detected by the European standard protocol (EN-type test), thereby suggesting that the low pH value of leaching solution was an important factor influencing the leacha(bility-of REE. The REE bioaccessibility results, which were evaluated using the physiologically based extraction test (PBET), indicated that REEs were highly absorbed during fgastric phase by dissolution; and subsequently precipitated and/or re-adsorbed in small intestinal phase. The relative amounts of the total REEs extracted by the TCLP method, EN-type test and PBET test were compared. In addition to the pH value of extraction solutions, the chelating role of REEs witllt organic ligands used in the PBET method was also an important parameter affecting REE adsorption in human body. Additionally, this study showed that REEs were extracted by these methods as concomitants of heavy metals and anions (NO3^-, F^-, SO4^2- , and Cl^-) from HWI ash, which probably caused the remarkably complex toxicity on human body by the exposure pathway.展开更多
This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitroge...This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitrogen; to be specific, the concentration of nitrate nitrogen in soil planted with wheat was reduced from 692.19 mg/kg to lower than 100 mg/kg; when the mass ratio of amendment to soil reached 3:50 and the amendment particle size was 1-2 mm, the concentration of nitrate ni-trogen in soil planted with wheat was reduced to 43 mg/kg. The amendment type exhibited extremely significant effects on the concentration of ammonium nitrogen; to be specific, when the mass ratio of amendment to soil reached 10:50, the concen-tration of ammonium nitrogen in soil added with 2-3 mm zeolite was reduced from 23 593.75 to 3 300 mg/kg on day 15. Amendments and plants mainly exhibited desorption performance for sulfate radical in soil, and the amendment type extreme-ly significantly affected the concentration of sulfate radical; to be specific, the con-centration of sulfate radical in soil added with limestone increased from 370 mg/kg to 900 mg/kg on day 7.展开更多
The adsorption behaviors of rare earth elements on clay minerals would have great influence on the mineralization process and the leaching process of the ion-adsorption type rare earths ore.In this work,the adsorption...The adsorption behaviors of rare earth elements on clay minerals would have great influence on the mineralization process and the leaching process of the ion-adsorption type rare earths ore.In this work,the adsorption thermodynamics of REEs on kaolin were investigated thoroughly and systematically.The experimental results showed that the adsorption characteristics of La,Nd,Y on kaolin did fit well with the Langmuir isotherm model and their saturated adsorption capacities were 1.731,1.587 and 0.971 mg/g,respectively.The free energy change(ΔG)values were –16.91 kJ/mol(La),–16.05 kJ/mol(Nd)and –15.58 kJ/mol(Y),respectively.The negative values of ΔG demonstrated that the adsorption of rare earth on kaolin was a spontaneously physisorption process.The deposit characteristic of the volcanic ion-adsorption type rare earths ore and the behavior of the rare earth in the column leaching process were also developed here.With the increase of the ore body depth,the distribution of the LREEs decreased and the HREEs increased.And the slight differences in the adsorption ability of REEs on clay minerals led to the fractionation effect in the column leaching process.These developed more evidences and better understanding of metallogenic regularity,and provided a theoretical basis and scientific approach to separation of the HREEs and LREEs in the leaching process.展开更多
A novel process was proposed to strengthen the decomposition of the mixed rare earth concentrate by utilizing the microwave radiation.Mineralogical information on the mechanisms by which microwave heating improved the...A novel process was proposed to strengthen the decomposition of the mixed rare earth concentrate by utilizing the microwave radiation.Mineralogical information on the mechanisms by which microwave heating improved the leaching behavior of rare earth elements(REEs),and an interpretation of the interrelationship between mineralogy,decomposition process,and leaching process were provided in this study.The influences of the temperature,time of microwave heating and contents of NaO H(mass ratio of NaO H to mixed rare earth concentrate)on the decomposition of mixed rare earth concentrate were investigated.The results revealed that the temperature was the main factor affecting the decomposition process.The recovery of REEs by hydrochloric acid leaching reached 93.28% under the microwave heating conditions:140 oC,30 min and 35.35% NaO H.The BET specific surface area and SEM analysis indicated that the particles of mixed rare earth concentrate were non-hole,while the particles presented a porous structure after heating the concentrate by microwave radiation.For the microwave treated sample after water leaching,the BET specific surface area was 11.04 m^2/g,which was higher than the corresponding values(6.94 m^2/g)for the mixed rare earth concentrate.This result could be attributed to the phase changes of bastnaesite and monazite,and a number of cracks induced by thermal stress.The increase of BET specific surface area resulted in an increase of the recovery of REEs by promoting interaction within the system of acid leaching.展开更多
基金Project supported by the National Natural Science Foundation of China(51404035)Beijing Nova program(Z161100004916108)
文摘In order to study the aqueous stability of rare earth and thorium elements and the reaction mechanism of hydrochloric acid leaching of roasted bastnaesite,Eh-pH diagrams for La-,Nd-,Ce-,Th-(Cl)-(F)-H2 O systems at 20 ℃ were depicted using HSC Chemistry 6.0 software. Eh-pH diagrams of La-, Ce-,Nd-and Th-Cl-H2 O systems show that trivalent rare earth would be leached into solution by adjusting the acidity of the leaching solution, while tetravalent cerium and thorium would be remained in the leaching residue. And in the case that the pH value of the leaching solution is lower than 2, tetravalent cerium would be partially reduced by chlorine ions(Cl^-), which is well agreed with the industrial production. It can be inferred from Eh-pH diagrams for the systems La-, Nd-,Ce-, Th-F-H2 O that the leached trivalent rare earth ions(RE^(3+)) and tetravalent thorium ions(Th^(4+)) are preferentially combined with fluorine ions(F) to form sediment during non-reductive acid leaching of roasted bastnaesite. However,when controlling the pH value of the leaching solution below 0, fluorine and tetravalent cerium in the roasted bastnaesite would be leached out in the form of soluble [CeF3]~+ complex. That means the precipitation of REF3 and ThF4·2.5 H2 O can be avoided in the leaching step. According to Eh-pH diagrams for the system Ce-F-Cl-H2 O, [CeF3]~+ in the leaching solution would be reduced to CeF3 precipitate in the presence of Cl^-, that is to say, tetravalent cerium and fluorine would be firstly leached out to form[CeF3]~+,which would then be reduced to CeF3 precipitate by Cl^-in the hydrochloric acid leaching process of roasted bastnaesite.
基金supported by“Twelfth five-year”National Science and Technology Support Program(2012BAC11B07)National Natural Science Foundation of China(51664024)+1 种基金Outstanding Doctoral Dissertation Project Funding of Jiangxi University of Science and Technology(YB2016003)Talent Project of Jiangxi Province's Innovation-drive“5511”Program(20165BCB18013)
文摘The effective leaching of rare earth elements(La, Ce, Y and Eu) from simulated contaminated soil using bio-surfactant was investigated in a lab-scale column leaching experiment, where anionic biosurfactant rhamnolipid and non-ionic biosurfactant saponin were used as washing solutions. Soil properties and the rare earth element fractions were analysed to define the effect of leaching on soil and elemental speciation. Column leaching results showed that saponin solution was more effective than rhamnolipid in the removal of the four rare earth elements tested, with the accumulative removal efficiency of La, Ce, Y and Eu following flushing with 400 mL of 25 g/L saponin, reaching 35.258%, 26.072%, 31.476% and 30.849%, respectively. The change in REE speciation showed that REE removed from soils were mainly derived from the acid-soluble and residual fractions released when rhamnolipid solution was used as a leaching agent. However, for saponin leaching, removed REE amounts were derived from acid-soluble and reducible fractions. Complexation interactions were identified between saponin and REEs, according to infrared spectroscopy and ion exchange data, with saponin complexing with La, Ce, Y, and Eu at a complex ratio of 1:1.
基金Project supported by the National Natural Science Foundation of China(51274152 and 41472071)the Program for Excellent Young Scientific and Technological Innovation Team of Hubei Provincial Department of Education,China(T201506)
文摘In order to intensify the leaching process of rare earth(RE) and reduce the impurities in the leachate, ammonium chloride(NH4Cl) and ammonium nitrate(NH4NO3) were mixed as a compound leaching agent to treat the weathered crust elution-deposited RE ore. Effects of molar ratio of NH~+_4Cl and NH_4NO_3, ammonium(NH_4) concentration, leaching agent pH and flow rate on the leaching process of RE were studied and evaluated by the chromatographic plate theory. Leaching process of the main impurity aluminium(Al) was also discussed in detail. Results showed that a higher initial ammonium concentration in a certain range could enhance the mass transfer process of RE and Al by providing a driving force to overcome the resistance of diffusion. pH almost had no effects on the mass transfer efficiency of RE and Al in the range of 4 to 8. The relationship between the flow rate and height equivalent to a theoretical plate(HETP) could fit well with the Van Deemter equation, and the flow rate at the lowest HETP was determined. The optimum conditions of column leaching for RE and Al were 1:1(molar ratio) of NH_4Cl and NH_4NO_3, 0.2 mol/L of ammonium concentration, pH 4–8 of leaching agent and 0.5 mL /min of flow rate. Under this condition, the mass transfer efficiency of RE was improved, but no change was observed for Al compared with the most widely used ammonium sulfate. Moreover, the significant difference value(around 20 mL) of retention volume at the peak concentration between RE and Al provided a possibility for their separation. It suggested the potential application of the novel compound leaching agent(NH_4Cl/NH_4NO_3). It was found that the relative concentration of RE in the leachate could be easily obtained by monitoring the pH of leachate.
基金supported by the National Natural Science Foundation of China(51674125,51776212,91434113)National Key Basic Research Program of China(2015CB251402)Chinese Academy of Sciences(QYZDB-SSW-SYS029)and Outstanding Doctoral Dissertation Project Fund of JXUST(YB2016001)
文摘The lattice Boltzmann model with coupled chemical reaction was proposed to simulate the ion exchange process of rare earth leaching and verified by comparison with both empirical correlation of mass transfer coefficient and unreacted-core shrinking model. By simulation, the zonation phenomenon of leaching reagent in the leaching column was presented, and the breakthrough curve of leaching reagent was obtained. When t=50 s, there existed the saturated and exchange zones, and the leaching reagent concentration decreased gradually from 20 to 9.3 g/L. In accordance with the breakthrough curve, the breakthrough capacity of ion-type rare earth ore and the adsorbed ion concentration of leaching reagent were derived, the time of t=25 s was the breakthrough point of ammonium ion in leaching reagent and the breakthrough capacity of the rare earth ore was 125 g/L. Besides, the chemical kinetics parameters used for the solute transfer process of rare earth leaching were obtained by the simulation and then were used to determine the rate-limiting steps of rare earth leaching process.
基金Supported by National Natural Science Foundation of China(51464012)Natural Science Foundation of Jiangxi(20114 bab206031)the Natural Science Foundation of Jiangxi University of Science and Technology(NSFJ2015-G09)
文摘Waste management of rare earth metals(REMs) containing materials and recycling of rare earth metals(REM) from waste materials are becoming more and more important due to high demand and resource exhaustion. However, extraction of REM from waste fluorescent powder materials is difficult because of their special aluminate structure. A novel "alkaline roasting-acid leaching" process was developed in this study. The alkaline roasting process mechanism was examined using differential thermal analysis(DTA)-thermogravimetric(TG) measurements, and the roasting product was characterized by XRD analysis. In this process, Al_2O_3 was converted into water soluble NaAlO_2 via alkaline roasting, and NaAlO_ 2 in the roasting product could be easily dissolved in water, while the rare earth oxide(REOs) remained as solid. After filtration, REOs cake was leached using hydrochloric acid to achieve 99.8% of REM recovery. It was concluded that the alkaline roasting-acid leaching process could effectively separate Al_2O_3 and REOs with high REM recovery.
基金supported by National Science and Technology Support Program of China(2015BAB16B01)Science and Technology Support Program of Guangxi(1598007-41)
文摘Weathered crust elution-deposited rare earth ore is an important resource of rare earths, including grantic weathered crust elution-deposited rare earth ore and volcanic weathered crust elution-deposited rare earth ore. The development condition of the weathered crust, weathering degree and mineral composition of these ores will be different because of the differences between their parent rocks and weathered crust causes of mineralogy path. Therefore, mineral properties and leaching characteristics of volcanic weathered crust elution-deposited rare earth ore from Chongzuo(CZ), Guangxi province were investigated. It was found that the CZ rare earth ore was a typical mid-yttrium and rich-europium ore, with the overall rare earth(REE) grade in ion-exchangeable phase of 0.15%. Partide size classification showed that finer particle had a higher REE grade. Column leaching tests showed that the leaching efficiency of REE was above 94% with leaching agent concentration of 0.20 mol/L, liquid-solid ratio of 4:3, flow rate of 0.60 mL/min, and initial pH value around 5.67. Compared to ammonium sulfate leaching, magnesium sulfate leaching was advantaged by nearly zero ammonia nitrogen emission while their REE leaching was almost equivalent.
基金Acknowledgements We would like to acknowledge all of the participators who collected HWI ash samples for this study from both the Beijing and Nanjing sites. This work was financially supported by the National Natural Science Foundation of China (Grant No. 51378180), the Technology Department of the Henan Science and Technology Fund Project (Nos. 142102210457 and 142102210456), and the Fundamental Research Funds for the Central Universities (No. 30916014102).
文摘Leaching behavior and gastrointestinal bioaccessibility of rare earth elements (REEs) from hospital waste incineration (HWI) fly and bottom ash samples collected from Beijing and Nanjing Cities were assessed. In the same ash sample, the leaching concentrations of individual REEs determined by the Toxicity Characteristic Leaching Procedure (TCLP) were higher than those detected by the European standard protocol (EN-type test), thereby suggesting that the low pH value of leaching solution was an important factor influencing the leacha(bility-of REE. The REE bioaccessibility results, which were evaluated using the physiologically based extraction test (PBET), indicated that REEs were highly absorbed during fgastric phase by dissolution; and subsequently precipitated and/or re-adsorbed in small intestinal phase. The relative amounts of the total REEs extracted by the TCLP method, EN-type test and PBET test were compared. In addition to the pH value of extraction solutions, the chelating role of REEs witllt organic ligands used in the PBET method was also an important parameter affecting REE adsorption in human body. Additionally, this study showed that REEs were extracted by these methods as concomitants of heavy metals and anions (NO3^-, F^-, SO4^2- , and Cl^-) from HWI ash, which probably caused the remarkably complex toxicity on human body by the exposure pathway.
基金Supported by National Natural Science Foundation of China(Grant No.21067003,5136-4015)Natural Science Foundation of Jiangxi Province(Grant No.20114BAB203024)National High-Tech Research and Development Program of China(Grant No.2012BAC11B07)~~
文摘This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitrogen; to be specific, the concentration of nitrate nitrogen in soil planted with wheat was reduced from 692.19 mg/kg to lower than 100 mg/kg; when the mass ratio of amendment to soil reached 3:50 and the amendment particle size was 1-2 mm, the concentration of nitrate ni-trogen in soil planted with wheat was reduced to 43 mg/kg. The amendment type exhibited extremely significant effects on the concentration of ammonium nitrogen; to be specific, when the mass ratio of amendment to soil reached 10:50, the concen-tration of ammonium nitrogen in soil added with 2-3 mm zeolite was reduced from 23 593.75 to 3 300 mg/kg on day 15. Amendments and plants mainly exhibited desorption performance for sulfate radical in soil, and the amendment type extreme-ly significantly affected the concentration of sulfate radical; to be specific, the con-centration of sulfate radical in soil added with limestone increased from 370 mg/kg to 900 mg/kg on day 7.
基金Project supported by National Science and Technology Support Program of China(2015BAB16B01)Training Program of Major Academic and Technical Leaders in Jiangxi Province(20142BCB22005)Top Youth Talent Training Program of"Gan Po 555 Talents Project"of Jiangxi Province
文摘The adsorption behaviors of rare earth elements on clay minerals would have great influence on the mineralization process and the leaching process of the ion-adsorption type rare earths ore.In this work,the adsorption thermodynamics of REEs on kaolin were investigated thoroughly and systematically.The experimental results showed that the adsorption characteristics of La,Nd,Y on kaolin did fit well with the Langmuir isotherm model and their saturated adsorption capacities were 1.731,1.587 and 0.971 mg/g,respectively.The free energy change(ΔG)values were –16.91 kJ/mol(La),–16.05 kJ/mol(Nd)and –15.58 kJ/mol(Y),respectively.The negative values of ΔG demonstrated that the adsorption of rare earth on kaolin was a spontaneously physisorption process.The deposit characteristic of the volcanic ion-adsorption type rare earths ore and the behavior of the rare earth in the column leaching process were also developed here.With the increase of the ore body depth,the distribution of the LREEs decreased and the HREEs increased.And the slight differences in the adsorption ability of REEs on clay minerals led to the fractionation effect in the column leaching process.These developed more evidences and better understanding of metallogenic regularity,and provided a theoretical basis and scientific approach to separation of the HREEs and LREEs in the leaching process.
基金Project supported by the National Basic Research Program of China(973 program,2012CBA01205)
文摘A novel process was proposed to strengthen the decomposition of the mixed rare earth concentrate by utilizing the microwave radiation.Mineralogical information on the mechanisms by which microwave heating improved the leaching behavior of rare earth elements(REEs),and an interpretation of the interrelationship between mineralogy,decomposition process,and leaching process were provided in this study.The influences of the temperature,time of microwave heating and contents of NaO H(mass ratio of NaO H to mixed rare earth concentrate)on the decomposition of mixed rare earth concentrate were investigated.The results revealed that the temperature was the main factor affecting the decomposition process.The recovery of REEs by hydrochloric acid leaching reached 93.28% under the microwave heating conditions:140 oC,30 min and 35.35% NaO H.The BET specific surface area and SEM analysis indicated that the particles of mixed rare earth concentrate were non-hole,while the particles presented a porous structure after heating the concentrate by microwave radiation.For the microwave treated sample after water leaching,the BET specific surface area was 11.04 m^2/g,which was higher than the corresponding values(6.94 m^2/g)for the mixed rare earth concentrate.This result could be attributed to the phase changes of bastnaesite and monazite,and a number of cracks induced by thermal stress.The increase of BET specific surface area resulted in an increase of the recovery of REEs by promoting interaction within the system of acid leaching.