Fe-Cr-Mn (W, V) austenite steel was researched in order to supply a theory base for the first wall materials of fusion reactors.Experiments included vacuum melting, forging, annealing, solution treatment, Charpy impac...Fe-Cr-Mn (W, V) austenite steel was researched in order to supply a theory base for the first wall materials of fusion reactors.Experiments included vacuum melting, forging, annealing, solution treatment, Charpy impact tests and microstructure observation. Theresults show that the imped value decreases with the test temperature decreasing. In this system, there is ductile/brittle transition. Themechanism of this decrease of the impact value is considered to be due to γ - ε transformation in sub-stable austenite steel and stoppingoverlapping sacking fault by grain boundaries in stable austenite steel.展开更多
Prior austenite grain size dependence of the low temperature impact toughness has been addressed in the bainitic weld metals by in situ observations.Usually,decreasing the grain size is the only approach by which both...Prior austenite grain size dependence of the low temperature impact toughness has been addressed in the bainitic weld metals by in situ observations.Usually,decreasing the grain size is the only approach by which both the strength and the toughness of a steel are increased.However,low carbon bainitic steel with small grain size shows a weakening of the low temperature impact toughness in this study.By direct tracking of the morphological evolution during phase transformation,it is found that large austenite grain size dominates the nucleation of intragranular acicular ferrite,whereas small austenite grain size leads to grain boundary nucleation of bainite.This kinetics information will contribute to meet the increasing low temperature toughness requirement of weld metals for the storage tanks and offshore structures.展开更多
Different contents of Ni(0.3wt.%to 1.2wt.%)were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures.The impact toughnesses of ...Different contents of Ni(0.3wt.%to 1.2wt.%)were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures.The impact toughnesses of the samples at room and low temperatures were tested.The microstructures and fractographs were observed.Results show that with the increase of Ni addition there is a general trend of refinement of the ferrite matrix while the nodule density shows no obvious change.When the Ni content is 0.7wt.%,the matrix structure is the refined ferrite with a very small fraction(about 2%)of pearlite near the eutectic cell boundaries.When the Ni content is further increased,the fraction of pearlite increases significantly and reaches more than 5%when 1.2wt.%Ni is added.The impact toughness at room temperature increases as the content of Ni increases from 0.3 wt.%to 0.7 wt.%,but decreases as the Ni content further increases to 1.2wt.%due to the increase of pearlite fraction.The maximum value of the impact work is 18.5 J at room temperature with 0.7wt.%Ni addition.The average value of the impact work is still more than 13 J even at-30℃.In addition,the fracture mechanism changes from ductile manner to brittleness as the testing temperature decreases from 20℃to-60℃.展开更多
High strength low alloy steel with 16 mm thickness was welded by using high power laser hybrid welding. Microstrueture was characterized by using optical microscopy, scanning electron microscopy ( SEM ) , transmissi...High strength low alloy steel with 16 mm thickness was welded by using high power laser hybrid welding. Microstrueture was characterized by using optical microscopy, scanning electron microscopy ( SEM ) , transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Low temperature impact toughness was estimated by using Charpy V-notch impact samples selected from the upper part and the lower part at the same heterogeneous joint. Results show that the low temperature impact absorbed energies of weld metal are (202,180,165 J) of upper samples and (178,145,160 J) of lower samples, respectively. All of them increase compared to base metal. The embrittlement of HAZ does not occur. Weld metal primarily consists of refined carbide free bainite and a little granular bainite since laser hybrid welding owns the character of low heat input. Retained austenite constituent film "locates among the lath structure of bainitie ferrite. Refined bainitic ferrite lath and retained austenite constituent film provide better low temperature impact toughness compared to base metal.展开更多
The effects of the annealing process on the mechanical properties and crystallization behaviors of polypropylene random copolymer(PP-R) composites were investigated using differential scanning calorimetry(DSC), wi...The effects of the annealing process on the mechanical properties and crystallization behaviors of polypropylene random copolymer(PP-R) composites were investigated using differential scanning calorimetry(DSC), wide-angle X-ray diffraction(WAXD), and dynamic mechanical analysis(DMA), and scanning electron microscopy(SEM). The experimental results indicated that the annealing process significantly influenced the comprehensive properties of PP-R composites. At temperatures below 23 ℃, the impact strength of the PP-R composites annealed at 120 ℃ for 6 h was relatively high at 74.73 k J/m^2, which was 16.8% higher than that of the samples annealed at 80 ℃ for 6 h. At low temperatures(-30-0 ℃), the impact strength ranged from approximately 13.31 k J/m^2 to 54.4 k J/m^2. In addition, the annealing process conducted at 120 ℃ for 6 h improved the crystalline structure and low-temperature toughness of the PP-R composites and induced α-form to β-form crystal transformation. The work provides a possible method to reinforce and toughen the semicrystalline polymer at low temperatures(-30-0 ℃) by annealing.展开更多
To determine the physical significance of the impact toughness parameters and accurately characterize the low temperature impact toughness of transmission tower material Q420 B,the finite element model of Charpy impac...To determine the physical significance of the impact toughness parameters and accurately characterize the low temperature impact toughness of transmission tower material Q420 B,the finite element model of Charpy impact test is established on the basis of experiment.The simulation and test results are verified,and the specimen fracture is analyzed by scanning electron microscope.The formation and growth mechanism of the crack are dynamically analyzed.On this basis,energy separation method is used to investigate the effect of low temperature on impact toughness.The results show that the simulation and test results are in good agreement,and the ductile-brittle transition temperature of Q420 B is about-50 ℃.The breaking process of the specimen is divided into the crack formation and propagation.When temperature drops from 20 to-60 ℃,the crack propagation energy decreases from 51.0 to 11.9 J,the crack formation energy reduces from 39.9 to 15.8 J,and the fracture time of the material drops from 1.8 to 0.6 ms.展开更多
Mechanical properties of SMA W (shielded metal arc welding) weld metal ( yield strength higher than 900 MPa ) with systemazic additions of copper ( up to 1.48 wt% ) were tested, The microstructure and precipitat...Mechanical properties of SMA W (shielded metal arc welding) weld metal ( yield strength higher than 900 MPa ) with systemazic additions of copper ( up to 1.48 wt% ) were tested, The microstructure and precipitates in different regions were analyzed by optical microscope and transmission electron microscope, The results indicate that copper improves the low temperature toughness of weld metal when the copper content is low and reaches the peak value 48 J ( at - 50℃ ) with 0. 2 wt% copper additions. When the content is high the copper precipitates as 8-Cu phase in the reheat zone of middle beads. These precipitates improve the strength of the weld metal evidently ( yield strength up to 975 MPa) without obvious effect on the low temperature toughness. The copper within 1.1 wt% content can improve the strength without toughness loss.展开更多
This paper introduces the research and development of high strength A517Q developed by Baosteel for platform rack,with micro-alloying adding suitable quenching and tempering process,trial thickness of 127 - 178 mm hig...This paper introduces the research and development of high strength A517Q developed by Baosteel for platform rack,with micro-alloying adding suitable quenching and tempering process,trial thickness of 127 - 178 mm high-strength A517Q.The trial plate crossing thickness has a uniform mechanical properties, yield strength greater than 700 MPa,tensile strength than 790 MPa,the Charpy impact than 90 J at -40℃, aging impact than 69 J,has high strength and excellent low temperature impact toughness,While the plate has excellent resistance to crack tearing ability of low-temperature,NDT is less than -45℃.The Developing heavy plates had been used for manufacturing racks of 200-foot jack-up offshore platform,the performance meeting the requirements of the ABS,CCS classification societies.展开更多
In order to explore the eff ect of a small amount of rare earth addition in ultra-cleaned pipeline steel and the influence of the cooling process on the tensile and impact properties,three API X80 pipeline steels were...In order to explore the eff ect of a small amount of rare earth addition in ultra-cleaned pipeline steel and the influence of the cooling process on the tensile and impact properties,three API X80 pipeline steels were fabricated by varying RE addition and the cooling process at the same time.Three microstructures with different features for a low C high Nb microalloyed high-strength pipeline steel and the corresponding mechanical properties were investigated.The results showed that even in the ultra-cleaned steel with O and S contents less than 10 ppm,the addition of RE would still cause an increase in the volume fraction of inclusions consisting of complicated RE oxysulfide and RE sulfide.More inclusions formed in the 112 ppm RE steel were harmful to the low temperature toughness,while few inclusions formed in the 47 ppm RE steel had almost no influence on the low temperature toughness.The two RE additions had no effect on strength of the steels.As the finishing cooling temperature was increased and the cooling rate was decreased within a certain range,the volume fractions of polygonal ferrite and quasi-polygonal ferrite as well as the number density and size of martensite–austenite islands were increased.Under such combined effect,the strength of the steels had almost no change.As the finishing cooling temperature was increased from 481 to 584℃and the cooling rate was reduced from 20 to 13℃/s,for the steel with 112 ppm addition of RE,there was an obvious decrease in the low temperature toughness.The reduced value(about 33 J)of the USE of steel consisted of two parts including the influence(about 18 J)of more inclusions formed due to 112 ppm addition of RE and the eff ect(about 15 J)of the lower high-angle grain boundaries.展开更多
In this study, four hydroxyl-terminated polydimethylsiloxanes (PDMSOH) with different viscosities and hydroxyl contents were used to improve the toughness of polycarbonate (PC) through reactive melt blending. A la...In this study, four hydroxyl-terminated polydimethylsiloxanes (PDMSOH) with different viscosities and hydroxyl contents were used to improve the toughness of polycarbonate (PC) through reactive melt blending. A largely improved toughness of PC has been achieved, and the low temperature toughness of PC/PDMSOH blends could overtake that of PC homopolymer in much higher temperatures (e.g. -10 ~C versus 23 ~C). Moreover, it was found that the more the hydroxyl content, the less the PDMSOH was needed to reach the highest toughness, suggesting that equivalent molar ratio between the carbonyl group content of PC and the hydroxyl group content of PDMSOH was required for the toughening of PC. Ultraviolet spectrophotometry was used to analyze the possible reaction between PC and PDMSOH. Contact angle was measured to assess the change of interfacial interaction between PC and PDMSOH as change of viscosity and hydroxyl content. The formation of PC-co-PDMSOH copolymer was believed to be the key for the toughening effect. This work gives a profound recommendation of the optimum kind and dosage of PDMSOH which should be used to improve the toughness of PC and will find immediate industrial applications.展开更多
Offshore jack up platform rack steel must exhibit high strength and toughness as well as excellent welding properties. A high-quality large ingot is a prerequisite for obtaining a high-performance rough part. The elec...Offshore jack up platform rack steel must exhibit high strength and toughness as well as excellent welding properties. A high-quality large ingot is a prerequisite for obtaining a high-performance rough part. The electroslag remelting withdrawing (ESRW) technology using a T-shaped mold and bifilar mode was introduced to replace casting technology. Numerical simulation of the ESRW process was performed to determine the distribution of the temperature and velocity fields and to determine the optimum process for producing rack steels. Several A514Q slab ingots with dimensions of 0.32 m×1.40 m × 4.00 m were produced using ESRW technology in an industrial plant. The industrial test indicated that slab ingots produced by the ESRW method exhibited uniform chemical compositions and compact macrostructures. A 115.4 mm thick plate was produced from the rough ingot after 11 roiling passes. Samples were obtained from different positions in the steel plate to test the mechanical performance and examine the microstructure, and the results revealed that the properties of the steel plate satisfied ASTM standards. The ESRW process improved the tensile strength and toughness of the slab ingot, enabling significant improvements in the anisotropy and low temperature toughness, which are critical for the development of rack steel for offshore platforms.展开更多
文摘Fe-Cr-Mn (W, V) austenite steel was researched in order to supply a theory base for the first wall materials of fusion reactors.Experiments included vacuum melting, forging, annealing, solution treatment, Charpy impact tests and microstructure observation. Theresults show that the imped value decreases with the test temperature decreasing. In this system, there is ductile/brittle transition. Themechanism of this decrease of the impact value is considered to be due to γ - ε transformation in sub-stable austenite steel and stoppingoverlapping sacking fault by grain boundaries in stable austenite steel.
文摘Prior austenite grain size dependence of the low temperature impact toughness has been addressed in the bainitic weld metals by in situ observations.Usually,decreasing the grain size is the only approach by which both the strength and the toughness of a steel are increased.However,low carbon bainitic steel with small grain size shows a weakening of the low temperature impact toughness in this study.By direct tracking of the morphological evolution during phase transformation,it is found that large austenite grain size dominates the nucleation of intragranular acicular ferrite,whereas small austenite grain size leads to grain boundary nucleation of bainite.This kinetics information will contribute to meet the increasing low temperature toughness requirement of weld metals for the storage tanks and offshore structures.
基金financially supported by the National Natural Science Foundation of China(No.51274142)the Science&Technology Project of Liaoning Province(No.2009221005)the Science&Technology Project of Shenyang City(Nos.F10-035-2-00 and F11-069-2-00)
文摘Different contents of Ni(0.3wt.%to 1.2wt.%)were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures.The impact toughnesses of the samples at room and low temperatures were tested.The microstructures and fractographs were observed.Results show that with the increase of Ni addition there is a general trend of refinement of the ferrite matrix while the nodule density shows no obvious change.When the Ni content is 0.7wt.%,the matrix structure is the refined ferrite with a very small fraction(about 2%)of pearlite near the eutectic cell boundaries.When the Ni content is further increased,the fraction of pearlite increases significantly and reaches more than 5%when 1.2wt.%Ni is added.The impact toughness at room temperature increases as the content of Ni increases from 0.3 wt.%to 0.7 wt.%,but decreases as the Ni content further increases to 1.2wt.%due to the increase of pearlite fraction.The maximum value of the impact work is 18.5 J at room temperature with 0.7wt.%Ni addition.The average value of the impact work is still more than 13 J even at-30℃.In addition,the fracture mechanism changes from ductile manner to brittleness as the testing temperature decreases from 20℃to-60℃.
文摘High strength low alloy steel with 16 mm thickness was welded by using high power laser hybrid welding. Microstrueture was characterized by using optical microscopy, scanning electron microscopy ( SEM ) , transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Low temperature impact toughness was estimated by using Charpy V-notch impact samples selected from the upper part and the lower part at the same heterogeneous joint. Results show that the low temperature impact absorbed energies of weld metal are (202,180,165 J) of upper samples and (178,145,160 J) of lower samples, respectively. All of them increase compared to base metal. The embrittlement of HAZ does not occur. Weld metal primarily consists of refined carbide free bainite and a little granular bainite since laser hybrid welding owns the character of low heat input. Retained austenite constituent film "locates among the lath structure of bainitie ferrite. Refined bainitic ferrite lath and retained austenite constituent film provide better low temperature impact toughness compared to base metal.
基金the Science and Technology Cooperation Program of Guizhou Province of China([2016]5673)the Excellent Youth and Science&Technology Talent Foundation of Guizhou Province of China([2015]29)
文摘The effects of the annealing process on the mechanical properties and crystallization behaviors of polypropylene random copolymer(PP-R) composites were investigated using differential scanning calorimetry(DSC), wide-angle X-ray diffraction(WAXD), and dynamic mechanical analysis(DMA), and scanning electron microscopy(SEM). The experimental results indicated that the annealing process significantly influenced the comprehensive properties of PP-R composites. At temperatures below 23 ℃, the impact strength of the PP-R composites annealed at 120 ℃ for 6 h was relatively high at 74.73 k J/m^2, which was 16.8% higher than that of the samples annealed at 80 ℃ for 6 h. At low temperatures(-30-0 ℃), the impact strength ranged from approximately 13.31 k J/m^2 to 54.4 k J/m^2. In addition, the annealing process conducted at 120 ℃ for 6 h improved the crystalline structure and low-temperature toughness of the PP-R composites and induced α-form to β-form crystal transformation. The work provides a possible method to reinforce and toughen the semicrystalline polymer at low temperatures(-30-0 ℃) by annealing.
文摘To determine the physical significance of the impact toughness parameters and accurately characterize the low temperature impact toughness of transmission tower material Q420 B,the finite element model of Charpy impact test is established on the basis of experiment.The simulation and test results are verified,and the specimen fracture is analyzed by scanning electron microscope.The formation and growth mechanism of the crack are dynamically analyzed.On this basis,energy separation method is used to investigate the effect of low temperature on impact toughness.The results show that the simulation and test results are in good agreement,and the ductile-brittle transition temperature of Q420 B is about-50 ℃.The breaking process of the specimen is divided into the crack formation and propagation.When temperature drops from 20 to-60 ℃,the crack propagation energy decreases from 51.0 to 11.9 J,the crack formation energy reduces from 39.9 to 15.8 J,and the fracture time of the material drops from 1.8 to 0.6 ms.
文摘Mechanical properties of SMA W (shielded metal arc welding) weld metal ( yield strength higher than 900 MPa ) with systemazic additions of copper ( up to 1.48 wt% ) were tested, The microstructure and precipitates in different regions were analyzed by optical microscope and transmission electron microscope, The results indicate that copper improves the low temperature toughness of weld metal when the copper content is low and reaches the peak value 48 J ( at - 50℃ ) with 0. 2 wt% copper additions. When the content is high the copper precipitates as 8-Cu phase in the reheat zone of middle beads. These precipitates improve the strength of the weld metal evidently ( yield strength up to 975 MPa) without obvious effect on the low temperature toughness. The copper within 1.1 wt% content can improve the strength without toughness loss.
文摘This paper introduces the research and development of high strength A517Q developed by Baosteel for platform rack,with micro-alloying adding suitable quenching and tempering process,trial thickness of 127 - 178 mm high-strength A517Q.The trial plate crossing thickness has a uniform mechanical properties, yield strength greater than 700 MPa,tensile strength than 790 MPa,the Charpy impact than 90 J at -40℃, aging impact than 69 J,has high strength and excellent low temperature impact toughness,While the plate has excellent resistance to crack tearing ability of low-temperature,NDT is less than -45℃.The Developing heavy plates had been used for manufacturing racks of 200-foot jack-up offshore platform,the performance meeting the requirements of the ABS,CCS classification societies.
基金financially supported by the National Key Research and Development Program of China(Grant No.2017YFB0304901)。
文摘In order to explore the eff ect of a small amount of rare earth addition in ultra-cleaned pipeline steel and the influence of the cooling process on the tensile and impact properties,three API X80 pipeline steels were fabricated by varying RE addition and the cooling process at the same time.Three microstructures with different features for a low C high Nb microalloyed high-strength pipeline steel and the corresponding mechanical properties were investigated.The results showed that even in the ultra-cleaned steel with O and S contents less than 10 ppm,the addition of RE would still cause an increase in the volume fraction of inclusions consisting of complicated RE oxysulfide and RE sulfide.More inclusions formed in the 112 ppm RE steel were harmful to the low temperature toughness,while few inclusions formed in the 47 ppm RE steel had almost no influence on the low temperature toughness.The two RE additions had no effect on strength of the steels.As the finishing cooling temperature was increased and the cooling rate was decreased within a certain range,the volume fractions of polygonal ferrite and quasi-polygonal ferrite as well as the number density and size of martensite–austenite islands were increased.Under such combined effect,the strength of the steels had almost no change.As the finishing cooling temperature was increased from 481 to 584℃and the cooling rate was reduced from 20 to 13℃/s,for the steel with 112 ppm addition of RE,there was an obvious decrease in the low temperature toughness.The reduced value(about 33 J)of the USE of steel consisted of two parts including the influence(about 18 J)of more inclusions formed due to 112 ppm addition of RE and the eff ect(about 15 J)of the lower high-angle grain boundaries.
基金financially supported by the National Natural Science Foundation of China(Nos.21034005 and 51121001)
文摘In this study, four hydroxyl-terminated polydimethylsiloxanes (PDMSOH) with different viscosities and hydroxyl contents were used to improve the toughness of polycarbonate (PC) through reactive melt blending. A largely improved toughness of PC has been achieved, and the low temperature toughness of PC/PDMSOH blends could overtake that of PC homopolymer in much higher temperatures (e.g. -10 ~C versus 23 ~C). Moreover, it was found that the more the hydroxyl content, the less the PDMSOH was needed to reach the highest toughness, suggesting that equivalent molar ratio between the carbonyl group content of PC and the hydroxyl group content of PDMSOH was required for the toughening of PC. Ultraviolet spectrophotometry was used to analyze the possible reaction between PC and PDMSOH. Contact angle was measured to assess the change of interfacial interaction between PC and PDMSOH as change of viscosity and hydroxyl content. The formation of PC-co-PDMSOH copolymer was believed to be the key for the toughening effect. This work gives a profound recommendation of the optimum kind and dosage of PDMSOH which should be used to improve the toughness of PC and will find immediate industrial applications.
基金Item Sponsored by National Natural Science Foundation of China(51204041,51474126,U1560203)Science and Technology Commission of Liaoning of China(L2013125)
文摘Offshore jack up platform rack steel must exhibit high strength and toughness as well as excellent welding properties. A high-quality large ingot is a prerequisite for obtaining a high-performance rough part. The electroslag remelting withdrawing (ESRW) technology using a T-shaped mold and bifilar mode was introduced to replace casting technology. Numerical simulation of the ESRW process was performed to determine the distribution of the temperature and velocity fields and to determine the optimum process for producing rack steels. Several A514Q slab ingots with dimensions of 0.32 m×1.40 m × 4.00 m were produced using ESRW technology in an industrial plant. The industrial test indicated that slab ingots produced by the ESRW method exhibited uniform chemical compositions and compact macrostructures. A 115.4 mm thick plate was produced from the rough ingot after 11 roiling passes. Samples were obtained from different positions in the steel plate to test the mechanical performance and examine the microstructure, and the results revealed that the properties of the steel plate satisfied ASTM standards. The ESRW process improved the tensile strength and toughness of the slab ingot, enabling significant improvements in the anisotropy and low temperature toughness, which are critical for the development of rack steel for offshore platforms.