Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to t...Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs.展开更多
Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly ...Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly important for achieving high and stable wheat yields.In this study,Tongmai 6(insensitive)and Zhengmai 113(sensitive),which have different low-temperature sensitivities during germination were treated with low temperature during germination.The transcriptome,metabolome and physiological data revealed that low temperature decreased the germination rate,downregulated the expression of a large number of genes involved in regulating glycometabolism,and inhibited carbon,nitrogen(especially amino acids)and energy metabolism in the seeds.Arginine content increased at low temperature,and its increase in the low-temperature-tolerant variety was significantly greater than that in the sensitive variety.Arginine priming experiment showed that treatment with an appropriate concentration of arginine improved the seed germination rate.The conversion of starch to soluble sugar significantly increased under exogenous arginine conditions,the content of key metabolites in energy metabolism increased,and the utilization of ATP in the seeds increased.Taken together,arginine priming increased seed germination at low temperature by relieving inhibition of seed carbon and nitrogen metabolism and improving seed energy metabolism.展开更多
Low temperature usually results in the developmental deformity of flower organs,immensely affecting the quality of rose flowers.However,it's largely unknown about the regulatory mechanisms activated by low tempera...Low temperature usually results in the developmental deformity of flower organs,immensely affecting the quality of rose flowers.However,it's largely unknown about the regulatory mechanisms activated by low temperature.Here,we used a low temperature-sensitive Rosa hybrida cv.‘Peach Avalanche’to screen a MADS-box gene RhAGL6 via conjoint analysis between RNA sequencing(RNA-seq)and whole-genome bisulfite sequencing(WGBS).Furthermore,we found that low temperature induced the hypermethylation and elevated histone 3 lys-27 trimethylation(H3K27me3)level on the RhAGL6 promoter,leading to decreased RhAGL6 expression.In addition,RhAGL6 silencing resulted in the formation of abnormal receptacles.We also found that the levels of gibberellins(GA3)and abscisic acid(ABA)in the receptacle under low temperature were lower and higher,respectively,than under normal temperature.Promoter activity analysis revealed that GA3 significantly activated RhAGL6 promoter activity,whereas ABA inhibited it.Thus,we propose that RhAGL6 regulates rose receptacle development by integrating epigenetic regulation and phytohormones signaling at low temperature.展开更多
Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also ch...Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.展开更多
Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR...Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR)family,comprising highly conserved ligand-gated ion channels,regulates plant growth and development in response to stress.In this study,11 members of the VvGLR gene family in grapes were identified using whole-genome sequence analysis.Bioinformatic methods were employed to analyze the basic physical and chemical properties,phylogenetic trees,conserved domains,motifs,expression patterns,and evolutionary relationships.Phylogenetic and collinear analyses revealed that the VvGLRs were divided into three subgroups,showing the high conservation of the grape GLR family.These members exhibited 2 glutamate receptor binding regions(GABAb and GluR)and 3-4 transmembrane regions(M1,M2,M3,and M4).Real-time quantitative PCR analysis demonstrated the sensitivity of all VvGLRs to low temperature and salt stress.Subsequent localization studies in Nicotiana tabacum verified that VvGLR3.1 and VvGLR3.2 proteins were located on the cell membrane and cell nucleus.Additionally,yeast transformation experiments confirmed the functionality of VvGLR3.1 and VvGLR3.2 in response to low temperature and salt stress.Thesefindings highlight the significant role of the GLR family,a highly conserved group of ion channels,in enhancing grape stress resistance.This study offers new insights into the grape GLR gene family,providing fundamental knowledge for further functional analysis and breeding of stress-resistant grapevines.展开更多
The most recent research findings on the tolerance of fruit trees to cold stress are reviewed from a molecular perspective,including the perception and transduction of low temperature calcium signaling,CBF-dependent m...The most recent research findings on the tolerance of fruit trees to cold stress are reviewed from a molecular perspective,including the perception and transduction of low temperature calcium signaling,CBF-dependent molecular regulatory mechanisms,non-CBF-dependent molecular regulatory mechanisms,and so forth.The objective is to provide a reference basis for further improving the cold resistance of fruit trees and cultivating new varieties of hardy plants.展开更多
[Objectives]The paper was to explore the effects of low temperature stress on germination and physiological characteristics of different sweet maize varieties.[Methods]Taking Taitian 264,Zhexuetian 1 and Chaotian 4 as...[Objectives]The paper was to explore the effects of low temperature stress on germination and physiological characteristics of different sweet maize varieties.[Methods]Taking Taitian 264,Zhexuetian 1 and Chaotian 4 as the research objects,the changes in germination potential,germination index,plant height,biomass,and antioxidant enzyme activity of maize seeds were studied under optimal temperature conditions(25℃)and low temperature stress conditions(10℃).[Results]Under 10℃stress,the germination rate and germination index of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4.Under low temperature stress,Taitian 264 exhibited the least reduction in height and biomass,while Zhexuetian 1 had the most reduction.Additionally,the SOD and POD activities of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4 under both temperature conditions,while the MDA content of Taitian 264 was lower.Taitian 264 showed strong germination ability against low temperature stress.[Conclusions]This study provides a basis for timely sowing practices of sweet maize in agricultural production.展开更多
Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous ...Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous solution were evaluated.The derived charcoals products were pretreated using oxidation-hydrolysis with 1–5 wt.%KMnO4 at 100℃and then activated at 500℃.The derived charcoal and activated carbon products were characterized by FTIR,XRD,SEM-EDS and BET.Iodine number and methylene blue number of derived products were also used for the analysis of the products.It was found that fabricated charcoal materials made at 350℃–400℃possess good characteristics with low content of surface functional groups and high carbon content.After pre-oxidation-hydrolysis and activation at 500℃,the resulting derived activated carbon materials from charcoals with 400℃carbonization temperature have high content of oxygen containing surface functional groups such as Mn-O,Si-O,Si-O-Si,C-O,or O-H.In addition,MnO_(2) accumulated on the surface of the derived activated carbon products.The surface area and pore volume of the activated carbon products have also increased with increasing of KMnO_(4) concentration from 1 to 3 wt.%and then decreased with 5 wt.%used during activation.Therefore,activated carbon products made by pre-oxidation-hydrolysis with 3 wt.%KMnO_(4) were used for Fe(Ⅲ)adsorption experiments.It was found that Fe(Ⅲ)adsorption on the activated carbon materials can be fitted with both the Freundlich and the Langmuir models.The calculated maximum Fe(Ⅲ)adsorption capacities of sugarcane leaves derived activated carbon and rice straw derived activated carbon products were 50.00 and 39.37 mg/g,respectively.It was shown that the effect of pre-oxidation-hydrolysis by KMnO_(4) and activation at 500℃are beneficial for activated carbon preparation with environmentally friendly and low-cost simplified operation.展开更多
Cyclophilin(CYP)plays an important role in plant response to stress,and OsCYP2,one gene of cyclophlilin family,is involved in auxin signal transduction and stress signaling in rice.However,the mechanism that OsCYP2 is...Cyclophilin(CYP)plays an important role in plant response to stress,and OsCYP2,one gene of cyclophlilin family,is involved in auxin signal transduction and stress signaling in rice.However,the mechanism that OsCYP2 is involved in rice response to low temperature is still unclear.We identified a new OsCYP2 allelic mutant,lrl3,with fewer lateral roots,and the differences in shoot height,primary root length and adventitious root length increased with the growth process compared to the wild-type plant.Auxin signaling pathway was also affected and became insensitive to gravity.The transgenic rice plants with over-expression of OsCYP2 were more tolerant to low temperature than the wild-type plants,suggesting that OsCYP2 was involved in the low temperature response in rice.In addition,OsCYP2 negatively regulated the expression of OsTPS38,a terpene synthase gene,and was dependent on the OsCDPK7-mediated pathway in response to low temperature stress.OsTPS38-overexpressed transgenic line ox-2 was more sensitive to low temperature.Therefore,OsCYP2 may negatively regulate OsTPS38 through an OsCDPK7-dependent pathway to mediate the response to low temperature in rice.These results provide a new basis for auxin signaling genes to regulate rice response to low temperature stress.展开更多
NH_(3) selective catalytic reduction(SCR) has been widely recognized as a promising technique for reducing nitrogen oxides from diesel vehicle exhausts. High-efficiency SCR catalysts that could perform at low temperat...NH_(3) selective catalytic reduction(SCR) has been widely recognized as a promising technique for reducing nitrogen oxides from diesel vehicle exhausts. High-efficiency SCR catalysts that could perform at low temperatures are essential to denitration. In this work, a series of bimetallic CeCu-SAPO-34 molecular sieves were synthesized by one-step hydrothermal method. The Ce Cu-SAPO-34 maintained good crystallinity and a regular hexahedron appearance of Cu-SAPO-34 after introducing Ce species, while exhibiting a higher specific surface area and pore volume. The as-prepared CeCu-SAPO-34 with 0.02%(mass) Ce constituent exhibited the best catalytic activity below 300℃ and a maximum NO_(x) conversion of 99% was attained;the NO_(x) removal rates of more than 68% and 94% were achieved at 150℃ and 200℃, respectively. And the introduction of cerium species in Cu-SAPO-34 improves the low-temperature hydrothermal stability of the catalyst towards NH_(3)-SCR reaction. Additionally, the introduced Ce species could enhance the formation of abundant weak Br?nsted acid centers and promote the synergistic effect between CuO grains and isolated Cu^(2+) to enhance the redox cycle, which benefit the NH_(3)-SCR reaction.This work provides a facile synthesis method of high-efficiency SCR denitration catalysts towards diesel vehicles exhaust treatment under low temperature.展开更多
Magnesium(Mg)alloys are the lightest metal structural material for engineering applications and therefore have a wide market of applications.However,compared to steel and aluminum alloys,Mg alloys have lower mechanica...Magnesium(Mg)alloys are the lightest metal structural material for engineering applications and therefore have a wide market of applications.However,compared to steel and aluminum alloys,Mg alloys have lower mechanical properties,which greatly limits their application.Extrusion is one of the most important processing methods for Mg and its alloys.However,the effect of such a heterogeneous microstructure achieved at low temperatures on the mechanical properties is lacking investigation.In this work,commercial AZ80 alloys with different initial microstructures(as-cast and as-homogenized)were selected and extruded at a low extrusion temperature of 220℃and a low extrusion ratio of 4.The microstructure and mechanical properties of the two extruded AZ80 alloys were investigated.The results show that homogenized-extruded(HE)sample exhibits higher strength than the cast-extruded(CE)sample,which is mainly attributed to the high number density of fine dynamic precipitates and the high fraction of recrystallized ultrafine grains.Compared to the coarse compounds existing in CE sample,the fine dynamical precipitates of Mg17(Al,Zn)12form in the HE sample can effectively promote the dynamical recrystallization during extrusion,while they exhibit a similar effect on the size and orientation of the recrystallized grains.These results can facilitate the designing of high-strength wrought magnesium alloys by rational microstructure construction.展开更多
Fine-grained magnesium was tested under stress-controlled tension-tension cyclic loading at -30 ℃ and the tested sample was observed using scanning electron microscope and electron backscatter diffraction to explore ...Fine-grained magnesium was tested under stress-controlled tension-tension cyclic loading at -30 ℃ and the tested sample was observed using scanning electron microscope and electron backscatter diffraction to explore the fatigue behavior and crack propagation. The fatigue data showed that the material experienced cyclic softening followed by cyclic hardening before the final fracture failure. The microscopic observations demonstrated that the cracks were almost perpendicular to the loading direction with some zigzags and the cracks progressed along both small angle grain boundaries and large angle grain boundaries. Although the cracks were mainly propagated along large angle grain boundaries, the value of grain boundary angle was not the primary factor to determine the crack propagation direction. The local residual strain from the rolling process was released due to the crack propagation and there was more strain relaxation at regions closer to the cracks.展开更多
Different hydraulic retention times(HRTs)were tested in a mixed anoxic/oxic(A/O)system at 5C and 10C to investigate the effects of HRT and carrier on nitrogen removal in wastewater at low temperatures.The results show...Different hydraulic retention times(HRTs)were tested in a mixed anoxic/oxic(A/O)system at 5C and 10C to investigate the effects of HRT and carrier on nitrogen removal in wastewater at low temperatures.The results showed that the addition of the fillers improved the treatment effect of each index in the system.With an optimal HRT of 7.5 h at 5C,the removal efficiencies of NHþ4-N and total nitrogen(TN)reached 91.2%and 75.6%,respectively.With an HRT of 6 h at 10C,the removal efficiencies of NHþ4-N and TN were 96.7%and 82.9%,respectively.The results of high-throughput sequencing showed that the addition of the suspended carriers in the aerobic zone could improve the treatment efficiency of nitrogen at low temperatures.The microbial analysis indicated that the addition of the suspended carriers enhanced the enrichment of nitrogen removal bacteria.Nitrospira,Nitrotoga,and Nitrosomonas were found to be the bacteria responsible for nitrification,and their relative concentrations on the biofilm at 5C and 10C accounted for 98.11%,92.79%,and 69.98%of all biological samples,respectively.展开更多
The low temperature coal tar(CT)is taken as the raw material,and the extraction and column chromatography are used for detailed and accurate characterization in this paper.The n-heptane soluble fraction(CT-HS)and inso...The low temperature coal tar(CT)is taken as the raw material,and the extraction and column chromatography are used for detailed and accurate characterization in this paper.The n-heptane soluble fraction(CT-HS)and insoluble fraction(CT-HI)were obtained by n-heptane Soxhlet extraction.The extraction rate of CT-HS reached 92.79%(mass),which indicated that there are few heavy compounds in it.Further,different solvents(methylbenzene,benzene,ethyl acetate,methylbenzene-ethanol)were used to elute CT-HS by chromatographic column to obtain five fractions(saturates,aromatics,heteroatoms,phenolics and resins,named CT-SA,CT-AR,CT-HE,CT-PH,CT-RE,respectively).The yields of CTSA,CT-AR,CT-HE,CT-PH,CT-RE are 42.12%,10.43%,2.19%,9.50%and 6.63%(mass),respectively.Gas chromatography-mass spectrometry analysis of eluting components show that alkanes are the main components in CT,followed by polycyclic aromatics,and the corresponding fractions are CT-SA and CT-AR,respectively.The relative content of aliphatics in CT-SA is 76.93%,and the relative content of aromatics in CT-AR is 75.05%.This separation technology effectively separates and enriches different components in CT,and the activation energy required for the pyrolysis process of a single eluting fraction is lower than that of CT,which is expected to provide an important reference for the separation,analysis and conversion of complex oil products such as coal-oil co-processing products,coal tar and other complex heavy carbon oil products.展开更多
Low temperature is one of the adversities threatening the growth and development and reduces the yield of rubber trees.However,molecular mechanisms toward rubber trees in response to low temperature are largely unclea...Low temperature is one of the adversities threatening the growth and development and reduces the yield of rubber trees.However,molecular mechanisms toward rubber trees in response to low temperature are largely unclear.In this study,7,159 and 7,600 differentially expressed genes(DEGs)were identified in‘Reyan 73397’rubber trees.Through GO analysis,the catalytic activity was the representative of the GO term in the only DEGs at the two studied temperatures(room temperature and 4°C,respectively),while KEGG analysis showed that carbon metabolism was the most important grouping under the comparison of these two temperatures.In addition,expression of 9 members of transcription factor MYB family genes were further verified by qRT-PCR,and MYB family genes may play important roles in the regulation of rubber trees under low temperature stress.This study provided a theoretical foundation for(1)revealing the molecular mechanisms of rubber trees in response to low temperature and(2)breeding of tolerant varieties of rubber trees.展开更多
Low temperature cracking(LTC)distress on pavement seriously affects road life.This paper finished a literature review of the research on the mechanism of LTC of asphalt composites(asphalt composites refers to asphalt ...Low temperature cracking(LTC)distress on pavement seriously affects road life.This paper finished a literature review of the research on the mechanism of LTC of asphalt composites(asphalt composites refers to asphalt binder and asphalt mixture in this article),test methods,factors contributing to LTC,measures to prevent and control the distress,and prediction of LTC in asphalt pavements.The following conclusions were obtained:the cracking mechanism of asphalt mixtures needs to be further revealed by means of simulation at the micro level,the BBR and 4 mm plate test(by DSR)methods are currently optimal,and a correlation between asphalt and asphalt mixture evaluation indexes needs to be established.Sensitivity analyses are needed for the factors affecting LTC of asphalt mixtures.It is necessary to calculate the contribution of each factor to the LTC of asphalt mixtures.The aim is to propose targeted improvement measures for the most unfavourable factors,as well as to carry out research and development of key materials for anti-cracking.Measures for the prevention and control of LTC of asphalt pavement are analyzed and discussed.Existing researches on the prediction of LTC of asphalt pavements is discussed.It is necessary to analyse the mechanical response of asphalt pavement,the damage process and the sensitivity of anti-cracking parameters on the basis of considering the complex geometrical characteristics and material properties of asphalt pavement materials.Finally,the mechanism of LTC,evaluation methods,factors influencing LTC,and remedial measures for asphalt composites were summarized,and future research prospects were suggested.This paper provides theoretical support for the further solution of LTC distress of asphalt pavement,which is effective on the improvement of pavement life.展开更多
With increasing aging population,osteoporosis has emerged as a public health problem worldwide.Epidemiological data reveal that the prevalence of osteoporosis in cold regions is high,and low temperatures may crucially...With increasing aging population,osteoporosis has emerged as a public health problem worldwide.Epidemiological data reveal that the prevalence of osteoporosis in cold regions is high,and low temperatures may crucially affect bone mass.Recent studies have found that the transient receptor potential melastatin-8(TRPM8)channel,a cold-sensitive ion channel,can sense cold environment,and can be activated in cold environment.It may play an antagonistic role in low temperature-induced bone mass reduction.Mechanistically,this function may be ascribed to the activation of TRPM8 channel proteins in human bone marrow mesenchymal stem cells(hBM-MSCs),which causes osteoblast differentiation and mineralization in the bone.TRPM8 channel on the surface of brown adipocytes participates in the thermogenesis in brown adipose tissue(BAT)and the regulation of whole-body energy balance to maintain bone homeostasis.TRPM8 may be involved in bone remodeling throughout life.This paper reviews recent research on the possible antagonistic mechanism of TRPM8 in signaling pathways related to low temperature-induced bone mass loss and assesses the possibility of TRPM8 as a molecular target for the prevention and treatment of low temperature-induced osteoporosis in cold regions.展开更多
[Objectives]To explore microRNA expression characteristics related to low temperature stress in chewing cane.[Methods]The research on miRNA under abiotic stress of sugarcane at home and abroad mainly focused on the ty...[Objectives]To explore microRNA expression characteristics related to low temperature stress in chewing cane.[Methods]The research on miRNA under abiotic stress of sugarcane at home and abroad mainly focused on the types and regulation of miRNA under cold,heat,drought,high salt,and mechanical stress.However,there are few studies on miRNA under low temperature stress in chewing cane.The target genes of miR394 and miR825 in chewing cane were predicted and functionally analyzed by bioinformatics technology.[Results]The results showed that the target genes of miR394 and miR825 were mainly members of the WRKY transcription factor family,involved in plant growth,development and stress resistance.Real-time fluorescence quantitative PCR analyzed the expression characteristics of target miRNA in different tissues of chewing cane at different periods of low temperature stress.[Conclusions]The results showed that the expression of chewing cane miR394 and miR408 had temporal and spatial specificity and tissue specificity,both of which could respond to low temperature stress with significant differential expression.展开更多
This research paper provides an overview of low-temperature construction processes with an emphasis on the challenges that the sector faces and the creative solutions created to deal with them. Low-temperature constru...This research paper provides an overview of low-temperature construction processes with an emphasis on the challenges that the sector faces and the creative solutions created to deal with them. Low-temperature construction has particular challenges with regard to technology, materials, worker safety and technological development. It highlights the necessity of customized regulations and procedures aimed at improving the sustainability and efficiency of construction in regions with low temperatures.展开更多
The pollen of two tomato varieties, Ryau961721 and Ryau9327D, was adopted in our research. The two tomato varieties were bred by College of Land- scape and Horticulture, Yunnan Agricultural University. The collected p...The pollen of two tomato varieties, Ryau961721 and Ryau9327D, was adopted in our research. The two tomato varieties were bred by College of Land- scape and Horticulture, Yunnan Agricultural University. The collected pollen was stored in low-temperature (4 ℃) and ultra-low-temperature (-196 ℃) circumstances. Then it was inoculated to the medium and cultured at 28 ℃ in thermostat incubator. The pollen viability was determined by electron microscope. The results showed that compared to that of pollen stored in control (25 ℃) circumstance, the viability of pollen stored in low-temperature (4 ℃) and ultra-low-temperature (-196 ℃) circum- stances for 1 -3 d did not change significantly. In addition, pollen viability trended to decrease with the increase of freeze-thaw cycle and storage time. The pollen lost basically the viability by the 7th d in the storage.展开更多
基金supported by the National Natural Science Foundation of China (No.92372123)the Natural Science Foundation of Guangdong Province (No.2022B1515020005)the Department of Science and Technology of Guangdong Province (No.2020B0101030005)
文摘Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs.
基金supported by the Key Research and Development Program of Shaanxi(2021NY-083)the National Natural Science Foundation of China(31871567).
文摘Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly important for achieving high and stable wheat yields.In this study,Tongmai 6(insensitive)and Zhengmai 113(sensitive),which have different low-temperature sensitivities during germination were treated with low temperature during germination.The transcriptome,metabolome and physiological data revealed that low temperature decreased the germination rate,downregulated the expression of a large number of genes involved in regulating glycometabolism,and inhibited carbon,nitrogen(especially amino acids)and energy metabolism in the seeds.Arginine content increased at low temperature,and its increase in the low-temperature-tolerant variety was significantly greater than that in the sensitive variety.Arginine priming experiment showed that treatment with an appropriate concentration of arginine improved the seed germination rate.The conversion of starch to soluble sugar significantly increased under exogenous arginine conditions,the content of key metabolites in energy metabolism increased,and the utilization of ATP in the seeds increased.Taken together,arginine priming increased seed germination at low temperature by relieving inhibition of seed carbon and nitrogen metabolism and improving seed energy metabolism.
基金the National Natural Science Foundation of China(Grant Nos.31972438,31902054,32202530)the Postdoctoral Initiation Project of Shenzhen Polytechnic(Grant Nos.6021330012K0,6020330006K0,and 6022312017K)+1 种基金Natural Science Foundation of Guangdong Province(Grant No.2021A1515110368)Major Agricultural Science and Technology Projects in Yunnan Province(Grant No.202102AE090052).
文摘Low temperature usually results in the developmental deformity of flower organs,immensely affecting the quality of rose flowers.However,it's largely unknown about the regulatory mechanisms activated by low temperature.Here,we used a low temperature-sensitive Rosa hybrida cv.‘Peach Avalanche’to screen a MADS-box gene RhAGL6 via conjoint analysis between RNA sequencing(RNA-seq)and whole-genome bisulfite sequencing(WGBS).Furthermore,we found that low temperature induced the hypermethylation and elevated histone 3 lys-27 trimethylation(H3K27me3)level on the RhAGL6 promoter,leading to decreased RhAGL6 expression.In addition,RhAGL6 silencing resulted in the formation of abnormal receptacles.We also found that the levels of gibberellins(GA3)and abscisic acid(ABA)in the receptacle under low temperature were lower and higher,respectively,than under normal temperature.Promoter activity analysis revealed that GA3 significantly activated RhAGL6 promoter activity,whereas ABA inhibited it.Thus,we propose that RhAGL6 regulates rose receptacle development by integrating epigenetic regulation and phytohormones signaling at low temperature.
基金supported by the faculty startup funds from the Yangzhou Universitythe Natural Science Foundation of Jiangsu Province(BK20210821)+1 种基金the National Natural Science Foundation of China(22102141)the Lvyangjinfeng Talent Program of Yangzhou。
文摘Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.
基金This research was funded by the Natural Science Foundation of Shandong Province of China(ZR2022MC144).
文摘Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR)family,comprising highly conserved ligand-gated ion channels,regulates plant growth and development in response to stress.In this study,11 members of the VvGLR gene family in grapes were identified using whole-genome sequence analysis.Bioinformatic methods were employed to analyze the basic physical and chemical properties,phylogenetic trees,conserved domains,motifs,expression patterns,and evolutionary relationships.Phylogenetic and collinear analyses revealed that the VvGLRs were divided into three subgroups,showing the high conservation of the grape GLR family.These members exhibited 2 glutamate receptor binding regions(GABAb and GluR)and 3-4 transmembrane regions(M1,M2,M3,and M4).Real-time quantitative PCR analysis demonstrated the sensitivity of all VvGLRs to low temperature and salt stress.Subsequent localization studies in Nicotiana tabacum verified that VvGLR3.1 and VvGLR3.2 proteins were located on the cell membrane and cell nucleus.Additionally,yeast transformation experiments confirmed the functionality of VvGLR3.1 and VvGLR3.2 in response to low temperature and salt stress.Thesefindings highlight the significant role of the GLR family,a highly conserved group of ion channels,in enhancing grape stress resistance.This study offers new insights into the grape GLR gene family,providing fundamental knowledge for further functional analysis and breeding of stress-resistant grapevines.
基金Supported by Basic Research Fund of Hebei Academy of Agriculture and Forestry Sciences(2024020202)"Three-Three-Three"Talent Project of Hebei Province(C20231157)+2 种基金Science and Technology Innovation Project of Hebei Academy of Agriculture and Forestry Sciences(2022KJCXZX-CGS-7)Hebei Agricultural Industry Research System(HBCT2024170406)Key Research and Development Program of Hebei Province(21326308D-1-2).
文摘The most recent research findings on the tolerance of fruit trees to cold stress are reviewed from a molecular perspective,including the perception and transduction of low temperature calcium signaling,CBF-dependent molecular regulatory mechanisms,non-CBF-dependent molecular regulatory mechanisms,and so forth.The objective is to provide a reference basis for further improving the cold resistance of fruit trees and cultivating new varieties of hardy plants.
基金Supported by Zhejiang Basic Public Welfare Research Program Project(LGN21C020006)Key Research and Development Project of Zhejiang Province(2021C02057)+1 种基金Zhejiang Major Science and Technology Project of Agricultural New Variety(Upland Food)Breeding(2021C02064)Key Research and Development Project of Zhejiang Province(2022C04024).
文摘[Objectives]The paper was to explore the effects of low temperature stress on germination and physiological characteristics of different sweet maize varieties.[Methods]Taking Taitian 264,Zhexuetian 1 and Chaotian 4 as the research objects,the changes in germination potential,germination index,plant height,biomass,and antioxidant enzyme activity of maize seeds were studied under optimal temperature conditions(25℃)and low temperature stress conditions(10℃).[Results]Under 10℃stress,the germination rate and germination index of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4.Under low temperature stress,Taitian 264 exhibited the least reduction in height and biomass,while Zhexuetian 1 had the most reduction.Additionally,the SOD and POD activities of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4 under both temperature conditions,while the MDA content of Taitian 264 was lower.Taitian 264 showed strong germination ability against low temperature stress.[Conclusions]This study provides a basis for timely sowing practices of sweet maize in agricultural production.
文摘Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous solution were evaluated.The derived charcoals products were pretreated using oxidation-hydrolysis with 1–5 wt.%KMnO4 at 100℃and then activated at 500℃.The derived charcoal and activated carbon products were characterized by FTIR,XRD,SEM-EDS and BET.Iodine number and methylene blue number of derived products were also used for the analysis of the products.It was found that fabricated charcoal materials made at 350℃–400℃possess good characteristics with low content of surface functional groups and high carbon content.After pre-oxidation-hydrolysis and activation at 500℃,the resulting derived activated carbon materials from charcoals with 400℃carbonization temperature have high content of oxygen containing surface functional groups such as Mn-O,Si-O,Si-O-Si,C-O,or O-H.In addition,MnO_(2) accumulated on the surface of the derived activated carbon products.The surface area and pore volume of the activated carbon products have also increased with increasing of KMnO_(4) concentration from 1 to 3 wt.%and then decreased with 5 wt.%used during activation.Therefore,activated carbon products made by pre-oxidation-hydrolysis with 3 wt.%KMnO_(4) were used for Fe(Ⅲ)adsorption experiments.It was found that Fe(Ⅲ)adsorption on the activated carbon materials can be fitted with both the Freundlich and the Langmuir models.The calculated maximum Fe(Ⅲ)adsorption capacities of sugarcane leaves derived activated carbon and rice straw derived activated carbon products were 50.00 and 39.37 mg/g,respectively.It was shown that the effect of pre-oxidation-hydrolysis by KMnO_(4) and activation at 500℃are beneficial for activated carbon preparation with environmentally friendly and low-cost simplified operation.
基金The datasets presented in this study can be found in online repositories.The names of the repository/repositories and accession number(s)can be found below:NCBI-SRA database under the BioProject no.PRJNA732107 and accession nos.SRR14629497,SRR14629496,SRR14629495,and SRR14629494 for the RNA-seq data.
文摘Cyclophilin(CYP)plays an important role in plant response to stress,and OsCYP2,one gene of cyclophlilin family,is involved in auxin signal transduction and stress signaling in rice.However,the mechanism that OsCYP2 is involved in rice response to low temperature is still unclear.We identified a new OsCYP2 allelic mutant,lrl3,with fewer lateral roots,and the differences in shoot height,primary root length and adventitious root length increased with the growth process compared to the wild-type plant.Auxin signaling pathway was also affected and became insensitive to gravity.The transgenic rice plants with over-expression of OsCYP2 were more tolerant to low temperature than the wild-type plants,suggesting that OsCYP2 was involved in the low temperature response in rice.In addition,OsCYP2 negatively regulated the expression of OsTPS38,a terpene synthase gene,and was dependent on the OsCDPK7-mediated pathway in response to low temperature stress.OsTPS38-overexpressed transgenic line ox-2 was more sensitive to low temperature.Therefore,OsCYP2 may negatively regulate OsTPS38 through an OsCDPK7-dependent pathway to mediate the response to low temperature in rice.These results provide a new basis for auxin signaling genes to regulate rice response to low temperature stress.
基金supported by Project of Central Government for Local Science and Technology Development of China (2022JH6/100100050)the National Natural Science Foundation of China (21776028)Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (ZJKF2001)。
文摘NH_(3) selective catalytic reduction(SCR) has been widely recognized as a promising technique for reducing nitrogen oxides from diesel vehicle exhausts. High-efficiency SCR catalysts that could perform at low temperatures are essential to denitration. In this work, a series of bimetallic CeCu-SAPO-34 molecular sieves were synthesized by one-step hydrothermal method. The Ce Cu-SAPO-34 maintained good crystallinity and a regular hexahedron appearance of Cu-SAPO-34 after introducing Ce species, while exhibiting a higher specific surface area and pore volume. The as-prepared CeCu-SAPO-34 with 0.02%(mass) Ce constituent exhibited the best catalytic activity below 300℃ and a maximum NO_(x) conversion of 99% was attained;the NO_(x) removal rates of more than 68% and 94% were achieved at 150℃ and 200℃, respectively. And the introduction of cerium species in Cu-SAPO-34 improves the low-temperature hydrothermal stability of the catalyst towards NH_(3)-SCR reaction. Additionally, the introduced Ce species could enhance the formation of abundant weak Br?nsted acid centers and promote the synergistic effect between CuO grains and isolated Cu^(2+) to enhance the redox cycle, which benefit the NH_(3)-SCR reaction.This work provides a facile synthesis method of high-efficiency SCR denitration catalysts towards diesel vehicles exhaust treatment under low temperature.
基金Supported by National Natural Science Foundation of China(Grant Nos.52171121,51971151,52201131 and 52201132)Liaoning Provincial Xingliao Program of China(Grant No.XLYC1907083)+1 种基金Liaoning Provincial Natural Science Foundation of China(Grant No.2022-NLTS-18-01)Open Foundation of Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education of China(Grant No.HEU10202205).
文摘Magnesium(Mg)alloys are the lightest metal structural material for engineering applications and therefore have a wide market of applications.However,compared to steel and aluminum alloys,Mg alloys have lower mechanical properties,which greatly limits their application.Extrusion is one of the most important processing methods for Mg and its alloys.However,the effect of such a heterogeneous microstructure achieved at low temperatures on the mechanical properties is lacking investigation.In this work,commercial AZ80 alloys with different initial microstructures(as-cast and as-homogenized)were selected and extruded at a low extrusion temperature of 220℃and a low extrusion ratio of 4.The microstructure and mechanical properties of the two extruded AZ80 alloys were investigated.The results show that homogenized-extruded(HE)sample exhibits higher strength than the cast-extruded(CE)sample,which is mainly attributed to the high number density of fine dynamic precipitates and the high fraction of recrystallized ultrafine grains.Compared to the coarse compounds existing in CE sample,the fine dynamical precipitates of Mg17(Al,Zn)12form in the HE sample can effectively promote the dynamical recrystallization during extrusion,while they exhibit a similar effect on the size and orientation of the recrystallized grains.These results can facilitate the designing of high-strength wrought magnesium alloys by rational microstructure construction.
基金the support from the Basic Energy Sciences Office at the US Department of Energy under Award no.DESC0016333。
文摘Fine-grained magnesium was tested under stress-controlled tension-tension cyclic loading at -30 ℃ and the tested sample was observed using scanning electron microscope and electron backscatter diffraction to explore the fatigue behavior and crack propagation. The fatigue data showed that the material experienced cyclic softening followed by cyclic hardening before the final fracture failure. The microscopic observations demonstrated that the cracks were almost perpendicular to the loading direction with some zigzags and the cracks progressed along both small angle grain boundaries and large angle grain boundaries. Although the cracks were mainly propagated along large angle grain boundaries, the value of grain boundary angle was not the primary factor to determine the crack propagation direction. The local residual strain from the rolling process was released due to the crack propagation and there was more strain relaxation at regions closer to the cracks.
基金supported by the National Natural Science Foundation of China(Grants No.51978233 and 52000057)the China Postdoctoral Science Foundation(Grant No.2020M680844).
文摘Different hydraulic retention times(HRTs)were tested in a mixed anoxic/oxic(A/O)system at 5C and 10C to investigate the effects of HRT and carrier on nitrogen removal in wastewater at low temperatures.The results showed that the addition of the fillers improved the treatment effect of each index in the system.With an optimal HRT of 7.5 h at 5C,the removal efficiencies of NHþ4-N and total nitrogen(TN)reached 91.2%and 75.6%,respectively.With an HRT of 6 h at 10C,the removal efficiencies of NHþ4-N and TN were 96.7%and 82.9%,respectively.The results of high-throughput sequencing showed that the addition of the suspended carriers in the aerobic zone could improve the treatment efficiency of nitrogen at low temperatures.The microbial analysis indicated that the addition of the suspended carriers enhanced the enrichment of nitrogen removal bacteria.Nitrospira,Nitrotoga,and Nitrosomonas were found to be the bacteria responsible for nitrification,and their relative concentrations on the biofilm at 5C and 10C accounted for 98.11%,92.79%,and 69.98%of all biological samples,respectively.
基金financed by the project supported by the National Natural Science Foundation of China(22078266,21908180,22178289,22278338)the Key Research and Development Program of Shaanxi(2020ZDLGY11-02,2021GY-136)the Special Fund for High-level Scholars of China(XJ21B10)。
文摘The low temperature coal tar(CT)is taken as the raw material,and the extraction and column chromatography are used for detailed and accurate characterization in this paper.The n-heptane soluble fraction(CT-HS)and insoluble fraction(CT-HI)were obtained by n-heptane Soxhlet extraction.The extraction rate of CT-HS reached 92.79%(mass),which indicated that there are few heavy compounds in it.Further,different solvents(methylbenzene,benzene,ethyl acetate,methylbenzene-ethanol)were used to elute CT-HS by chromatographic column to obtain five fractions(saturates,aromatics,heteroatoms,phenolics and resins,named CT-SA,CT-AR,CT-HE,CT-PH,CT-RE,respectively).The yields of CTSA,CT-AR,CT-HE,CT-PH,CT-RE are 42.12%,10.43%,2.19%,9.50%and 6.63%(mass),respectively.Gas chromatography-mass spectrometry analysis of eluting components show that alkanes are the main components in CT,followed by polycyclic aromatics,and the corresponding fractions are CT-SA and CT-AR,respectively.The relative content of aliphatics in CT-SA is 76.93%,and the relative content of aromatics in CT-AR is 75.05%.This separation technology effectively separates and enriches different components in CT,and the activation energy required for the pyrolysis process of a single eluting fraction is lower than that of CT,which is expected to provide an important reference for the separation,analysis and conversion of complex oil products such as coal-oil co-processing products,coal tar and other complex heavy carbon oil products.
基金supported by the following grants:the National Key R&D Program of China(2019YFD1000500)the National Natural Science Foundations of Shandong Province(ZR2020MC138)the Agricultural Variety Improvement Project of Shandong Province(2020LZGC007).
文摘Low temperature is one of the adversities threatening the growth and development and reduces the yield of rubber trees.However,molecular mechanisms toward rubber trees in response to low temperature are largely unclear.In this study,7,159 and 7,600 differentially expressed genes(DEGs)were identified in‘Reyan 73397’rubber trees.Through GO analysis,the catalytic activity was the representative of the GO term in the only DEGs at the two studied temperatures(room temperature and 4°C,respectively),while KEGG analysis showed that carbon metabolism was the most important grouping under the comparison of these two temperatures.In addition,expression of 9 members of transcription factor MYB family genes were further verified by qRT-PCR,and MYB family genes may play important roles in the regulation of rubber trees under low temperature stress.This study provided a theoretical foundation for(1)revealing the molecular mechanisms of rubber trees in response to low temperature and(2)breeding of tolerant varieties of rubber trees.
基金financially supported by National Key R&D Program of China(2022YFE0137300)National Natural Science Foundation of China(52078018).
文摘Low temperature cracking(LTC)distress on pavement seriously affects road life.This paper finished a literature review of the research on the mechanism of LTC of asphalt composites(asphalt composites refers to asphalt binder and asphalt mixture in this article),test methods,factors contributing to LTC,measures to prevent and control the distress,and prediction of LTC in asphalt pavements.The following conclusions were obtained:the cracking mechanism of asphalt mixtures needs to be further revealed by means of simulation at the micro level,the BBR and 4 mm plate test(by DSR)methods are currently optimal,and a correlation between asphalt and asphalt mixture evaluation indexes needs to be established.Sensitivity analyses are needed for the factors affecting LTC of asphalt mixtures.It is necessary to calculate the contribution of each factor to the LTC of asphalt mixtures.The aim is to propose targeted improvement measures for the most unfavourable factors,as well as to carry out research and development of key materials for anti-cracking.Measures for the prevention and control of LTC of asphalt pavement are analyzed and discussed.Existing researches on the prediction of LTC of asphalt pavements is discussed.It is necessary to analyse the mechanical response of asphalt pavement,the damage process and the sensitivity of anti-cracking parameters on the basis of considering the complex geometrical characteristics and material properties of asphalt pavement materials.Finally,the mechanism of LTC,evaluation methods,factors influencing LTC,and remedial measures for asphalt composites were summarized,and future research prospects were suggested.This paper provides theoretical support for the further solution of LTC distress of asphalt pavement,which is effective on the improvement of pavement life.
文摘With increasing aging population,osteoporosis has emerged as a public health problem worldwide.Epidemiological data reveal that the prevalence of osteoporosis in cold regions is high,and low temperatures may crucially affect bone mass.Recent studies have found that the transient receptor potential melastatin-8(TRPM8)channel,a cold-sensitive ion channel,can sense cold environment,and can be activated in cold environment.It may play an antagonistic role in low temperature-induced bone mass reduction.Mechanistically,this function may be ascribed to the activation of TRPM8 channel proteins in human bone marrow mesenchymal stem cells(hBM-MSCs),which causes osteoblast differentiation and mineralization in the bone.TRPM8 channel on the surface of brown adipocytes participates in the thermogenesis in brown adipose tissue(BAT)and the regulation of whole-body energy balance to maintain bone homeostasis.TRPM8 may be involved in bone remodeling throughout life.This paper reviews recent research on the possible antagonistic mechanism of TRPM8 in signaling pathways related to low temperature-induced bone mass loss and assesses the possibility of TRPM8 as a molecular target for the prevention and treatment of low temperature-induced osteoporosis in cold regions.
基金Supported by Science and Technology Research Project of Henan Provincial Science and Technology Department(222102110448)Key Scientific Research Projects of Colleges and Universities in Henan Province(21B210007)Open Research Project of Guangxi Sugarcane Genetic Improvement Key Laboratory(19-185-24-K-01-01).
文摘[Objectives]To explore microRNA expression characteristics related to low temperature stress in chewing cane.[Methods]The research on miRNA under abiotic stress of sugarcane at home and abroad mainly focused on the types and regulation of miRNA under cold,heat,drought,high salt,and mechanical stress.However,there are few studies on miRNA under low temperature stress in chewing cane.The target genes of miR394 and miR825 in chewing cane were predicted and functionally analyzed by bioinformatics technology.[Results]The results showed that the target genes of miR394 and miR825 were mainly members of the WRKY transcription factor family,involved in plant growth,development and stress resistance.Real-time fluorescence quantitative PCR analyzed the expression characteristics of target miRNA in different tissues of chewing cane at different periods of low temperature stress.[Conclusions]The results showed that the expression of chewing cane miR394 and miR408 had temporal and spatial specificity and tissue specificity,both of which could respond to low temperature stress with significant differential expression.
文摘This research paper provides an overview of low-temperature construction processes with an emphasis on the challenges that the sector faces and the creative solutions created to deal with them. Low-temperature construction has particular challenges with regard to technology, materials, worker safety and technological development. It highlights the necessity of customized regulations and procedures aimed at improving the sustainability and efficiency of construction in regions with low temperatures.
基金Supported by College Students’Technology Innovation and Entrepreneurship Action Fund of Yunnan Agricultural University(2014ZKX048)~~
文摘The pollen of two tomato varieties, Ryau961721 and Ryau9327D, was adopted in our research. The two tomato varieties were bred by College of Land- scape and Horticulture, Yunnan Agricultural University. The collected pollen was stored in low-temperature (4 ℃) and ultra-low-temperature (-196 ℃) circumstances. Then it was inoculated to the medium and cultured at 28 ℃ in thermostat incubator. The pollen viability was determined by electron microscope. The results showed that compared to that of pollen stored in control (25 ℃) circumstance, the viability of pollen stored in low-temperature (4 ℃) and ultra-low-temperature (-196 ℃) circum- stances for 1 -3 d did not change significantly. In addition, pollen viability trended to decrease with the increase of freeze-thaw cycle and storage time. The pollen lost basically the viability by the 7th d in the storage.