Porous ceramics were prepared with spodumene flotation talings(SFT),kaolin and low-melting point glass(LPG)powder,whose pores were formed by the chemical reaction of hydrogen peroxide(H_(2)O_(2)).LPG was used to reduc...Porous ceramics were prepared with spodumene flotation talings(SFT),kaolin and low-melting point glass(LPG)powder,whose pores were formed by the chemical reaction of hydrogen peroxide(H_(2)O_(2)).LPG was used to reduce the sintering temperature of porous ceramics and kaolin was used to realize the adsorption to methylene blue(MB)of porous ceramics.The average flexural strength,compressive strength,apparent porosity,water absorption and maximum MB adsorption capacity were 5.60 MPa,4.66 MPa,52.27%,44.32%and 0.7 mg/g,respectively.Moreover,the results of orthogonal experiments present that the sintering temperature and the dosage of H_(2)O_(2)had great influence on the mechanical properties and apparent porosity of porous ceramics,respectively.The main reason for the improvement of mechanical properties of porous ceramics was that LPG gradually became soft with increasing the sintering temperature,which made the mineral particles adhere to each other closely.Kaolinite was not completely converted into metakaolin at 550℃,which might be the main reason why porous ceramics had adsorption properties.展开更多
The effects of CuO and H3BO3 additions on the low-temperature sintering,microstructure,and microwave dielectric properties of Ba2Ti3Nb4O18 ceramics were investigated.The addition of less amount of CuO ( 〈1 wt%) con...The effects of CuO and H3BO3 additions on the low-temperature sintering,microstructure,and microwave dielectric properties of Ba2Ti3Nb4O18 ceramics were investigated.The addition of less amount of CuO ( 〈1 wt%) considerably facilitated the densification of Ba2Ti3Nb4O18 ceramics.Appropriate addition of H3BO3 ( 〈3.5 wt%) remarkably improved the microwave dielectric properties of ceramics.The addition of H3BO3 and CuO successfully reduced the sintering temperature of Ba2Ti3Nb4O18 ceramics from 1300 to 1050 ℃.Ba2Ti3Nb4O18 ceramics sintered at 1 050 ℃ for 4 h with the addition of 1.0 wt% CuO and 3.5 wt% H3BO3 exhibited good microwave dielectric properties:er=33.74,Q?f=13 812 GHz,and tf=-5.35 ppm/°C at about 5.0 GHz.展开更多
We studied the effects of sintering temperature on FeCuCo based pre-alloyed powder for diamond bits.The FeCuCo composite was fabricated by co-precipitation method.With the addition of tungsten carbide(WC),sintering ...We studied the effects of sintering temperature on FeCuCo based pre-alloyed powder for diamond bits.The FeCuCo composite was fabricated by co-precipitation method.With the addition of tungsten carbide(WC),sintering under different temperatures was investigated.Mechanical properties of the FeCuCo based matrix were systematically studied.The structure of the composite was evaluated by X-ray diffraction(XRD) and scanning electron microscope(SEM) was used to analyze the surface of the powder and matrix.The suitable sintering temperature was determined through differential scanning calorimeter(DSC).Micro drilling experiments were performed,and 820 ℃ was identified to be the ideal sintering temperature,at which the matrix shows the best mechanical properties and drilling performance.展开更多
A spherical Fe matrix composite powder containing a high volume fraction (82vo1%) of fine TiC reinforcement was produced using a novel process combining in situ synthesis and plasma techniques. The composite powder ...A spherical Fe matrix composite powder containing a high volume fraction (82vo1%) of fine TiC reinforcement was produced using a novel process combining in situ synthesis and plasma techniques. The composite powder exhibited good sphericity and a dense structure, and the fine sub-micron TiC particles were homogeneously distributed in the α-Fe matrix. A TiC-Fe cermet was prepared from the as-prepared spherical composite powder using powder metallurgy at a low sintering temperature; the product exhibited a hardness of HRA 88.5 and a flexural strength of 1360 MPa. The grain size of the fine-grained TiC and special surface structure of the spherical powder played the key roles in the fabrication process.展开更多
The influences of BaCu(B2O5) (BCB) addition on sintering, microstructure and microwave dielectric properties of Li2MgTi308 ceramics were investigated using X-ray diffractometry, scanning electron microscopy and mi...The influences of BaCu(B2O5) (BCB) addition on sintering, microstructure and microwave dielectric properties of Li2MgTi308 ceramics were investigated using X-ray diffractometry, scanning electron microscopy and microwave dielectric measurements. The experimental results show that a small amount of BaCu(B2O5) addition can effectively reduce the sintering temperature to 900℃, and induce only a limited degradation of the microwave dielectric properties. Typically, the best microwave dielectric properties of er24.5, Q×f =24 622 GHz, rf=4.2×10-6℃ -1 are obtained for 1.0% BCB-doped Li2MgTi3O8 ceramics sintered at 900℃ for 3 h. The BCB-doped Li2MgTi3O8 ceramics can be compatible with Ag electrode, which may be a strong candidate for low temperature co-fired ceramics applications.展开更多
In this study,a trifunctional strategy was developed to prepare a confined Ni-based catalyst(Ni-CeO_(2)@SiO_(2))for dry reforming of methane(DRM)of two main greenhouse gases-CO_(2)and CH_(4).The Ni-CeO_(2)@SiO_(2)cata...In this study,a trifunctional strategy was developed to prepare a confined Ni-based catalyst(Ni-CeO_(2)@SiO_(2))for dry reforming of methane(DRM)of two main greenhouse gases-CO_(2)and CH_(4).The Ni-CeO_(2)@SiO_(2)catalyst was fabricated by utilizing the confinement effect of the SiO_(2)shell and the synergistic interaction between Ni-Ce and the decoking effect of CeO_(2).The catalysts were systematically characterized via X-ray diffraction,N_(2 )adsorption/desorption,transmission electron microscopy,energy dispersive X-ray spectroscopy,hydrogen temperature reduction and desorption set by program,oxygen temperature program desorption,Raman spectroscopy,thermogravimetric analysis,and in situ diffuse reflectance infrared Fourier transform spectroscopy measurements to reveal their physicochemical properties and reaction mechanism.The Ni-CeO_(2)@SiO_(2)catalyst exhibited higher activity and stability than the catalyst synthesized via the traditional impregnation method.In addition,no carbon deposition was detected over Ni-CeO_(2)@SiO_(2)after a 100 h durability test at 800℃,and the average particle size of Ni nanoparticles(NPs)in the catalyst increased from 5.01 to 5.77 nm.Remarkably,Ni-CeO_(2)@SiO_(2)also exhibited superior low-temperature stability;no coke deposition was observed when the catalyst was reacted at 600℃ for 20 h.The high coking and sintering resistance of this confined Ni-based DRM catalyst can be attributed to its trifunctional effect.The trifunctional strategy developed in this study could be used as a guideline to design other high-performance catalysts for CO_(2)and CH4 dry forming and accelerate their industrialization.展开更多
Low-temperature sintering(LTS)experiments of UO2 pellets and their results were reported.Moreover,a routine process of LTS for UO2 pellets was primarily established.Being sintered at 1 400 ℃ for 3 h in a partially-ox...Low-temperature sintering(LTS)experiments of UO2 pellets and their results were reported.Moreover,a routine process of LTS for UO2 pellets was primarily established.Being sintered at 1 400 ℃ for 3 h in a partially-oxidative atmosphere,the relative density of the pellet can be up to around 94%.Pellets with such a high density are of benefit for following-up reduction-sintering processes.Orthogonal test indicates that the importance of factors affecting the density decreases in the sequence of partial-oxidative sintering temperature and time,reduction-sintering time and temperature,and sintering atmosphere.It is found that it is helpful to introducing a small amount of water vapor into the sintering atmosphere during the latter stage.It is believed that it is the key factor to raise the O/U ratio of original powder in order to improve the properties of the low-temperature sintered pellets.展开更多
In this study, low-temperature fired CaMg1−xLi2xSi2O6 microwave dielectric ceramics were prepared via the traditional solid-state reaction method. In this process, 0.4 wt% Li2CO3-B2O3-SiO2-CaCO3-Al2O3 (LBSCA) glass wa...In this study, low-temperature fired CaMg1−xLi2xSi2O6 microwave dielectric ceramics were prepared via the traditional solid-state reaction method. In this process, 0.4 wt% Li2CO3-B2O3-SiO2-CaCO3-Al2O3 (LBSCA) glass was added as a sintering aid. The results showed that ceramics consisted of CaMgSi2O6 as the main phase. The second phases were CaSiO3 always existing and Li2SiO3 occurring at substitution content x > 0.05. Li+ substitution effectively lowered sintering temperature due to 0.4 wt% LBSCA and contributed to grain densification, and the most homogeneous morphology could be observed at x = 0.05. The effects of relative density, the second phase, and ionic polarizability on dielectric constant (εr) were investigated. The quality factor (Q × f) varied with packing fraction that concerned the second phase. Moreover, the temperature coefficient of the resonant frequency (τf) was influenced by MgO6 octahedral distortion and bond valence. Excellent dielectric properties of the CaMg1−xLi2xSi2O6 ceramic was exhibited at x = 0.05 with εr = 7.44, Q × f = 41,017 GHz (f = 15.1638 GHz), and τf = −59.3 ppm/°C when sintered at 900 °C. It had a good application prospect in the field of low-temperature co-fired ceramic (LTCC) substrate and devices.展开更多
In this study,tri-rutile type Mg_(0.5)Ti_(0.5)TaO_(4) ceramics were synthesized,where the structure–property relationship,especially the structural configuration and intrinsic dielectric origin of Mg_(0.5)Ti_(0.5)TaO...In this study,tri-rutile type Mg_(0.5)Ti_(0.5)TaO_(4) ceramics were synthesized,where the structure–property relationship,especially the structural configuration and intrinsic dielectric origin of Mg_(0.5)Ti_(0.5)TaO_(4) ceramics,and the low-firing characteristics were studied.It is found that the tri-rutile structural type is unambiguously identified through the Rietveld refinement analysis,the selected area electron diffraction(SAED),and the high-resolution transmission electron microscopy(HRTEM)along the[110]zone axis.With the increase in sintering temperature,the densification and uniformity of crystal growth play important roles in regulating the microwave dielectric properties of Mg_(0.5)Ti_(0.5)TaO_(4) ceramics.Intrinsically,theoretical dielectric properties calculated by the far-infrared reflective spectra approached the experimental values,indicating the importance of structural features to dielectric properties.Furthermore,a glass additive with high matching relevance with ceramics has been developed to decrease the high sintering temperature of Mg_(0.5)Ti_(0.5)TaO_(4) ceramics,where 2–4 wt%Li_(2)O–MgO–ZnO–B_(2)O_(3)–SiO_(2)(LMZBS)glass frit was adopted to reduce the suitable temperature from 1275 to 1050℃ without significantly deteriorating the microwave dielectric characteristics.Specifically,Mg_(0.5)Ti_(0.5)TaO_(4) ceramics containing 2 wt% glass addition sintered at 1050℃for 4 h possess excellent microwave dielectric properties:dielectric constant(ε_(r))=44.3,quality factor multiplied by resonant frequency(Q×f)=23,820 GHz(f=6.2 GHz),and the temperature coefficient of resonant frequency(τ_(f))=123.2 ppm/℃.展开更多
Pb_(0.96)Sr_(0.04)(Zr,Ti)_(0.7)(Zn_(1/3)Nb_(2/3))_(0.3)O_(3)(PZN-PZT)piezoceramics with various Zr/Ti ratios and Li_(2)CO_(3)sintering aid were sintered at 900°C by the solid-state reaction route.The samples with...Pb_(0.96)Sr_(0.04)(Zr,Ti)_(0.7)(Zn_(1/3)Nb_(2/3))_(0.3)O_(3)(PZN-PZT)piezoceramics with various Zr/Ti ratios and Li_(2)CO_(3)sintering aid were sintered at 900°C by the solid-state reaction route.The samples with different Zr/Ti ratios were compared according to microstructure,phase structure,piezoelectricity,ferroelectricity,and dielectric relaxation.The Zr/Ti ratio in the PZN-PZT ceramics greatly affects the electrical properties.The Zr/Ti ratio affects the proportion between the rhombohedral and tetragonal phases and also affects the grain size.The PZN-PZT ceramics with the Zr/Ti ratio of 53:47 have the largest grain size and have optimized piezoelectric prop-erties(k_(p)=0.58,d_(33)=540 pC/N,and T_(C)=250°C).The larger the grain size,the lesser the grain boundary,the easier the domain wall motion,and the better the piezoelectric properties.The PZT ceramic with Zr/Ti ratio of 53:47 locates the morphotropic phase boundary(MPB)region which is one of the key factors for the high piezoelectric properties of the PZT.展开更多
Dense CaAl2Si2O8 ceramics were prepared via a two-step sintering process at temperatures below 1000℃. First, pre-sintered CaAl2Si2O8 powders containing small amounts of other crystal phases were obtained by sintering...Dense CaAl2Si2O8 ceramics were prepared via a two-step sintering process at temperatures below 1000℃. First, pre-sintered CaAl2Si2O8 powders containing small amounts of other crystal phases were obtained by sintering a mixture of calcium hydroxide and kaolin powders at 950℃ for 6 h. Subsequently, the combination of the pre-sintered ceramic powders with MeO'2B203 (Me = Ca, Sr, Ba) flux agents enabled the low-temperature densification sintering of the CaAl2Si2O8 ceramics at 950℃. The sintering behavior and phase formation of the CaAl2Si2O8 ceramics were investigated in terms of the addition of the three MeO·2B2O3 flux agents. Furthermore, alumina and quartz were introduced into the three flux agents to investigate the sintering behaviors, phase evolvements, microstructures, and physical properties of the resulting CaA12Si208 ceramics. The results showed that, because of their low-melting characteristics, the MeO·2B2O3 (Me = Ca, Sr, Ba) flux agents facilitated the formation of the CaAl2Si2O8 ceramics with a dense microstructure via liquid-phase sintering. The addition of alumina and quartz to the flux agents also strongly affected the microstructures, phase formation, and physical properties of the CaA12Si208 ceramics.展开更多
In this work, network former SiO_2 and network intermediate Al_2O_3 were introduced into typical low-melting binary compositions CaO·B_2O_3, CaO·2B_2O_3, and BaO·B_2O_3 via an aqueous solid-state suspen...In this work, network former SiO_2 and network intermediate Al_2O_3 were introduced into typical low-melting binary compositions CaO·B_2O_3, CaO·2B_2O_3, and BaO·B_2O_3 via an aqueous solid-state suspension milling route. Accordingly, multiple-phase aluminosilicate glass-ceramics were directly obtained via liquid-phase sintering at temperatures below 950°C. On the basis of liquid-phase sintering theory, mineral-phase evolutions and glass-phase formations were systematically investigated in a wide MO–SiO_2–Al_2O_3–B_2O_3(M = Ca, Ba) composition range. The results indicate that major mineral phases of the aluminosilicate glass-ceramics are Al_(20)B_4O_(36), CaAl_2Si_2O_8, and BaAl_2Si_2O_8 and that the glass-ceramic materials are characterized by dense microstructures and excellent dielectric properties.展开更多
Ti_(3)SiC_(2)/Al_(2)O_(3) composites have attracted attention due to their excellent mechanical and electromagnetic properties,but the high temperatures(≥1400℃)required for the densification of aluminum oxide(Al_(2)...Ti_(3)SiC_(2)/Al_(2)O_(3) composites have attracted attention due to their excellent mechanical and electromagnetic properties,but the high temperatures(≥1400℃)required for the densification of aluminum oxide(Al_(2)O_(3))leads to the decomposition of Ti_(3)SiC_(2).To address this issue,Ti_(3)(Si_(x)Al_(1−x))C2/Al_(2)O_(3)(x represents the Si content)composites were synthesized for the first time via hot-pressing(HP)sintering and current-assisted sintering(CAS)of mixed Ti_(3)AlC_(2) and silicon monoxide(SiO)powders at 1300 and 1200℃,respectively.Both approaches produced composites with x values greater than 0.9,indicating that the compositions of the prepared composites were similar to those of Ti_(3)SiC_(2)/Al_(2)O_(3) composites.The synthetic mechanism involved substitution and continuous interdiffusion of Al and Si atoms.The composite prepared by CAS at 1200℃ was compacted,whereas the composite prepared by HP had a low density.The low-temperature densification mechanism is attributed to the combined effects of amorphous SiO,liquid Al,and the high heating rates for CAS.The flexural strength and hardness of the composite prepared by CAS were also comparable to those of compacted Ti_(3)SiC_(2)/Al_(2)O_(3) composites.展开更多
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut...The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.展开更多
Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the co...Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing.展开更多
Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resista...Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms.展开更多
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)...Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.展开更多
Sintering,a well-established technique in powder metallurgy,plays a critical role in the processing of high melting point materials.A comprehensive understanding of structural changes during the sintering process is e...Sintering,a well-established technique in powder metallurgy,plays a critical role in the processing of high melting point materials.A comprehensive understanding of structural changes during the sintering process is essential for effective product assessment.The phase-field method stands out for its unique ability to simulate these structural transformations.Despite its widespread application,there is a notable absence of literature reviews focused on its usage in sintering simulations.Therefore,this paper addresses this gap by reviewing the latest advancements in phase-field sintering models,covering approaches based on energy,grand potential,and entropy increase.The characteristics of various models are extensively discussed,with a specific emphasis on energy-based models incorporating considerations such as interface energy anisotropy,tensor-form diffusion mechanisms,and various forms of rigid particle motion during sintering.Furthermore,the paper offers a concise summary of phase-field sintering models that integrate with other physical fields,including stress/strain fields,viscous flow,temperature field,and external electric fields.In conclusion,the paper provides a succinct overview of the entire content and delineates potential avenues for future research.展开更多
Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explo...Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density,phase composition,microstructure,bulk conductivity,and total conductivity.In the impedance test under frequency of 1-10^(6) Hz,the bulk conductivity of the samples increased with increasing sintering temperature,and the total conductivity first increased and then decreased.SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature,which increased from(0.54±0.01)μm to(1.21±0.01)μm when the temperature changed from 750 to 950°C.The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased.The holding time had little effect on the grain size growth or sample density,but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte.展开更多
Boron carbide has unique properties for wide application possibilities;however,poor sinterability limits its applications.One approach to overcome this limitation is the addition of secondary phases into boron carbide...Boron carbide has unique properties for wide application possibilities;however,poor sinterability limits its applications.One approach to overcome this limitation is the addition of secondary phases into boron carbide.Boron carbide based composite ceramics are produced by the direct addition of secondary phases into the structure or via reactive sintering using a sintering additive.The present study investigated the effect of Ti_(3)SiC_(2) addition to boron carbide by reactive spark plasma sintering in the range of 1700-1900℃.Ti_(3)SiC_(2) phase decomposed at high temperatures and reacted with B4C to form secondary phases of TiB2 and SiC.The results demonstrated that the increase of Ti_(3)SiC_(2) addition(up to 15 vol%)effectively promoted the densification of B4C and yielded higher hardness.However,as the amount of Ti_(3)SiC_(2) increased further,the formation of microstructural inhomogeneity and agglomeration of secondary phases caused a decrease in hardness.展开更多
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(Nos.51674207,51922091)the Young Elite Scientists Sponsorship Program by CAST,China(No.2018QNRC001)the Sichuan Science and Technology Program,China(Nos.2019YFS0453,2018JY0148).
文摘Porous ceramics were prepared with spodumene flotation talings(SFT),kaolin and low-melting point glass(LPG)powder,whose pores were formed by the chemical reaction of hydrogen peroxide(H_(2)O_(2)).LPG was used to reduce the sintering temperature of porous ceramics and kaolin was used to realize the adsorption to methylene blue(MB)of porous ceramics.The average flexural strength,compressive strength,apparent porosity,water absorption and maximum MB adsorption capacity were 5.60 MPa,4.66 MPa,52.27%,44.32%and 0.7 mg/g,respectively.Moreover,the results of orthogonal experiments present that the sintering temperature and the dosage of H_(2)O_(2)had great influence on the mechanical properties and apparent porosity of porous ceramics,respectively.The main reason for the improvement of mechanical properties of porous ceramics was that LPG gradually became soft with increasing the sintering temperature,which made the mineral particles adhere to each other closely.Kaolinite was not completely converted into metakaolin at 550℃,which might be the main reason why porous ceramics had adsorption properties.
文摘The effects of CuO and H3BO3 additions on the low-temperature sintering,microstructure,and microwave dielectric properties of Ba2Ti3Nb4O18 ceramics were investigated.The addition of less amount of CuO ( 〈1 wt%) considerably facilitated the densification of Ba2Ti3Nb4O18 ceramics.Appropriate addition of H3BO3 ( 〈3.5 wt%) remarkably improved the microwave dielectric properties of ceramics.The addition of H3BO3 and CuO successfully reduced the sintering temperature of Ba2Ti3Nb4O18 ceramics from 1300 to 1050 ℃.Ba2Ti3Nb4O18 ceramics sintered at 1 050 ℃ for 4 h with the addition of 1.0 wt% CuO and 3.5 wt% H3BO3 exhibited good microwave dielectric properties:er=33.74,Q?f=13 812 GHz,and tf=-5.35 ppm/°C at about 5.0 GHz.
基金Funded by the Special Fund for Research Institutes of the Ministry of Science and Technology of China(No.2013EG115007)the General Program of Natural Science Fund of Guangxi province in China(No.2013GXNSFAA019320)+2 种基金the Plan program of Scientific Research and Technical Development of Guangxi province in China(No.1348008-3)the Program of Scientific Development of China Nonferrous Metal Mining(group)Co,Ltd(No.2013KJJH11)the Plan program of Scientific Research and Technical Development of Guilin in China(Nos.20140104-4 and 20150105-1)
文摘We studied the effects of sintering temperature on FeCuCo based pre-alloyed powder for diamond bits.The FeCuCo composite was fabricated by co-precipitation method.With the addition of tungsten carbide(WC),sintering under different temperatures was investigated.Mechanical properties of the FeCuCo based matrix were systematically studied.The structure of the composite was evaluated by X-ray diffraction(XRD) and scanning electron microscope(SEM) was used to analyze the surface of the powder and matrix.The suitable sintering temperature was determined through differential scanning calorimeter(DSC).Micro drilling experiments were performed,and 820 ℃ was identified to be the ideal sintering temperature,at which the matrix shows the best mechanical properties and drilling performance.
基金financially supported by the National Natural Science Foundation of China (No. 51274039)the Research Fund for the Doctoral Program of Higher Education of China (No. 20120006110007)
文摘A spherical Fe matrix composite powder containing a high volume fraction (82vo1%) of fine TiC reinforcement was produced using a novel process combining in situ synthesis and plasma techniques. The composite powder exhibited good sphericity and a dense structure, and the fine sub-micron TiC particles were homogeneously distributed in the α-Fe matrix. A TiC-Fe cermet was prepared from the as-prepared spherical composite powder using powder metallurgy at a low sintering temperature; the product exhibited a hardness of HRA 88.5 and a flexural strength of 1360 MPa. The grain size of the fine-grained TiC and special surface structure of the spherical powder played the key roles in the fabrication process.
基金Project(2010GXNSFA013029) supported by the Natural Science Foundation of Guangxi Province,ChinaProject(101059529) supported by National Undergraduate Innovation Program of the Ministry of Education of China
文摘The influences of BaCu(B2O5) (BCB) addition on sintering, microstructure and microwave dielectric properties of Li2MgTi308 ceramics were investigated using X-ray diffractometry, scanning electron microscopy and microwave dielectric measurements. The experimental results show that a small amount of BaCu(B2O5) addition can effectively reduce the sintering temperature to 900℃, and induce only a limited degradation of the microwave dielectric properties. Typically, the best microwave dielectric properties of er24.5, Q×f =24 622 GHz, rf=4.2×10-6℃ -1 are obtained for 1.0% BCB-doped Li2MgTi3O8 ceramics sintered at 900℃ for 3 h. The BCB-doped Li2MgTi3O8 ceramics can be compatible with Ag electrode, which may be a strong candidate for low temperature co-fired ceramics applications.
文摘In this study,a trifunctional strategy was developed to prepare a confined Ni-based catalyst(Ni-CeO_(2)@SiO_(2))for dry reforming of methane(DRM)of two main greenhouse gases-CO_(2)and CH_(4).The Ni-CeO_(2)@SiO_(2)catalyst was fabricated by utilizing the confinement effect of the SiO_(2)shell and the synergistic interaction between Ni-Ce and the decoking effect of CeO_(2).The catalysts were systematically characterized via X-ray diffraction,N_(2 )adsorption/desorption,transmission electron microscopy,energy dispersive X-ray spectroscopy,hydrogen temperature reduction and desorption set by program,oxygen temperature program desorption,Raman spectroscopy,thermogravimetric analysis,and in situ diffuse reflectance infrared Fourier transform spectroscopy measurements to reveal their physicochemical properties and reaction mechanism.The Ni-CeO_(2)@SiO_(2)catalyst exhibited higher activity and stability than the catalyst synthesized via the traditional impregnation method.In addition,no carbon deposition was detected over Ni-CeO_(2)@SiO_(2)after a 100 h durability test at 800℃,and the average particle size of Ni nanoparticles(NPs)in the catalyst increased from 5.01 to 5.77 nm.Remarkably,Ni-CeO_(2)@SiO_(2)also exhibited superior low-temperature stability;no coke deposition was observed when the catalyst was reacted at 600℃ for 20 h.The high coking and sintering resistance of this confined Ni-based DRM catalyst can be attributed to its trifunctional effect.The trifunctional strategy developed in this study could be used as a guideline to design other high-performance catalysts for CO_(2)and CH4 dry forming and accelerate their industrialization.
文摘Low-temperature sintering(LTS)experiments of UO2 pellets and their results were reported.Moreover,a routine process of LTS for UO2 pellets was primarily established.Being sintered at 1 400 ℃ for 3 h in a partially-oxidative atmosphere,the relative density of the pellet can be up to around 94%.Pellets with such a high density are of benefit for following-up reduction-sintering processes.Orthogonal test indicates that the importance of factors affecting the density decreases in the sequence of partial-oxidative sintering temperature and time,reduction-sintering time and temperature,and sintering atmosphere.It is found that it is helpful to introducing a small amount of water vapor into the sintering atmosphere during the latter stage.It is believed that it is the key factor to raise the O/U ratio of original powder in order to improve the properties of the low-temperature sintered pellets.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.61771104 and U1809215).
文摘In this study, low-temperature fired CaMg1−xLi2xSi2O6 microwave dielectric ceramics were prepared via the traditional solid-state reaction method. In this process, 0.4 wt% Li2CO3-B2O3-SiO2-CaCO3-Al2O3 (LBSCA) glass was added as a sintering aid. The results showed that ceramics consisted of CaMgSi2O6 as the main phase. The second phases were CaSiO3 always existing and Li2SiO3 occurring at substitution content x > 0.05. Li+ substitution effectively lowered sintering temperature due to 0.4 wt% LBSCA and contributed to grain densification, and the most homogeneous morphology could be observed at x = 0.05. The effects of relative density, the second phase, and ionic polarizability on dielectric constant (εr) were investigated. The quality factor (Q × f) varied with packing fraction that concerned the second phase. Moreover, the temperature coefficient of the resonant frequency (τf) was influenced by MgO6 octahedral distortion and bond valence. Excellent dielectric properties of the CaMg1−xLi2xSi2O6 ceramic was exhibited at x = 0.05 with εr = 7.44, Q × f = 41,017 GHz (f = 15.1638 GHz), and τf = −59.3 ppm/°C when sintered at 900 °C. It had a good application prospect in the field of low-temperature co-fired ceramic (LTCC) substrate and devices.
基金support from the open research fund of Songshan Lake Materials Laboratory (No.2022SLABFN20)the Qinchuangyuan Citing Highlevel Innovation and Entrepreneurship Talent Projects (No.QCYRCXM-2022-40)+3 种基金the Natural Science Basic Research Program of Shaanxi (No.2022JQ-390)the National Natural Science Foundation of China (No.52102123)the National Key R&D Program of China (No.2022YFB2807405)the Natural Science Foundation of Sichuan Province (Nos.22NSFSC1973 and 2022NSFSC1959).
文摘In this study,tri-rutile type Mg_(0.5)Ti_(0.5)TaO_(4) ceramics were synthesized,where the structure–property relationship,especially the structural configuration and intrinsic dielectric origin of Mg_(0.5)Ti_(0.5)TaO_(4) ceramics,and the low-firing characteristics were studied.It is found that the tri-rutile structural type is unambiguously identified through the Rietveld refinement analysis,the selected area electron diffraction(SAED),and the high-resolution transmission electron microscopy(HRTEM)along the[110]zone axis.With the increase in sintering temperature,the densification and uniformity of crystal growth play important roles in regulating the microwave dielectric properties of Mg_(0.5)Ti_(0.5)TaO_(4) ceramics.Intrinsically,theoretical dielectric properties calculated by the far-infrared reflective spectra approached the experimental values,indicating the importance of structural features to dielectric properties.Furthermore,a glass additive with high matching relevance with ceramics has been developed to decrease the high sintering temperature of Mg_(0.5)Ti_(0.5)TaO_(4) ceramics,where 2–4 wt%Li_(2)O–MgO–ZnO–B_(2)O_(3)–SiO_(2)(LMZBS)glass frit was adopted to reduce the suitable temperature from 1275 to 1050℃ without significantly deteriorating the microwave dielectric characteristics.Specifically,Mg_(0.5)Ti_(0.5)TaO_(4) ceramics containing 2 wt% glass addition sintered at 1050℃for 4 h possess excellent microwave dielectric properties:dielectric constant(ε_(r))=44.3,quality factor multiplied by resonant frequency(Q×f)=23,820 GHz(f=6.2 GHz),and the temperature coefficient of resonant frequency(τ_(f))=123.2 ppm/℃.
基金This work was supported by Sichuan Science and Technology Program(2021YFG0234)the Fundamental Research Funds for the Central Universities(20826041E4280)the National Natural Science Foundation of China(52032007).
文摘Pb_(0.96)Sr_(0.04)(Zr,Ti)_(0.7)(Zn_(1/3)Nb_(2/3))_(0.3)O_(3)(PZN-PZT)piezoceramics with various Zr/Ti ratios and Li_(2)CO_(3)sintering aid were sintered at 900°C by the solid-state reaction route.The samples with different Zr/Ti ratios were compared according to microstructure,phase structure,piezoelectricity,ferroelectricity,and dielectric relaxation.The Zr/Ti ratio in the PZN-PZT ceramics greatly affects the electrical properties.The Zr/Ti ratio affects the proportion between the rhombohedral and tetragonal phases and also affects the grain size.The PZN-PZT ceramics with the Zr/Ti ratio of 53:47 have the largest grain size and have optimized piezoelectric prop-erties(k_(p)=0.58,d_(33)=540 pC/N,and T_(C)=250°C).The larger the grain size,the lesser the grain boundary,the easier the domain wall motion,and the better the piezoelectric properties.The PZT ceramic with Zr/Ti ratio of 53:47 locates the morphotropic phase boundary(MPB)region which is one of the key factors for the high piezoelectric properties of the PZT.
基金supported by the Fundamental Research Funds for the Central Universities from China Government (Grant No. A0920502051513-5)
文摘Dense CaAl2Si2O8 ceramics were prepared via a two-step sintering process at temperatures below 1000℃. First, pre-sintered CaAl2Si2O8 powders containing small amounts of other crystal phases were obtained by sintering a mixture of calcium hydroxide and kaolin powders at 950℃ for 6 h. Subsequently, the combination of the pre-sintered ceramic powders with MeO'2B203 (Me = Ca, Sr, Ba) flux agents enabled the low-temperature densification sintering of the CaAl2Si2O8 ceramics at 950℃. The sintering behavior and phase formation of the CaAl2Si2O8 ceramics were investigated in terms of the addition of the three MeO·2B2O3 flux agents. Furthermore, alumina and quartz were introduced into the three flux agents to investigate the sintering behaviors, phase evolvements, microstructures, and physical properties of the resulting CaA12Si208 ceramics. The results showed that, because of their low-melting characteristics, the MeO·2B2O3 (Me = Ca, Sr, Ba) flux agents facilitated the formation of the CaAl2Si2O8 ceramics with a dense microstructure via liquid-phase sintering. The addition of alumina and quartz to the flux agents also strongly affected the microstructures, phase formation, and physical properties of the CaA12Si208 ceramics.
基金financially supported by the Fundamental Research Funds for the Central Universities of China(No.A0920502051513-5)
文摘In this work, network former SiO_2 and network intermediate Al_2O_3 were introduced into typical low-melting binary compositions CaO·B_2O_3, CaO·2B_2O_3, and BaO·B_2O_3 via an aqueous solid-state suspension milling route. Accordingly, multiple-phase aluminosilicate glass-ceramics were directly obtained via liquid-phase sintering at temperatures below 950°C. On the basis of liquid-phase sintering theory, mineral-phase evolutions and glass-phase formations were systematically investigated in a wide MO–SiO_2–Al_2O_3–B_2O_3(M = Ca, Ba) composition range. The results indicate that major mineral phases of the aluminosilicate glass-ceramics are Al_(20)B_4O_(36), CaAl_2Si_2O_8, and BaAl_2Si_2O_8 and that the glass-ceramic materials are characterized by dense microstructures and excellent dielectric properties.
基金support by the Shandong Province Key Research and Development Plan (Grant No.2020JMRH0401)the National Natural Science Foundation of China (Grant No.51872118)+4 种基金the Key Research and Development Program of Shandong Province (Grant No.2019RKB01018)the Shandong Provincial Natural Science Foundation (Grant Nos.ZR2018PEM008 and ZR2019MEM055)supported by the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology and was financially supported by the National Natural Science Foundation of China (Grant No.51632003)the Taishan Scholars Programthe Case-by-Case Project for Top Outstanding Talents of Jinan.
文摘Ti_(3)SiC_(2)/Al_(2)O_(3) composites have attracted attention due to their excellent mechanical and electromagnetic properties,but the high temperatures(≥1400℃)required for the densification of aluminum oxide(Al_(2)O_(3))leads to the decomposition of Ti_(3)SiC_(2).To address this issue,Ti_(3)(Si_(x)Al_(1−x))C2/Al_(2)O_(3)(x represents the Si content)composites were synthesized for the first time via hot-pressing(HP)sintering and current-assisted sintering(CAS)of mixed Ti_(3)AlC_(2) and silicon monoxide(SiO)powders at 1300 and 1200℃,respectively.Both approaches produced composites with x values greater than 0.9,indicating that the compositions of the prepared composites were similar to those of Ti_(3)SiC_(2)/Al_(2)O_(3) composites.The synthetic mechanism involved substitution and continuous interdiffusion of Al and Si atoms.The composite prepared by CAS at 1200℃ was compacted,whereas the composite prepared by HP had a low density.The low-temperature densification mechanism is attributed to the combined effects of amorphous SiO,liquid Al,and the high heating rates for CAS.The flexural strength and hardness of the composite prepared by CAS were also comparable to those of compacted Ti_(3)SiC_(2)/Al_(2)O_(3) composites.
基金supported by the National Key Research and Development Program of China(No.2019YFA0705601)the National Natural Science Foundation of China(No.U23A20122,52101267)the Key Science and Technology Special Project of Henan Province(No.201111311400).
文摘The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.
文摘Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing.
基金funded by the Science and Technology Research and Development Plan of the China State Railway Group Company Limited(No.N2023J053).
文摘Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms.
基金supported by the National Natural Science Foundation of China(22279025,21773048)the Natural Science Foundation of Heilongjiang Province(LH2021A013)+1 种基金the Sichuan Science and Technology Program(2021YFSY0022)the Fundamental Research Funds for the Central Universities(2023FRFK06005,HIT.NSRIF202204)。
文摘Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs.
基金supported by the National Science and TechnologyMajor Project,China(No.J2019-IV-0014-0082)the National Key Research and Development Program of China(No.2022YFB4600700)+1 种基金the National Overseas Youth Talents Program,China,the Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures,China(No.MCMS-I-0422K01)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘Sintering,a well-established technique in powder metallurgy,plays a critical role in the processing of high melting point materials.A comprehensive understanding of structural changes during the sintering process is essential for effective product assessment.The phase-field method stands out for its unique ability to simulate these structural transformations.Despite its widespread application,there is a notable absence of literature reviews focused on its usage in sintering simulations.Therefore,this paper addresses this gap by reviewing the latest advancements in phase-field sintering models,covering approaches based on energy,grand potential,and entropy increase.The characteristics of various models are extensively discussed,with a specific emphasis on energy-based models incorporating considerations such as interface energy anisotropy,tensor-form diffusion mechanisms,and various forms of rigid particle motion during sintering.Furthermore,the paper offers a concise summary of phase-field sintering models that integrate with other physical fields,including stress/strain fields,viscous flow,temperature field,and external electric fields.In conclusion,the paper provides a succinct overview of the entire content and delineates potential avenues for future research.
基金funded by the National Natural Science Foundation of China(Nos.51672310,51272288,51972344)。
文摘Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density,phase composition,microstructure,bulk conductivity,and total conductivity.In the impedance test under frequency of 1-10^(6) Hz,the bulk conductivity of the samples increased with increasing sintering temperature,and the total conductivity first increased and then decreased.SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature,which increased from(0.54±0.01)μm to(1.21±0.01)μm when the temperature changed from 750 to 950°C.The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased.The holding time had little effect on the grain size growth or sample density,but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte.
基金YOK(MEVLANA 2018-9999-Proj-ect-Based International Exchange Programme)for financial support in inter-national collaboration.
文摘Boron carbide has unique properties for wide application possibilities;however,poor sinterability limits its applications.One approach to overcome this limitation is the addition of secondary phases into boron carbide.Boron carbide based composite ceramics are produced by the direct addition of secondary phases into the structure or via reactive sintering using a sintering additive.The present study investigated the effect of Ti_(3)SiC_(2) addition to boron carbide by reactive spark plasma sintering in the range of 1700-1900℃.Ti_(3)SiC_(2) phase decomposed at high temperatures and reacted with B4C to form secondary phases of TiB2 and SiC.The results demonstrated that the increase of Ti_(3)SiC_(2) addition(up to 15 vol%)effectively promoted the densification of B4C and yielded higher hardness.However,as the amount of Ti_(3)SiC_(2) increased further,the formation of microstructural inhomogeneity and agglomeration of secondary phases caused a decrease in hardness.