It is known that free-surface flows with small slopes can be described by classical lubrication theory.By replacing the assumption of quasi-parallel flows with local wedge flows,the classical lubrication theory has be...It is known that free-surface flows with small slopes can be described by classical lubrication theory.By replacing the assumption of quasi-parallel flows with local wedge flows,the classical lubrication theory has been generalized to the situation with finite surface slopes and vanishing fluxes,e.g.,steady capillary flows with moving contact lines.In this work,this theory is further extended by imposing the contribution of finite fluxes,which can be modeled by a source/sink flow in a wedge.The resulting lubrication equation is used to investigate the surface morphologies observed in dip coating of an inclined plate,including the Landau-Levich-Derjaguin film,dimple and capillary shock.Dependence of these structures on the inclination angle and relative speed with respect to the plate is discussed in detail.Numerical solutions of the lubrication equation agree well with available asymptotic theory.展开更多
The oil film clutch, which is superior in speed adjustment, is capable of being used in the belt conveyor to carry out soft start operation. According to running properties of both belt conveyor and oil film clutch...The oil film clutch, which is superior in speed adjustment, is capable of being used in the belt conveyor to carry out soft start operation. According to running properties of both belt conveyor and oil film clutch, equations that are used to decide the lubricating oil flow and the number of oil films (i.e. the number of rotating and stationary plates) are deduced theoretically. Also key parameters are provided for the design of the hydraulic system. All these together provide the theoretical basis for the soft start design of the belt conveyor and references for the application of the oil film clutch in similar fields.展开更多
A mathematical model of the human cardiovascu lar system in conjunction with an accurate lumped model for a stenosis can provide better insights into the pressure wave propagation at pathological conditions. In this s...A mathematical model of the human cardiovascu lar system in conjunction with an accurate lumped model for a stenosis can provide better insights into the pressure wave propagation at pathological conditions. In this study, a the oretical relation between pressure drop and flow rate based on Lorentz's reciprocal theorem is derived, which offers an identity to describe the relevance of the geometry and the convective momentum transport to the drag force. A voxel based simulator VFLOW VOF3D, where the vessel geome try is expressed by using volume of fluid (VOF) functions, is employed to find the flow distribution in an idealized steno sis vessel and the identity was validated numerically. It is revealed from the correlation flow in a stenosis vessel can that the pressure drop of NS be decomposed into a linear term caused by Stokes flow with the same boundary condi tions, and two nonlinear terms. Furthermore, the linear term for the pressure drop of Stokes flow can be summarized as a correlation by using a modified equation of lubrication the ory, which gives favorable results compared to the numerical ones. The contribution of the nonlinear terms to the pressure drop was analyzed numerically, and it is found that geomet ric shape and momentum transport are the primary factors for the enhancement of drag force. This work paves a way to simulate the blood flow and pressure propagation under dif ferent stenosis conditions by using 1D mathematical model.展开更多
The impact of certain separate characteristics, including the porosity parameter, reaction rate parameter, and viscoelastic parameters of steady convective diffusion across a rectangular channel, has been investigated...The impact of certain separate characteristics, including the porosity parameter, reaction rate parameter, and viscoelastic parameters of steady convective diffusion across a rectangular channel, has been investigated in this article. The model’s momentum and concentration equations were developed using the similarities technique, and the numerically finite volume method was combined with the Beavers and Joseph slip conditions. Various graphs have been used to get insight into various parameters of the problem on velocity and concentration. The cartilage surfaces are assumed to be porous, and the viscosity of synovial fluid varies with hyaluronate (HA) content.展开更多
Through research on the application of hydroviscous speed-adjusting clutch in belt conveyor, this paper concluded that hydroviscous speed-adjusting clutch has many advantages such as controllable start and stop, overl...Through research on the application of hydroviscous speed-adjusting clutch in belt conveyor, this paper concluded that hydroviscous speed-adjusting clutch has many advantages such as controllable start and stop, overload protection and multi-motor power equilibrium. But its theory when used in large power fan and pump could not meet the needs of belt conveyor soft-start operation. Focusing on the theo- retical analysis of the lubrication oil flow needed by the transmission procedure to form the oil-film. Put forward concrete calculation methods of lubrication flow and how to de- cide number of oil-films used in belt conveyor.展开更多
A flow of silicon fluid in the gap between eccentric cylinders was studied experimentally.The condition of gaseous cavitation inception during the rotation of internal cylinder was considered.It was shown that at redu...A flow of silicon fluid in the gap between eccentric cylinders was studied experimentally.The condition of gaseous cavitation inception during the rotation of internal cylinder was considered.It was shown that at reduction of the gap between cylinders Saffman–Taylor instability appeared on surface of the internal cylinder and then gaseous cavitation was observed.Possibility of one uniform gas formation appearance under this type of instability was demonstrated.展开更多
In this article,the effect of the bearing elastic deformation on the performance characteristics of a cylindrical journal bearing is analyzed.The variety of simulation models covers hydrodynamic(HD) and elastohydrod...In this article,the effect of the bearing elastic deformation on the performance characteristics of a cylindrical journal bearing is analyzed.The variety of simulation models covers hydrodynamic(HD) and elastohydrodynamic(EHD) lubrication theories.The Reynolds equations governing the flow in the clearance space of the journal bearing are obtained by considering the effect of mass transfer across the fluid film.The finite element method with an iteration scheme was employed to solve both the Reynolds equation and the three-dimensional elasticity equation representing the displacement field in the bearing shell.The converged solutions for the lubricant flow and elastic deformation vector are obtained.Dynamic characteristics of the journal bearing are computed for HD and EHD theories.Numerical simulation results show that the flexibility of bearing liner has a significant influence on the performance of a cylindrical journal bearing.Indeed,the elastic deformations of the bearing liner extend the pressure area in the bearing and increase the minimum film thickness.Although,dynamic coefficient,load capacity and attitude angle decrease.展开更多
基金the National Natural Science Foundation of China(Grant Nos.11972340,11932019,and 11621202).
文摘It is known that free-surface flows with small slopes can be described by classical lubrication theory.By replacing the assumption of quasi-parallel flows with local wedge flows,the classical lubrication theory has been generalized to the situation with finite surface slopes and vanishing fluxes,e.g.,steady capillary flows with moving contact lines.In this work,this theory is further extended by imposing the contribution of finite fluxes,which can be modeled by a source/sink flow in a wedge.The resulting lubrication equation is used to investigate the surface morphologies observed in dip coating of an inclined plate,including the Landau-Levich-Derjaguin film,dimple and capillary shock.Dependence of these structures on the inclination angle and relative speed with respect to the plate is discussed in detail.Numerical solutions of the lubrication equation agree well with available asymptotic theory.
文摘The oil film clutch, which is superior in speed adjustment, is capable of being used in the belt conveyor to carry out soft start operation. According to running properties of both belt conveyor and oil film clutch, equations that are used to decide the lubricating oil flow and the number of oil films (i.e. the number of rotating and stationary plates) are deduced theoretically. Also key parameters are provided for the design of the hydraulic system. All these together provide the theoretical basis for the soft start design of the belt conveyor and references for the application of the oil film clutch in similar fields.
文摘A mathematical model of the human cardiovascu lar system in conjunction with an accurate lumped model for a stenosis can provide better insights into the pressure wave propagation at pathological conditions. In this study, a the oretical relation between pressure drop and flow rate based on Lorentz's reciprocal theorem is derived, which offers an identity to describe the relevance of the geometry and the convective momentum transport to the drag force. A voxel based simulator VFLOW VOF3D, where the vessel geome try is expressed by using volume of fluid (VOF) functions, is employed to find the flow distribution in an idealized steno sis vessel and the identity was validated numerically. It is revealed from the correlation flow in a stenosis vessel can that the pressure drop of NS be decomposed into a linear term caused by Stokes flow with the same boundary condi tions, and two nonlinear terms. Furthermore, the linear term for the pressure drop of Stokes flow can be summarized as a correlation by using a modified equation of lubrication the ory, which gives favorable results compared to the numerical ones. The contribution of the nonlinear terms to the pressure drop was analyzed numerically, and it is found that geomet ric shape and momentum transport are the primary factors for the enhancement of drag force. This work paves a way to simulate the blood flow and pressure propagation under dif ferent stenosis conditions by using 1D mathematical model.
文摘The impact of certain separate characteristics, including the porosity parameter, reaction rate parameter, and viscoelastic parameters of steady convective diffusion across a rectangular channel, has been investigated in this article. The model’s momentum and concentration equations were developed using the similarities technique, and the numerically finite volume method was combined with the Beavers and Joseph slip conditions. Various graphs have been used to get insight into various parameters of the problem on velocity and concentration. The cartilage surfaces are assumed to be porous, and the viscosity of synovial fluid varies with hyaluronate (HA) content.
文摘Through research on the application of hydroviscous speed-adjusting clutch in belt conveyor, this paper concluded that hydroviscous speed-adjusting clutch has many advantages such as controllable start and stop, overload protection and multi-motor power equilibrium. But its theory when used in large power fan and pump could not meet the needs of belt conveyor soft-start operation. Focusing on the theo- retical analysis of the lubrication oil flow needed by the transmission procedure to form the oil-film. Put forward concrete calculation methods of lubrication flow and how to de- cide number of oil-films used in belt conveyor.
文摘A flow of silicon fluid in the gap between eccentric cylinders was studied experimentally.The condition of gaseous cavitation inception during the rotation of internal cylinder was considered.It was shown that at reduction of the gap between cylinders Saffman–Taylor instability appeared on surface of the internal cylinder and then gaseous cavitation was observed.Possibility of one uniform gas formation appearance under this type of instability was demonstrated.
文摘In this article,the effect of the bearing elastic deformation on the performance characteristics of a cylindrical journal bearing is analyzed.The variety of simulation models covers hydrodynamic(HD) and elastohydrodynamic(EHD) lubrication theories.The Reynolds equations governing the flow in the clearance space of the journal bearing are obtained by considering the effect of mass transfer across the fluid film.The finite element method with an iteration scheme was employed to solve both the Reynolds equation and the three-dimensional elasticity equation representing the displacement field in the bearing shell.The converged solutions for the lubricant flow and elastic deformation vector are obtained.Dynamic characteristics of the journal bearing are computed for HD and EHD theories.Numerical simulation results show that the flexibility of bearing liner has a significant influence on the performance of a cylindrical journal bearing.Indeed,the elastic deformations of the bearing liner extend the pressure area in the bearing and increase the minimum film thickness.Although,dynamic coefficient,load capacity and attitude angle decrease.