The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified ra...The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system,where the trains are supplied by two traction substations.In this work,based on the single-input and single-output impedance model of China CRH5 trains,the node admittance matrices of the train-network system both in unilateral and bilateral power supply modes are established,including three-phase power grid,traction transformers and traction network.Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems.Moreover,the influence of the equivalent inductance of the power grid,the length of the transmission line,and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system.Finally,the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink.展开更多
We present here a kind of low-frequency oscillation in argon helicon discharge with a half helical antenna.This time-dependent instability shows a global quasi-periodic oscillation of plasma density and electron tempe...We present here a kind of low-frequency oscillation in argon helicon discharge with a half helical antenna.This time-dependent instability shows a global quasi-periodic oscillation of plasma density and electron temperature,with a typical frequency of a few tens of Hz which increases with external magnetic field as well as radiofrequency(RF)power.The relative oscillation amplitude decreases with magnetic field and RF power,but the rising time and pulse width do not change significantly under different discharge conditions.The oscillation can only be observed in some specific conditions of low magnetic fields and low RF power when the gas flows in from one end of the discharge area and out from another end.This global instability is suggested to be attributed to the pressure instability of neutral depletion,which is the result of compound action of gas depletion by heating expansion and gas replenishment from upstream.There are two kinds of oscillations,large and small amplitude oscillations,occurring in different discharge modes.This study could be a good verification of and complement to earlier experiments.This kind of spontaneous pulse phenomenon is also helpful in realizing a pulsing plasma source without a pulsed power supply.展开更多
With the increasing integration of new energy generation into the power system and the massive withdrawal of traditional fossil fuel generation,the power system is faced with a large number of stability problems.The p...With the increasing integration of new energy generation into the power system and the massive withdrawal of traditional fossil fuel generation,the power system is faced with a large number of stability problems.The phenomenon of low-frequency oscillation caused by lack of damping and moment of inertia is worth studying.In recent years,virtual synchronous generator(VSG)technique has been developed rapidly because it can provide considerable damping and moment of inertia.While improving the stability of the system,it also inevitably causes the problem of active power oscillation,especially the low mutual damping between the VSG and the power grid will make the oscillation more severe.The traditional time-domain state-space method cannot reflect the interaction among state variables and study the interaction between different nodes and branches of the power grid.In this paper,a frequency-domain method for analyzing low-frequency oscillations considering VSG parameter coupling is proposed.First,based on the rotor motion equation of the synchronous generator(SG),a secondorder VSG model and linearized power-frequency control loop model are established.Then,the differences and connections between the coupling of key VSG parameters and low-frequency oscillation characteristics are studied through frequency domain analysis.The path and influencemechanism of a VSG during low-frequency power grid oscillations are illustrated.Finally,the correctness of the theoretical analysis model is verified by simulation.展开更多
Using the 1979-2009 NCEP/NACR reanalysis data and precipitation records in East China, research is performed of the climatological features of low-frequency oscillation(LFO) in OLR over the Maritime Continent(MC) as w...Using the 1979-2009 NCEP/NACR reanalysis data and precipitation records in East China, research is performed of the climatological features of low-frequency oscillation(LFO) in OLR over the Maritime Continent(MC) as well as their associations with precipitation disturbance in the eastern part of China. Results suggest that in the MC there is significant climatological low-frequency oscillation(CLFO) in outgoing long-wave radiation(OLR), with the intraseasonal oscillation(30-60 days) being the strongest for April-September, and the MC acting as a high-value region of percentage contributions of low-frequency OLR variance. On the low-frequency time scale there occur four events of more intense active OLR during this time interval. In the January-April(May-August) phase, MC convection is relatively weak(vigorous). The CLFO makes pronounced eastward displacement at tropics, with phase propagation seen longitudinally, too. There occur low-frequency disturbance circulations similar to the EAP wavetrain or P-J teleconnection,starting from the MC via the South China Sea and the Philippines to the Yangtze valley of China. At different phases,the variation in the low-frequency circulations and heating fields shows that the rainfall disturbance in eastern China is likely to be under possible effects of the CLFO from the MC in April-September, and the low-frequency heating variation exhibits a meridional pattern as an EAP wavetrain or P-J teleconnection. As the OLR CLFO is in a peak(valley)phase the low-level divergence or convergence with the reversal at high levels over the MC is related to relatively feeble(robust) low frequency convection, thereby exciting an EAP or P-J wavetrain from the MC to the Sea of Japan. At the higher levels, the South-Asian high is eastward(westward) of normal due to effects of low-frequency cyclones(anticyclones), resulting in less(more) rainfall in the Jiangnan(areas in the middle and lower reaches of Yangtze and to the south of the river) and Hetao(the Great Bend of Yellow River) areas, and increased(decreased) rainfall in SW China,Qinghai Plateau and Gansu. At the conversion phases, low-frequency convection becomes more active in parts of the MC, consequently exciting low-frequency wavetrain of cyclones-anticyclones-cyclones at low levels, making the South-Asian high southward of the mean, so that strong convergent zones emerge in the upper and middle Yangtze basins and Jilin of NE China, responsible for plentiful precipitation there in sharp contrast to the rainfall over the band between the Yellow and Huaihe Rivers and the Yunnan-Guizhou Plateau. These results help understand in depth the climatological LFO characteristics and the phase-locked feature, thereby further improving our understanding of the causes of rainfall disturbances in different parts of the country.展开更多
Considering the multiscale character of LFO effects of SST on LFO in the tropical atmosphere (low-frequency oscillation) in the tropical atmosphere, the are discussed by using an absolute ageostrophic, baroclinic mo...Considering the multiscale character of LFO effects of SST on LFO in the tropical atmosphere (low-frequency oscillation) in the tropical atmosphere, the are discussed by using an absolute ageostrophic, baroclinic model. Here, SST effects include sea surface heating and forcing of SST anomalies (SSTAs). Studies of the influences of sea surface heating on LFO frequency and stability show that sea surface heating can slow the speed of waves and lower their frequency when SST is comparatively low; while higher SST leads to unstable waves and less periods of LFO. Since the impact of a SSTA on ultra-long waves is more evident than that on kilometer-scale waves, long-wave approximation is used when we continue to study the effect of SSTAs. Results indicate that SSTAs can lead to a longer period of LFO, and make waves unstable. In other words, positive (negative) SSTAs can make waves decay (grow).展开更多
There has been a lot of discussion about the atmospheric heat source over the Tibetan Plateau(TP)and the low-frequency oscillation of atmospheric circulation.However,the research on low-frequency oscillation of heat s...There has been a lot of discussion about the atmospheric heat source over the Tibetan Plateau(TP)and the low-frequency oscillation of atmospheric circulation.However,the research on low-frequency oscillation of heat source over TP and its impact on atmospheric circulation are not fully carried out.By using the vertically integrated apparent heat source which is calculated by the derivation method,main oscillation periods and propagation features of the summer apparent heat source over the eastern TP(Q1ETP)are diagnosed and analyzed from 1981 to 2000.The results are as follows:(1)Summer Q1ETP has two significant oscillation periods:one is 10-20d(BWO,Quasi-Biweekly Oscillation)and the other is 30-60d(LFO,Low-frequency Oscillation).(2)A significant correlation is found between Q1ETP and rainfall over the eastern TP in 1985 and 1992,showing that the low-frequency oscillation of heat source is likely to be stimulated by oscillation of latent heat.(3)The oscillation of heat source on the plateau mainly generates locally but sometimes originates from elsewhere.The BWO of Q1ETP mainly exhibits stationary wave,sometimes moves out(mainly eastward),and has a close relationship with the BWO from the Bay of Bengal.Showing the same characteristics as BWO,the LFO mainly shows local oscillation,occasionally propagates(mainly westward),and connects with the LFO from East China.In summary,more attention should be paid to the study on BWO of Q1ETP.展开更多
In this paper, we summarize the research development of low-frequency oscillations in the last few decades. The findings of physical mechanism, characteristics and stabilizing methods of low-frequency oscillations are...In this paper, we summarize the research development of low-frequency oscillations in the last few decades. The findings of physical mechanism, characteristics and stabilizing methods of low-frequency oscillations are discussed. It shows that it is unreasonable and incomplete to model an ionization region separately to analyze the physical mechanism of low-frequency oscillations. Electro-dynamics as well as the formation conditions of ionization distribution play an important role in characteristics and stabilizing of low-frequency oscillations. Understanding the physical mechanism and characteristics of low- frequency oscillations thoroughly and developing a feasible method stabilizing this instability are still important research subjects.展开更多
In this paper, a direct connection between the discharge current amplitude and the thruster performance is established by varying solely the capacitance of the filter unit of the Hall thrusters. To be precise, the var...In this paper, a direct connection between the discharge current amplitude and the thruster performance is established by varying solely the capacitance of the filter unit of the Hall thrusters. To be precise, the variation characteristics of ion current, propellant utilization efficiency, and divergence angle of plume at different low-frequency oscillation amplitudes are measured. The findings demonstrate that in the case of the propellant in the discharge channel just meets or falls below the full ionization condition, the increase of low-frequency oscillation amplitude can significantly enhance the ionization degree of the neutral gas in the channel and increase the thrust and anode efficiency of thruster. On the contrary, the increase in the amplitude of low-frequency oscillation will lead to increase the loss of plume divergence, therefore the thrust and anode efficiency of thruster decrease.展开更多
Numerical experiments on forcing dissipation and heating response of dipole (unipole) are carried out using global spectral models with quasi-geostrophic barotropic vorticity equations. For each experiment model integ...Numerical experiments on forcing dissipation and heating response of dipole (unipole) are carried out using global spectral models with quasi-geostrophic barotropic vorticity equations. For each experiment model integration is run for 90 days on the condition of three-wave quasi-resonance. The results are given as follows: Under the effects of dipole (unipole) forcing source and basic flow intensity, there exist strong interactions among the three planetary waves and quasi-biweekly and intraseasonal oscillation of the three planetary waves. In the meantime, the changes in the intensity of dipole or unipole forcing source and basic flow have different frequency modulation effects on LFO in the middle and higher latitudes. The results of the stream function field of three quasi-resonant waves evolving with time confirm that the low-frequency oscillation exists in extratropical latitude.展开更多
The propagation of disturbances excited by low-frequency oscillations in the tropics is investigated by applying the theory of wave packet dynamics. For simplicity, a linearized barotropic model is adopted and the zon...The propagation of disturbances excited by low-frequency oscillations in the tropics is investigated by applying the theory of wave packet dynamics. For simplicity, a linearized barotropic model is adopted and the zonal circulation is taken as basic current. Suppose that the disturbances or waves are superimposed on jet-like westerly basic cur-rent and excited by the forcing in the tropics. We have (1) only the eastward propagating (m>0, n>0 and σ>0) low-frequency disturbances and the stationary (σ = 0) waves can propagate into the middle and high latitudes in the Northern Hemisphere; the others, such as the westward propagating low-frequency wave (m>0, n<0, σ<0) and the high-frequency waves, are restricted only in the vicinity of source region; (2) a stationary wave (σ = 0) reaches a given latitude even more quickly than some low-frequency ones (σ>0) due to the fact that the group velocity of stationary wave is larger; (3) there is a whole wave train excited by the forcing in the tropics and extended into the middle and high latitudes, if the amplitude of the source is independent on time, especially, the low-frequency wave (σ > 0) is of travelling type propagating along the ray; (4) if the source lasts only for an interval of time, namely, its amplitude also has the character of low-frequency oscillation, the excited wave train is not always a whole one, but is restricted in the vicinity of source region in the beginning, extended from the source region to the middle and high latitudes in its saturated stage, after that it gradually becomes weaker and weaker and is detectable only in some area at high latitude, and eventually disappears. Undoubtedly, case (4) is closer to the reality, even though case (3) gives a more impressive wavy pattern.展开更多
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 day...Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.展开更多
With NCEP/NCAR reanalysis daily data and SST for 1998, the paper investigates the features of summer monsoon low-frequency oscillation (LFO) over the South China Sea (SCS). Results show that SCS summer monsoon onset i...With NCEP/NCAR reanalysis daily data and SST for 1998, the paper investigates the features of summer monsoon low-frequency oscillation (LFO) over the South China Sea (SCS). Results show that SCS summer monsoon onset is enhanced because of its LFO. Low-frequency (LF) low-level convergence (divergence) region of SCS is in the LF positive (negative) rainfall area. LFO of the SCS region migrates from south to north in the meridian and from west to east in zonal direction. LF divergence of SCS is vertically compensating to each other between high and low level.展开更多
Analysis is done of five-year low-pass filtered data by a five-layer low-order global spectral model, indicating that although any non-seasonal external forcing is not considered in the model atmosphere,monthly-scale ...Analysis is done of five-year low-pass filtered data by a five-layer low-order global spectral model, indicating that although any non-seasonal external forcing is not considered in the model atmosphere,monthly-scale anomaly takes place which is of remarkable seasonality and interannual variability.Analysis also shows that for the same seasonal external forcing the model atmosphere can exhibit two climatic states,similar in the departure pattern but opposite in sign, indicating that the anomaly is but the manifestation of the adverse states, which supports the theory of multi-equilibria proposed by Charney and Devore(1979) once again.Finally, the source for the low-frequency oscillation of the global atmosphere is found to be the convective heat source / sink inside the tropical atmosphere as discussed before in our study.Therefore, the key approach to the exploration of atmospheric steady low-frequency oscillation and the associated climatic effect lies in the examination of the distribution of convective heat sources / sinks and the variation in the tropical atmosphere.展开更多
Using 1975-1993 (with 1978 missing) data of the outgoing longwave radiation (OLR), characteristics of seasonal variation of low-frequency oscillations in the South China Sea and its relation to the establishment and a...Using 1975-1993 (with 1978 missing) data of the outgoing longwave radiation (OLR), characteristics of seasonal variation of low-frequency oscillations in the South China Sea and its relation to the establishment and activity of the summer monsoon there are studied. As is shown in the result, the low-frequency oscillation in the South China Sea is much stronger in the period of summer monsoon than in that of winter monsoon and the summer monsoon there usually begins to set up in a negative phase of the first significant low-frequency oscillation for the early summer. The study also reveals that the circulation for the low-frequency oscillation during the summer monsoon in the Sea is embodied as north-south fluctuations of the ITCZ and east-west shifts of western ridge point of the West Pacific subtropical high, suggesting close correlation between the low-frequency oscillation and the active and break (decay) of the South China Sea monsoon. In the meantime. the work illustrates how the low-frequency oscillation in the South China Sea are superimposed with the seasonal variation of the general circulation. so that the summer inonsoon covers the establishment of the I st, intensification of the 2nd and 3rd the low-frequency oscillations and decay of the 4th oscillation.展开更多
The wavelet analysis is performed of the mid- and low-latitude circulation index at 850 hPa over East Asia, the East Asian monsoon index and the precipitation over the middle and lower reaches of the Yangtze River dur...The wavelet analysis is performed of the mid- and low-latitude circulation index at 850 hPa over East Asia, the East Asian monsoon index and the precipitation over the middle and lower reaches of the Yangtze River during 1998 South China Sea Monsoon Experiment (SCSMEX) from May to August. Analysis shows that distinct 30-60 day low-frequency oscillation (LFO) exists in all of the above elements during the experiment period. Analysis of low-frequency wind field at 850 hPa from May to August with 5 days interval is performed in this Paper. Analysis results reveal that: (l ) A low-frequency monsoon circulation system over East Asia, characterized by distinct 30-60 day low-frequency oscillation, exists over 100°-150°E of East Asian area from the middle and eastern parts of China continent and the South China Sea to the western Pacific in both the Northern and Southern Hemisphere. The activity of East Asian monsoon is mainly affected by the low-frequency systems in it; (2) All of the tropical monsoon onset over the South China Sea in the fifth pentad of May, the beginning of the Meiyu period and heavy rainfall over the middle and lower reaches of the Yangtze River in mid-June and the heavy rainfall after mid-July are related to the activity of low-frequency cyclone belt over the region, whereas the torrential rainfall over the upper reaches of the Yangtze River in August is associated with the westward propagation of low-frequency anticyclone into the mainland; (3) There are two sources of low-frequency oscillation system over East Asia during SCSMEX. i.e. the equatorial South China Sea (SCS) and mid-high latitudes of the middle Pacific in the Northern Hemisphere. The low-frequency system over SCS propagates northward while that in mid-high latitudes mainly propagates from northeast to southwest. Both of the heavy rainfall over the middle and lower reaches of the Yangtze River in June and July are associated with the northward propagation of the above-mentioned SCS low-frequency systems from the tropical region and the southwestward propagation from mid-high latitudes respectively and their convergence in the middle and lower reaches of the Yangtze River; (4) There are two activities of low-frequency cyclone and anticyclone belt each in the East Asian monsoon system during May to August. However the activity of these low-frequency circulation systems is not clearly relevant to the low-frequency circulation system in the indian monsoon system. This means that the low-frequency circulation systems in indian monsoon and East Asian monsoon are independent of each other. The concept previously put forward by Chinese scholars that the East Asian monsoon circulation system (EAMCS) is relatively independent monsoon circulation system is testified once more in the summer 1998.展开更多
Dynamic and numerical methods are used to discuss the atmospheric response to SST thermal forcing. The results show that for planetary scale systems, the standing SST thermal forcing can quickly excite a stable atmosp...Dynamic and numerical methods are used to discuss the atmospheric response to SST thermal forcing. The results show that for planetary scale systems, the standing SST thermal forcing can quickly excite a stable atmospheric equilibrium state response, which is characterized by obvious large-scale teleconnection oscillation in east-west and south-north directions. For synoptic scale systems, the SST thermal forcing mainly excites the atmospheric low-frequency oscillation. Some basic relation and dynamic processes between SST thermal forcing and atmospheric response pattern are revealed and some new viewpoints are presented.展开更多
Some of the low-frequency oscillation (LFO) characteristics of summer moan onset over the South China Sea (SCS) are examined based on NCEP/NCAR reanalysis data and OLR from NOAA in the period of 1979-1996. It is found...Some of the low-frequency oscillation (LFO) characteristics of summer moan onset over the South China Sea (SCS) are examined based on NCEP/NCAR reanalysis data and OLR from NOAA in the period of 1979-1996. It is found that the SCS summer monsoon is characterized by predominance of low-frequency activities with significant interannual variability closely related with onset time. The LFOs over the SCS strengthen after onset. Composite analyses for LFO components of OLR and kinetic energy indicate that the eastward propagation of LFO over the equatorial Indian Ocean and LFO coming from the western Pacific strongly affect the physical processes responsible for the SCS summer monsoon onset. The SCS is the place where the Indian Ocean LFO links with low-frequency activities over the western pacific during summer monsoon onset.展开更多
The inverter-fed induction motor drive system may become unstable at low frequencies and light load, and phase current and speed of the induction motor may oscillate periodically, which will threaten safety and reliab...The inverter-fed induction motor drive system may become unstable at low frequencies and light load, and phase current and speed of the induction motor may oscillate periodically, which will threaten safety and reliability of the system. This paper chooses nine-phase induction motor simulated propulsion system as the research object, small disturbance model of three-phase induction motor is built, and average equivalent model of the converter is built by introducing switch function. On the basis above, small disturbance mathematic model of the whole system is obtained. As for the limitation of parameters adjustment method of restrain low-frequency oscillation, the restrain method combining current close-loop with dead-time compensation is put forward. Finally, the proposed restrain method is verified respectively on the built simulation and experimental analogue platform. And the simulation and experimental results indicate that the proposed method can not only satisfy the requirement of low-frequency oscillation restraining, but also be expanded widely, and the stability of the system can get improved greatly.展开更多
In recent years, with the growth of wind energy resources,the capability of wind farms to damp low-frequency oscillations(LFOs) has provided a notable advantage for the stabilityenhancement of the modern power grid. M...In recent years, with the growth of wind energy resources,the capability of wind farms to damp low-frequency oscillations(LFOs) has provided a notable advantage for the stabilityenhancement of the modern power grid. Meanwhile, owingto variations in the power system operating point (OP), thedamping characteristics of LFOs may be affected adversely. Inthis respect, this paper presents a coordinated robust proportional-integral-derivative (PID) based damping control approachfor permanent magnet synchronous generators (PMSGs)to effectively stabilize LFOs, while considering power system operationaluncertainties in the form of a polytopic model constructedby linearizing the power system under a given set ofOPs. The proposed approach works by modulating the DC-linkvoltage control loop of the grid-side converter (GSC) via a supplementaryPID controller, which is synthesized by transformingthe design problem into H-infinity static output feedback(SOF) control methodology. The solution of H-infinity SOF controlproblem involves satisfying linear matrix inequality (LMI)constraints based on the parameter-dependent Lyapunov functionto ensure asymptotic stability such that the minimal H-infinityperformance objective is simultaneously accomplished forthe entire polytope. The coordinated damping controllers forthe multiple wind farms are then designed sequentially by usingthe proposed approach. Eigenvalue analysis confirms the improveddamping characteristics of the closed-loop system forseveral representative OPs. Afterward, the simulation results, includingthe performance comparison with existing approaches,validate the higher robustness of the proposed approach for awide range of operating scenarios.展开更多
In practical operations,low-frequency oscillation(LFO)occurs and leads to converter blocking when multiple electrical rail vehicles at the platform are powered by the traction network.This paper proposes a small-signa...In practical operations,low-frequency oscillation(LFO)occurs and leads to converter blocking when multiple electrical rail vehicles at the platform are powered by the traction network.This paper proposes a small-signal model in state-space form for multiple vehicle-grid systems based on a dynamic phasor.This model uses the phasor amplitude and phase as variables to accurately describe the dynamics of the converter phase-domain control.An eigenvalue based-method is introduced to investigate the LFO with advantages of acquiring all oscillatory modes and analyzing participation factors.Two low-frequency dominant modes are identified by eigenvalues.Mode shape reveals that one of the modes involves the oscillations between the grid-connected converters and the traction network,and the other one involves the oscillations among these converters.Then the sensitivities of these two low-frequency modes to different system parameters are analyzed.Participation factors of system state variables,when the number of connected vehicle increases,are compared.Finally,the theoretical analysis is verified by nonlinear time-domain simulations and the modal analysis based on the estimation of signal parameters via the rotational invariance techniques(ESPRIT)method.展开更多
基金This work was supported by the Applied Basic Research Program of Science and Technology Plan Project of Sichuan Province of China(No.2020YJ0252).
文摘The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system,where the trains are supplied by two traction substations.In this work,based on the single-input and single-output impedance model of China CRH5 trains,the node admittance matrices of the train-network system both in unilateral and bilateral power supply modes are established,including three-phase power grid,traction transformers and traction network.Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems.Moreover,the influence of the equivalent inductance of the power grid,the length of the transmission line,and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system.Finally,the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink.
基金National Natural Science Foundation of China(No.11975047).
文摘We present here a kind of low-frequency oscillation in argon helicon discharge with a half helical antenna.This time-dependent instability shows a global quasi-periodic oscillation of plasma density and electron temperature,with a typical frequency of a few tens of Hz which increases with external magnetic field as well as radiofrequency(RF)power.The relative oscillation amplitude decreases with magnetic field and RF power,but the rising time and pulse width do not change significantly under different discharge conditions.The oscillation can only be observed in some specific conditions of low magnetic fields and low RF power when the gas flows in from one end of the discharge area and out from another end.This global instability is suggested to be attributed to the pressure instability of neutral depletion,which is the result of compound action of gas depletion by heating expansion and gas replenishment from upstream.There are two kinds of oscillations,large and small amplitude oscillations,occurring in different discharge modes.This study could be a good verification of and complement to earlier experiments.This kind of spontaneous pulse phenomenon is also helpful in realizing a pulsing plasma source without a pulsed power supply.
基金supported by Science and Technology Project of State Grid Liaoning Electric Power Supply Co.,Ltd.(2021YF-82).
文摘With the increasing integration of new energy generation into the power system and the massive withdrawal of traditional fossil fuel generation,the power system is faced with a large number of stability problems.The phenomenon of low-frequency oscillation caused by lack of damping and moment of inertia is worth studying.In recent years,virtual synchronous generator(VSG)technique has been developed rapidly because it can provide considerable damping and moment of inertia.While improving the stability of the system,it also inevitably causes the problem of active power oscillation,especially the low mutual damping between the VSG and the power grid will make the oscillation more severe.The traditional time-domain state-space method cannot reflect the interaction among state variables and study the interaction between different nodes and branches of the power grid.In this paper,a frequency-domain method for analyzing low-frequency oscillations considering VSG parameter coupling is proposed.First,based on the rotor motion equation of the synchronous generator(SG),a secondorder VSG model and linearized power-frequency control loop model are established.Then,the differences and connections between the coupling of key VSG parameters and low-frequency oscillation characteristics are studied through frequency domain analysis.The path and influencemechanism of a VSG during low-frequency power grid oscillations are illustrated.Finally,the correctness of the theoretical analysis model is verified by simulation.
基金Natural Science Foundation of China(41330425,41175062,40475028)Jiangsu PAPD ProjectJiangsu"Qinglan"Project for Activating Research Teams
文摘Using the 1979-2009 NCEP/NACR reanalysis data and precipitation records in East China, research is performed of the climatological features of low-frequency oscillation(LFO) in OLR over the Maritime Continent(MC) as well as their associations with precipitation disturbance in the eastern part of China. Results suggest that in the MC there is significant climatological low-frequency oscillation(CLFO) in outgoing long-wave radiation(OLR), with the intraseasonal oscillation(30-60 days) being the strongest for April-September, and the MC acting as a high-value region of percentage contributions of low-frequency OLR variance. On the low-frequency time scale there occur four events of more intense active OLR during this time interval. In the January-April(May-August) phase, MC convection is relatively weak(vigorous). The CLFO makes pronounced eastward displacement at tropics, with phase propagation seen longitudinally, too. There occur low-frequency disturbance circulations similar to the EAP wavetrain or P-J teleconnection,starting from the MC via the South China Sea and the Philippines to the Yangtze valley of China. At different phases,the variation in the low-frequency circulations and heating fields shows that the rainfall disturbance in eastern China is likely to be under possible effects of the CLFO from the MC in April-September, and the low-frequency heating variation exhibits a meridional pattern as an EAP wavetrain or P-J teleconnection. As the OLR CLFO is in a peak(valley)phase the low-level divergence or convergence with the reversal at high levels over the MC is related to relatively feeble(robust) low frequency convection, thereby exciting an EAP or P-J wavetrain from the MC to the Sea of Japan. At the higher levels, the South-Asian high is eastward(westward) of normal due to effects of low-frequency cyclones(anticyclones), resulting in less(more) rainfall in the Jiangnan(areas in the middle and lower reaches of Yangtze and to the south of the river) and Hetao(the Great Bend of Yellow River) areas, and increased(decreased) rainfall in SW China,Qinghai Plateau and Gansu. At the conversion phases, low-frequency convection becomes more active in parts of the MC, consequently exciting low-frequency wavetrain of cyclones-anticyclones-cyclones at low levels, making the South-Asian high southward of the mean, so that strong convergent zones emerge in the upper and middle Yangtze basins and Jilin of NE China, responsible for plentiful precipitation there in sharp contrast to the rainfall over the band between the Yellow and Huaihe Rivers and the Yunnan-Guizhou Plateau. These results help understand in depth the climatological LFO characteristics and the phase-locked feature, thereby further improving our understanding of the causes of rainfall disturbances in different parts of the country.
基金supported by the National Basic Research Program of China under No.2006CB403607State Key Project(Grant No.40633018)+1 种基金National Natural Science Foundation of China(Grant No.90211011)the Key National Project"SCSMES".
文摘Considering the multiscale character of LFO effects of SST on LFO in the tropical atmosphere (low-frequency oscillation) in the tropical atmosphere, the are discussed by using an absolute ageostrophic, baroclinic model. Here, SST effects include sea surface heating and forcing of SST anomalies (SSTAs). Studies of the influences of sea surface heating on LFO frequency and stability show that sea surface heating can slow the speed of waves and lower their frequency when SST is comparatively low; while higher SST leads to unstable waves and less periods of LFO. Since the impact of a SSTA on ultra-long waves is more evident than that on kilometer-scale waves, long-wave approximation is used when we continue to study the effect of SSTAs. Results indicate that SSTAs can lead to a longer period of LFO, and make waves unstable. In other words, positive (negative) SSTAs can make waves decay (grow).
基金General Program from National Natural Science Foundation of China(40475029)Key Projects of the National Natural Science Foundation of China(40633018,90711003)
文摘There has been a lot of discussion about the atmospheric heat source over the Tibetan Plateau(TP)and the low-frequency oscillation of atmospheric circulation.However,the research on low-frequency oscillation of heat source over TP and its impact on atmospheric circulation are not fully carried out.By using the vertically integrated apparent heat source which is calculated by the derivation method,main oscillation periods and propagation features of the summer apparent heat source over the eastern TP(Q1ETP)are diagnosed and analyzed from 1981 to 2000.The results are as follows:(1)Summer Q1ETP has two significant oscillation periods:one is 10-20d(BWO,Quasi-Biweekly Oscillation)and the other is 30-60d(LFO,Low-frequency Oscillation).(2)A significant correlation is found between Q1ETP and rainfall over the eastern TP in 1985 and 1992,showing that the low-frequency oscillation of heat source is likely to be stimulated by oscillation of latent heat.(3)The oscillation of heat source on the plateau mainly generates locally but sometimes originates from elsewhere.The BWO of Q1ETP mainly exhibits stationary wave,sometimes moves out(mainly eastward),and has a close relationship with the BWO from the Bay of Bengal.Showing the same characteristics as BWO,the LFO mainly shows local oscillation,occasionally propagates(mainly westward),and connects with the LFO from East China.In summary,more attention should be paid to the study on BWO of Q1ETP.
基金supported by the National Natural Science Foundation of China(Grant No.51477035)the Fundamental Research Funds for the Central Universities,China(Grant No.HIT.NSRIF 2015064)the Open Research Fund Program of State Key Laboratory of Cryogenic Vacuum Technology and Physics,China(Grant No.ZDK201304)
文摘In this paper, we summarize the research development of low-frequency oscillations in the last few decades. The findings of physical mechanism, characteristics and stabilizing methods of low-frequency oscillations are discussed. It shows that it is unreasonable and incomplete to model an ionization region separately to analyze the physical mechanism of low-frequency oscillations. Electro-dynamics as well as the formation conditions of ionization distribution play an important role in characteristics and stabilizing of low-frequency oscillations. Understanding the physical mechanism and characteristics of low- frequency oscillations thoroughly and developing a feasible method stabilizing this instability are still important research subjects.
基金support of National Natural Science Foundation of China(Grant Nos.51477035 and 51777045)
文摘In this paper, a direct connection between the discharge current amplitude and the thruster performance is established by varying solely the capacitance of the filter unit of the Hall thrusters. To be precise, the variation characteristics of ion current, propellant utilization efficiency, and divergence angle of plume at different low-frequency oscillation amplitudes are measured. The findings demonstrate that in the case of the propellant in the discharge channel just meets or falls below the full ionization condition, the increase of low-frequency oscillation amplitude can significantly enhance the ionization degree of the neutral gas in the channel and increase the thrust and anode efficiency of thruster. On the contrary, the increase in the amplitude of low-frequency oscillation will lead to increase the loss of plume divergence, therefore the thrust and anode efficiency of thruster decrease.
基金Natural Science Foundation of China (40275016)Operation "Six Kinds of Talents Summit"Foundation for Jiangsu Province
文摘Numerical experiments on forcing dissipation and heating response of dipole (unipole) are carried out using global spectral models with quasi-geostrophic barotropic vorticity equations. For each experiment model integration is run for 90 days on the condition of three-wave quasi-resonance. The results are given as follows: Under the effects of dipole (unipole) forcing source and basic flow intensity, there exist strong interactions among the three planetary waves and quasi-biweekly and intraseasonal oscillation of the three planetary waves. In the meantime, the changes in the intensity of dipole or unipole forcing source and basic flow have different frequency modulation effects on LFO in the middle and higher latitudes. The results of the stream function field of three quasi-resonant waves evolving with time confirm that the low-frequency oscillation exists in extratropical latitude.
文摘The propagation of disturbances excited by low-frequency oscillations in the tropics is investigated by applying the theory of wave packet dynamics. For simplicity, a linearized barotropic model is adopted and the zonal circulation is taken as basic current. Suppose that the disturbances or waves are superimposed on jet-like westerly basic cur-rent and excited by the forcing in the tropics. We have (1) only the eastward propagating (m>0, n>0 and σ>0) low-frequency disturbances and the stationary (σ = 0) waves can propagate into the middle and high latitudes in the Northern Hemisphere; the others, such as the westward propagating low-frequency wave (m>0, n<0, σ<0) and the high-frequency waves, are restricted only in the vicinity of source region; (2) a stationary wave (σ = 0) reaches a given latitude even more quickly than some low-frequency ones (σ>0) due to the fact that the group velocity of stationary wave is larger; (3) there is a whole wave train excited by the forcing in the tropics and extended into the middle and high latitudes, if the amplitude of the source is independent on time, especially, the low-frequency wave (σ > 0) is of travelling type propagating along the ray; (4) if the source lasts only for an interval of time, namely, its amplitude also has the character of low-frequency oscillation, the excited wave train is not always a whole one, but is restricted in the vicinity of source region in the beginning, extended from the source region to the middle and high latitudes in its saturated stage, after that it gradually becomes weaker and weaker and is detectable only in some area at high latitude, and eventually disappears. Undoubtedly, case (4) is closer to the reality, even though case (3) gives a more impressive wavy pattern.
基金National Science Foundation of China(41075086,41475106)Science Research Program of Universities and Colleges in Jiangsu Province(14KJA170003)Priority Academic Program Development of Jiangsu Higher Education Institutions(IRT1147)
文摘Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.
基金National Project of Technology (2001BA607B) Start-up Foundation of Ph.D. of the Chinese Academy of Meteorological Sciences
文摘With NCEP/NCAR reanalysis daily data and SST for 1998, the paper investigates the features of summer monsoon low-frequency oscillation (LFO) over the South China Sea (SCS). Results show that SCS summer monsoon onset is enhanced because of its LFO. Low-frequency (LF) low-level convergence (divergence) region of SCS is in the LF positive (negative) rainfall area. LFO of the SCS region migrates from south to north in the meridian and from west to east in zonal direction. LF divergence of SCS is vertically compensating to each other between high and low level.
文摘Analysis is done of five-year low-pass filtered data by a five-layer low-order global spectral model, indicating that although any non-seasonal external forcing is not considered in the model atmosphere,monthly-scale anomaly takes place which is of remarkable seasonality and interannual variability.Analysis also shows that for the same seasonal external forcing the model atmosphere can exhibit two climatic states,similar in the departure pattern but opposite in sign, indicating that the anomaly is but the manifestation of the adverse states, which supports the theory of multi-equilibria proposed by Charney and Devore(1979) once again.Finally, the source for the low-frequency oscillation of the global atmosphere is found to be the convective heat source / sink inside the tropical atmosphere as discussed before in our study.Therefore, the key approach to the exploration of atmospheric steady low-frequency oscillation and the associated climatic effect lies in the examination of the distribution of convective heat sources / sinks and the variation in the tropical atmosphere.
文摘Using 1975-1993 (with 1978 missing) data of the outgoing longwave radiation (OLR), characteristics of seasonal variation of low-frequency oscillations in the South China Sea and its relation to the establishment and activity of the summer monsoon there are studied. As is shown in the result, the low-frequency oscillation in the South China Sea is much stronger in the period of summer monsoon than in that of winter monsoon and the summer monsoon there usually begins to set up in a negative phase of the first significant low-frequency oscillation for the early summer. The study also reveals that the circulation for the low-frequency oscillation during the summer monsoon in the Sea is embodied as north-south fluctuations of the ITCZ and east-west shifts of western ridge point of the West Pacific subtropical high, suggesting close correlation between the low-frequency oscillation and the active and break (decay) of the South China Sea monsoon. In the meantime. the work illustrates how the low-frequency oscillation in the South China Sea are superimposed with the seasonal variation of the general circulation. so that the summer inonsoon covers the establishment of the I st, intensification of the 2nd and 3rd the low-frequency oscillations and decay of the 4th oscillation.
基金the key project A of the State Ministry of ScienceTechnology " South China Sea Monsoon Experiment" and the fruit of it.
文摘The wavelet analysis is performed of the mid- and low-latitude circulation index at 850 hPa over East Asia, the East Asian monsoon index and the precipitation over the middle and lower reaches of the Yangtze River during 1998 South China Sea Monsoon Experiment (SCSMEX) from May to August. Analysis shows that distinct 30-60 day low-frequency oscillation (LFO) exists in all of the above elements during the experiment period. Analysis of low-frequency wind field at 850 hPa from May to August with 5 days interval is performed in this Paper. Analysis results reveal that: (l ) A low-frequency monsoon circulation system over East Asia, characterized by distinct 30-60 day low-frequency oscillation, exists over 100°-150°E of East Asian area from the middle and eastern parts of China continent and the South China Sea to the western Pacific in both the Northern and Southern Hemisphere. The activity of East Asian monsoon is mainly affected by the low-frequency systems in it; (2) All of the tropical monsoon onset over the South China Sea in the fifth pentad of May, the beginning of the Meiyu period and heavy rainfall over the middle and lower reaches of the Yangtze River in mid-June and the heavy rainfall after mid-July are related to the activity of low-frequency cyclone belt over the region, whereas the torrential rainfall over the upper reaches of the Yangtze River in August is associated with the westward propagation of low-frequency anticyclone into the mainland; (3) There are two sources of low-frequency oscillation system over East Asia during SCSMEX. i.e. the equatorial South China Sea (SCS) and mid-high latitudes of the middle Pacific in the Northern Hemisphere. The low-frequency system over SCS propagates northward while that in mid-high latitudes mainly propagates from northeast to southwest. Both of the heavy rainfall over the middle and lower reaches of the Yangtze River in June and July are associated with the northward propagation of the above-mentioned SCS low-frequency systems from the tropical region and the southwestward propagation from mid-high latitudes respectively and their convergence in the middle and lower reaches of the Yangtze River; (4) There are two activities of low-frequency cyclone and anticyclone belt each in the East Asian monsoon system during May to August. However the activity of these low-frequency circulation systems is not clearly relevant to the low-frequency circulation system in the indian monsoon system. This means that the low-frequency circulation systems in indian monsoon and East Asian monsoon are independent of each other. The concept previously put forward by Chinese scholars that the East Asian monsoon circulation system (EAMCS) is relatively independent monsoon circulation system is testified once more in the summer 1998.
基金Foundation for Backbone Teachers in Higher Colleges of Education Ministry Natural Sci-ence Foundation of China (49975012)
文摘Dynamic and numerical methods are used to discuss the atmospheric response to SST thermal forcing. The results show that for planetary scale systems, the standing SST thermal forcing can quickly excite a stable atmospheric equilibrium state response, which is characterized by obvious large-scale teleconnection oscillation in east-west and south-north directions. For synoptic scale systems, the SST thermal forcing mainly excites the atmospheric low-frequency oscillation. Some basic relation and dynamic processes between SST thermal forcing and atmospheric response pattern are revealed and some new viewpoints are presented.
基金This work was supported by both State Key Project for Basic Research - The China Sea Monsoonn Experiment, the National Natur
文摘Some of the low-frequency oscillation (LFO) characteristics of summer moan onset over the South China Sea (SCS) are examined based on NCEP/NCAR reanalysis data and OLR from NOAA in the period of 1979-1996. It is found that the SCS summer monsoon is characterized by predominance of low-frequency activities with significant interannual variability closely related with onset time. The LFOs over the SCS strengthen after onset. Composite analyses for LFO components of OLR and kinetic energy indicate that the eastward propagation of LFO over the equatorial Indian Ocean and LFO coming from the western Pacific strongly affect the physical processes responsible for the SCS summer monsoon onset. The SCS is the place where the Indian Ocean LFO links with low-frequency activities over the western pacific during summer monsoon onset.
文摘The inverter-fed induction motor drive system may become unstable at low frequencies and light load, and phase current and speed of the induction motor may oscillate periodically, which will threaten safety and reliability of the system. This paper chooses nine-phase induction motor simulated propulsion system as the research object, small disturbance model of three-phase induction motor is built, and average equivalent model of the converter is built by introducing switch function. On the basis above, small disturbance mathematic model of the whole system is obtained. As for the limitation of parameters adjustment method of restrain low-frequency oscillation, the restrain method combining current close-loop with dead-time compensation is put forward. Finally, the proposed restrain method is verified respectively on the built simulation and experimental analogue platform. And the simulation and experimental results indicate that the proposed method can not only satisfy the requirement of low-frequency oscillation restraining, but also be expanded widely, and the stability of the system can get improved greatly.
基金supported by the Major Program of National Natural Science Foundation of China(No.U2166601)the General Program of National Natural Science Foundation of China(No.52077196).
文摘In recent years, with the growth of wind energy resources,the capability of wind farms to damp low-frequency oscillations(LFOs) has provided a notable advantage for the stabilityenhancement of the modern power grid. Meanwhile, owingto variations in the power system operating point (OP), thedamping characteristics of LFOs may be affected adversely. Inthis respect, this paper presents a coordinated robust proportional-integral-derivative (PID) based damping control approachfor permanent magnet synchronous generators (PMSGs)to effectively stabilize LFOs, while considering power system operationaluncertainties in the form of a polytopic model constructedby linearizing the power system under a given set ofOPs. The proposed approach works by modulating the DC-linkvoltage control loop of the grid-side converter (GSC) via a supplementaryPID controller, which is synthesized by transformingthe design problem into H-infinity static output feedback(SOF) control methodology. The solution of H-infinity SOF controlproblem involves satisfying linear matrix inequality (LMI)constraints based on the parameter-dependent Lyapunov functionto ensure asymptotic stability such that the minimal H-infinityperformance objective is simultaneously accomplished forthe entire polytope. The coordinated damping controllers forthe multiple wind farms are then designed sequentially by usingthe proposed approach. Eigenvalue analysis confirms the improveddamping characteristics of the closed-loop system forseveral representative OPs. Afterward, the simulation results, includingthe performance comparison with existing approaches,validate the higher robustness of the proposed approach for awide range of operating scenarios.
基金This work was supported in part by the Fundamental Research Funds for the Central Universities of China(No.2682019CX20)in part by the Applied Basic Research Program of Science and Technology Plan Project of Sichuan Province of China(No.2020YJ0252)。
文摘In practical operations,low-frequency oscillation(LFO)occurs and leads to converter blocking when multiple electrical rail vehicles at the platform are powered by the traction network.This paper proposes a small-signal model in state-space form for multiple vehicle-grid systems based on a dynamic phasor.This model uses the phasor amplitude and phase as variables to accurately describe the dynamics of the converter phase-domain control.An eigenvalue based-method is introduced to investigate the LFO with advantages of acquiring all oscillatory modes and analyzing participation factors.Two low-frequency dominant modes are identified by eigenvalues.Mode shape reveals that one of the modes involves the oscillations between the grid-connected converters and the traction network,and the other one involves the oscillations among these converters.Then the sensitivities of these two low-frequency modes to different system parameters are analyzed.Participation factors of system state variables,when the number of connected vehicle increases,are compared.Finally,the theoretical analysis is verified by nonlinear time-domain simulations and the modal analysis based on the estimation of signal parameters via the rotational invariance techniques(ESPRIT)method.