期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Effect of Mg doping on electrochemical performance of Li_3V_2(PO_4)_3/C cathode material for lithium ion batteries 被引量:3
1
作者 罗韵泽 何利华 刘旭恒 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2266-2271,共6页
Li3Mg(2x)V(2-2x)(PO4)3/C(x=0,0.05,0.1,0.2) composites were synthesized by carbothermic reduction,using a self-made MgNH4PO4/MgHPO4 compound as Mg-doping agent.X-ray diffraction(XRD),scanning electron microsc... Li3Mg(2x)V(2-2x)(PO4)3/C(x=0,0.05,0.1,0.2) composites were synthesized by carbothermic reduction,using a self-made MgNH4PO4/MgHPO4 compound as Mg-doping agent.X-ray diffraction(XRD),scanning electron microscope(SEM),electrochemical performance tests were employed to investigate the effect of Mg doping on Li3V2(PO4)3/C samples.The results showed that a proper quantity of Mg doping was beneficial to the reduction of charge transfer resistance of Li3V2(PO4)3/C compound without changing the lattice structure,which led to larger charge/discharge capacity and better cycle performance especially at high current density.Li3Mg(2x)V(2-2x)(PO4)3/C sample with x=0.05 exhibited a better performance with initial charge/discharge capacity of146/128 mA·h/g and discharge capacity of 115 mA·h/g at 5C,while these two figures were 142/118 mA·h/g and 90 mA·h/g respectively for samples without Mg doping,indicating that a proper amount of doped Mg can improve the electrochemical performance of LVP sample.All of these proved that,as a trial Mg dopant,the synthesized MgNH4PO4/MgHPO4 compound exhibited well doping effect. 展开更多
关键词 lithium vanadium phosphate MG-DOPING cathode materials carbothermic reduction
下载PDF
Synthesis and electrochemical performance of Li_(3-2x)Mg_xV_2(PO_4)_3/C composite cathode materials for lithium-ion batteries 被引量:1
2
作者 尹武梅 张婷婷 +3 位作者 朱庆 陈权启 李谷才 张灵志 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1978-1985,共8页
The Li3 2xMgxV2(PO4)3/C (x-=0, 0.01, 0.03 and 0.05) composites were prepared by a sol-gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurement... The Li3 2xMgxV2(PO4)3/C (x-=0, 0.01, 0.03 and 0.05) composites were prepared by a sol-gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The XRD results reveal that a small amount of Mg2+ doping into Li sites does not significantly change the monoclinic structure of Li3V2(PO4)3, but Mg-doped Li3W2(PO4)3 has larger cell volume than the pristine Li3V2(PO4)3. All Mg-doped composites display better electrochemical performance than the pristine one, and Liz.94Mgo.03Vz(P04)3/C composite exhibits the highest capacity and the best cycle performance among all above-mentioned composites. The analysis of Li+ diffusion coefficients in Li3V2(PO4)3/C and Li2.94Mgo.03V2(P04)3/C indicates that rapid Li+ diffusion results from the doping of Mg2+ and the rapid Li+ diffusion is responsible for the better electrochemical performance of Mg-doped Li3V2(PO4)3/C composite cathode materials. 展开更多
关键词 lithium-ion batteries lithium vanadium phosphate diffusion coefficient sol gel method
下载PDF
Synthesis and electrochemical performance of La-doped Li_3V_(2-x)La_x(PO_4)_3 cathode materials for lithium batteries 被引量:2
3
作者 JIANG Boquan HU Shufen WANG Minwei OUYANG Xiaoping GONG Zhenyu 《Rare Metals》 SCIE EI CAS CSCD 2011年第2期115-119,共5页
La-doped Li3V2-xLax(PO4)3 ( x = 0.01, 0.02, and 0.03) cathode materials for lithium ion batteries were synthesized by the microwave-assisted carbothermal reduction method (MW-CTR). The structures and properties ... La-doped Li3V2-xLax(PO4)3 ( x = 0.01, 0.02, and 0.03) cathode materials for lithium ion batteries were synthesized by the microwave-assisted carbothermal reduction method (MW-CTR). The structures and properties of the prepared samples were investigated by X-ray diffraction (XRD) and electrochemical measurements. The results showed that all the three Li3V2-xLax(PO4)3 samples had the same monocfinic structures and sharper diffraction peaks of the crystal plane compared with those of the undoped Li3V2(PO4)3. The initial charge/discharge specific capacity, coulomb efficiency, and discharge decay rate of all the three Li3V2-xLax(PO4)3 samples were superior to those of the undoped Li3V2(PO4)3 sample, and the Li3V1.98La0.02(PO4)3 sample exhibited the best features among the three La-doped Li3V2-xLax(PO4)3 samples. Electrochemical impedance spectroscopy (EIS) demonstrated that the Li3V1.98Lao.02(PO4)3 sample had a lower charge transfer resistance and a higher Li ion diffusion coefficient compared with the undoped Li3V2 (PO4)3 sample. 展开更多
关键词 lithium batteries cathode materials carbothermal reduction microwaves lithium vanadium phosphate LANTHANUM
下载PDF
Nano-Li3V2(PO4)3/C Synthesized by Thermal Polymerization Method as Cathode Material for Lithium Ion Batteries
4
作者 Bin Cheng Lian-sheng Jiao +3 位作者 Zhong-feng Tang Sheng-jie Zhang Hong-li Chen Chun-hua Chen 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第6期699-702,I0001,共5页
A nano-Li3V2(PO4)3/C powder was successfully prepared by a thermal polymerization method. The particle sizes of the intermediate product powder and the final product Li3V2(PO4)3 are all less than 200 nm. The carbo... A nano-Li3V2(PO4)3/C powder was successfully prepared by a thermal polymerization method. The particle sizes of the intermediate product powder and the final product Li3V2(PO4)3 are all less than 200 nm. The carbon is partially coated on the surface of Li3V2(PO4)3 particles and the rest exists between particles with a total carbon content of 4.6wt%. This nano-Li3V2(PO4)3/C sample shows a discharge capacity of 124 mAh/g with-out capacity fading after 100 cycles at 0.1 C in the voltage rang of 3.0-4.3 V. Excellent rate performance is also achieved with a capacity of 80 mAh/g at 20 C in 3.0-4.3 V and 100 mAh/g at 10 C in 3.0-4.8 V. This study suggests that the thermal polymerization method is suitable to synthesize nano-Li3V2(PO4)3/C materials. 展开更多
关键词 lithium vanadium phosphate Thermal polymerization NANOPARTICLES Acrylic acid
下载PDF
PEG-combined liquid phase synthesis and electrochemical properties of carbon-coated Li_3V_2(PO_4)_3 被引量:1
5
作者 王任衡 李新海 +2 位作者 王志兴 郭华军 黄斌 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1241-1247,共7页
The carbon-coated monoclinic Li3V2(PO4)3(LVP) cathode materials were successfully synthesized by liquid phase method using PEG as reducing agent and carbon source. The effects of relative molecular mass of PEG on the ... The carbon-coated monoclinic Li3V2(PO4)3(LVP) cathode materials were successfully synthesized by liquid phase method using PEG as reducing agent and carbon source. The effects of relative molecular mass of PEG on the properties of Li3V2(PO4)3/C were evaluated by X-ray diffraction(XRD), scanning electron microscope(SEM) and electrochemical performance tests. The SEM images show that smaller size particles are obtained by adding larger and smaller PEGs. The electrochemical cycling of Li3V2(PO4)3/C prepared by both PEG200 and PEG20 k has a high initial discharge capacity of 131.1 mA·h/g at 0.1C during 3.0-4.2 V, and delivers a reversible discharge capacity of 123.6 m A·h/g over 30 cycles, which is better than that of other samples. The improvement in electrochemical performance is caused by its improved lithium ion diffusion coefficient for the macroporous morphology, which is verified by cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS). 展开更多
关键词 lithium-ion battery lithium vanadium phosphate PEG CARBON-COATING liquid phase method
下载PDF
Research on Preparation of the Composite Materials LiFePO4-Li3V2(PO4)3
6
作者 Haoyu JIANG Jianrong Xiao Hang Zhao 《International Journal of Technology Management》 2014年第4期98-100,共3页
The article developed a lithium iron phosphate - composite cathode material of lithium vanadium phosphate. Using X-ray diffraction (XRD), electronic scanning electron microscopy surface (SEM), laser particle size ... The article developed a lithium iron phosphate - composite cathode material of lithium vanadium phosphate. Using X-ray diffraction (XRD), electronic scanning electron microscopy surface (SEM), laser particle size analyzer, carbon and sulfur analyzer, and X-ray photoelectron spectroscopy, etc. for the prepared composites were characterized and found the material is mainly crystalline structure of lithium iron phosphate, and lithium vanadium, wherein a small amount of impurities; finer particle size of the material, the particle size distribution is narrow and uniform, smooth particle surface, wrapping in good carbon composite with other materials prepared in comparison the case has a carbon content of about optimum conductivity. To assemble the material into a cell after the 0.1C, IC, 2C when and 5C, the first discharge capacity were 160,145,127 and 109 mA·h·g^-1, after 50 cycles, the discharge capacity of 162, respectively, 144,126 and 106 mA·h·g^-1, which showed good rate characteristics and cycle characteristics. 展开更多
关键词 lithium iron phosphate lithium vanadium phosphate GRAPHENE composite materials
下载PDF
Nanocomposite LiFePO_4·Li_3V_2(PO_4)_3/C synthesized by freeze-drying assisted sol-gel method and its magnetic and electrochemical properties 被引量:3
7
作者 刘丽英 肖文学 +7 位作者 郭剑峰 崔艳艳 柯曦 蔡伟通 刘军 陈易明 施志聪 侴术雷 《Science China Materials》 SCIE EI CSCD 2018年第1期39-47,共9页
Nano-sized LiFePO_4·Li_3V_2(PO_4)_3/C was synthesized via a sol-gel route combining with freeze-drying. X-ray diffraction results show that this composite mainly consists of olivine Li Fe PO4 and monoclinic Li3... Nano-sized LiFePO_4·Li_3V_2(PO_4)_3/C was synthesized via a sol-gel route combining with freeze-drying. X-ray diffraction results show that this composite mainly consists of olivine Li Fe PO4 and monoclinic Li3 V2(PO4)3 phases with small amounts of V-doped LiFePO_4 and Fe-doped Li_3V_2(PO_4)_3. The magnetic properties of LiFePO_4·Li_3V_2(PO_4)_3/C are significantly different from LiFePO_4/C. Trace quantities of ferromagnetic impurities and Fe_2P are verified in LiFePO_4/C and LiFePO_4·Li_3V_2(PO_4)_3/C by magnetic tests, respectively. LiFePO_4·Li_3 V_2(PO_4)_3/C possesses relatively better rate capacities and cyclic stabilities, especially at high charge-discharge rates.The initial discharge capacities are 136.4 and 130.0 mA h g^(-1),and the capacity retentions are more than 98% after 100 cycles at 2C and 5C, respectively, remarkably better than those of LiFePO_4/C. The excellent electrochemical performances are ascribed to the mutual doping of V^(3+)and Fe^(2+), complementary advantages of LiFePO_4 and Li_3V_2(PO_4)_3 phases, the residual high-ordered carbon and Fe_2P with outstanding electric conductivity in the nanocomposite. 展开更多
关键词 lithium ion battery cathode material lithium iron phosphate lithium vanadium phosphate magnetic property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部