The Bainiuchang deposit in Yunnan Province, China, is located geographically between the Gejiu ore field and the Dulong ore field. In addition to the 〉7000 t Ag reserves, the deposit also boasts of large-scale Pb, Zn...The Bainiuchang deposit in Yunnan Province, China, is located geographically between the Gejiu ore field and the Dulong ore field. In addition to the 〉7000 t Ag reserves, the deposit also boasts of large-scale Pb, Zn and Sn reserves with a lot of dispersed elements (In, Cd, Ge, Ga, etc.). We have determined systematically the Pb isotope composition of the deposit. The Pb isotope ratios of the ores that are of sea-floor exhalative sedimentary origin in the northwest of the mining district, are 206pb/204pb = 17.758-18.537, 207pb/204pb = 15.175-15.862 and 206pb/204pb = 37.289-39.424, while those of ores that are of magmatic hydrothermal superimposition origin in the southeast of the mining district, are 206pb/204pb = 17.264-18.359, 207pb/204pb = 14.843-15.683 and 208pb/204pb = 36.481-38.838, respectively. In terms of the Pb isotope composition of feldspar in magmatic rocks or magmatic whole- rock samples from the mining district, we have determined the Pb isotope composition and acquired the Pb isotope ratios as: 206pb/204pb -- 18.224-18.700, 207pb/204pb -- 15.595-15.797 and 208pb/204pb -- 38.193-39.608. Then, in the light of the Pb isotope composition of metamorphic rock samples from the Proterozoic basement exposed in the Dulong ore field, we have determined the Pb isotope composition and obtained the isotope ratios as: 206pb/204pb -- 18.434-19.119, 207pb/204pb -- 15.644-15.693, and 208pb/204pb = 38.514-38.832. And the Pb isotope ratios of Cambrian sedimentary rocks, which are exposed in the Bainiuchang mining district, are 206pb/204pb = 18.307-19.206, 207pb/204pb = 15.622-15.809, and 208pb/204pb = 38.436-39.932. By comparing the two types of ores with respect to their Pb isotope compositions, it is indicated that lead in the Bainiuchang deposit was derived largely from the lower-crust granulite which is earlier than Neoproterozoic in age, but the Yanshanian magmatic hydrothermal fluids probably provided a part of ore-forming elements such as Sn for the ore blocks in the south of the mining district.展开更多
The Huogeqi orefield located on the northern side of Mt. Langshan, Inner Mongolia occurs in the Middle Proterozoic Langshan Group metamorphic rocks, and the orebodies arc stratiform. In the past twenty years, many Chi...The Huogeqi orefield located on the northern side of Mt. Langshan, Inner Mongolia occurs in the Middle Proterozoic Langshan Group metamorphic rocks, and the orebodies arc stratiform. In the past twenty years, many Chinese geologists have conducted researches on the Huogeqi Cu-Pb-Zn deposit, but there has been still a controversy on its origin. Some advocate that the deposit is of sedimentary-metamorphic rcworking origin, some hold that it is of sea-floor SEDEX origin, and others have a preference for magmatic superimposition origin. The crux of the controversy is that there is no common understanding about the source of ore-forming materials. In this paper, the Pb isotopic compositions of regional Achaean-Early Proterozoic basement rocks, various types of sedimentary- metamorphic rocks and volcanic rocks in the mining district, Late Proterozoic and Hercynian magmatic rocks arc introduced and compared with the orc-lead composition, so as to constrain the source of the ore lead. The result indicates that (1) sulfides in the ores have homogeneous Pb isotopic compositions, showing a narrow variation range. Their ^206pb/^204pb ratios arc within a range of 17.027- 17.317; ^207Pb/^204pb ratios, 15.451-15.786 and ^208Pb/^204pb ratios, 36.747-37.669; (2) the Pb isotopic compositions of the regional Achaean-Early Proterozoic basement rocks arc characteristic of the old Pb isotopic composition at the early-stage evolution of the Earth, which varies over a wider range, reflecting significant differences in Pb isotopic compositions of the ores. All this indicates that the source of ore lead has no bearing on the basement rocks; (3) the sedimentary-metamorphic rocks in the mining district arc characterized by highly variable and more radiogenic Pb isotopic compositions and their Pb isotopic ratios arc obviously higher than those of ores, demonstrating that ore lead did not result from metamorphic rcworking of these rocks; (4) Pb isotopic compositions of Late Proterozoic diorite-gabbro and Hercynian granite are higher than those of ores. Meanwhile, the Pb isotopic compositions of sulfides in the small-sized strata-penetrating mineralized veinlets formed at later stages arc completely consistent with that of sulfides in stratiform-banded ores, suggesting that these veiniets arc the product of autochthonous rcworking of the stratiform-banded ores during the period of metamorphism and the late magmatic superimposition-mineralization can be excluded; (5) amphibolite, whose protolith is basic volcanic rocks, has the same Pb isotopic compositions as ores, implying that ore lead was derived probably from basic volcanism. So, the source of ore-forming materials for the Huogeqi deposit is like that of the volcanic massive sulfide (VMS) deposits. However, the orebodies do not occur directly within the volcanic rocks, and instead they overlie the volcanic rocks, showing some differences from those typical VMS-type deposits.展开更多
基金This research project was financially supported jointly by the Major Orientation Research Project (No. KZCX2- YW-111) of the CAS;the National Basic Research Program of China (No. 2007CB411408) ;the National Natural Science Foundation of China (No. 40172037).
文摘The Bainiuchang deposit in Yunnan Province, China, is located geographically between the Gejiu ore field and the Dulong ore field. In addition to the 〉7000 t Ag reserves, the deposit also boasts of large-scale Pb, Zn and Sn reserves with a lot of dispersed elements (In, Cd, Ge, Ga, etc.). We have determined systematically the Pb isotope composition of the deposit. The Pb isotope ratios of the ores that are of sea-floor exhalative sedimentary origin in the northwest of the mining district, are 206pb/204pb = 17.758-18.537, 207pb/204pb = 15.175-15.862 and 206pb/204pb = 37.289-39.424, while those of ores that are of magmatic hydrothermal superimposition origin in the southeast of the mining district, are 206pb/204pb = 17.264-18.359, 207pb/204pb = 14.843-15.683 and 208pb/204pb = 36.481-38.838, respectively. In terms of the Pb isotope composition of feldspar in magmatic rocks or magmatic whole- rock samples from the mining district, we have determined the Pb isotope composition and acquired the Pb isotope ratios as: 206pb/204pb -- 18.224-18.700, 207pb/204pb -- 15.595-15.797 and 208pb/204pb -- 38.193-39.608. Then, in the light of the Pb isotope composition of metamorphic rock samples from the Proterozoic basement exposed in the Dulong ore field, we have determined the Pb isotope composition and obtained the isotope ratios as: 206pb/204pb -- 18.434-19.119, 207pb/204pb -- 15.644-15.693, and 208pb/204pb = 38.514-38.832. And the Pb isotope ratios of Cambrian sedimentary rocks, which are exposed in the Bainiuchang mining district, are 206pb/204pb = 18.307-19.206, 207pb/204pb = 15.622-15.809, and 208pb/204pb = 38.436-39.932. By comparing the two types of ores with respect to their Pb isotope compositions, it is indicated that lead in the Bainiuchang deposit was derived largely from the lower-crust granulite which is earlier than Neoproterozoic in age, but the Yanshanian magmatic hydrothermal fluids probably provided a part of ore-forming elements such as Sn for the ore blocks in the south of the mining district.
基金supported jointly by the Bureau of Resources and Environment,Chinese Academy of Sciences(KZCX3-SW-125)the National Natural Science Foundation of China(Grant No,40172037).
文摘The Huogeqi orefield located on the northern side of Mt. Langshan, Inner Mongolia occurs in the Middle Proterozoic Langshan Group metamorphic rocks, and the orebodies arc stratiform. In the past twenty years, many Chinese geologists have conducted researches on the Huogeqi Cu-Pb-Zn deposit, but there has been still a controversy on its origin. Some advocate that the deposit is of sedimentary-metamorphic rcworking origin, some hold that it is of sea-floor SEDEX origin, and others have a preference for magmatic superimposition origin. The crux of the controversy is that there is no common understanding about the source of ore-forming materials. In this paper, the Pb isotopic compositions of regional Achaean-Early Proterozoic basement rocks, various types of sedimentary- metamorphic rocks and volcanic rocks in the mining district, Late Proterozoic and Hercynian magmatic rocks arc introduced and compared with the orc-lead composition, so as to constrain the source of the ore lead. The result indicates that (1) sulfides in the ores have homogeneous Pb isotopic compositions, showing a narrow variation range. Their ^206pb/^204pb ratios arc within a range of 17.027- 17.317; ^207Pb/^204pb ratios, 15.451-15.786 and ^208Pb/^204pb ratios, 36.747-37.669; (2) the Pb isotopic compositions of the regional Achaean-Early Proterozoic basement rocks arc characteristic of the old Pb isotopic composition at the early-stage evolution of the Earth, which varies over a wider range, reflecting significant differences in Pb isotopic compositions of the ores. All this indicates that the source of ore lead has no bearing on the basement rocks; (3) the sedimentary-metamorphic rocks in the mining district arc characterized by highly variable and more radiogenic Pb isotopic compositions and their Pb isotopic ratios arc obviously higher than those of ores, demonstrating that ore lead did not result from metamorphic rcworking of these rocks; (4) Pb isotopic compositions of Late Proterozoic diorite-gabbro and Hercynian granite are higher than those of ores. Meanwhile, the Pb isotopic compositions of sulfides in the small-sized strata-penetrating mineralized veinlets formed at later stages arc completely consistent with that of sulfides in stratiform-banded ores, suggesting that these veiniets arc the product of autochthonous rcworking of the stratiform-banded ores during the period of metamorphism and the late magmatic superimposition-mineralization can be excluded; (5) amphibolite, whose protolith is basic volcanic rocks, has the same Pb isotopic compositions as ores, implying that ore lead was derived probably from basic volcanism. So, the source of ore-forming materials for the Huogeqi deposit is like that of the volcanic massive sulfide (VMS) deposits. However, the orebodies do not occur directly within the volcanic rocks, and instead they overlie the volcanic rocks, showing some differences from those typical VMS-type deposits.