Bio-inspired macrostructure array(MAA,size:submillimeter to millimeter scale)materials with special wettability(MAAMs-SW)have attracted significant research attention due to their outstanding performance in many appli...Bio-inspired macrostructure array(MAA,size:submillimeter to millimeter scale)materials with special wettability(MAAMs-SW)have attracted significant research attention due to their outstanding performance in many applications,including oil repellency,liquid/droplet manipulation,anti-icing,heat transfer,water collection,and oil–water separation.In this review,we focus on recent developments in the theory,design,fabrication,and application of bio-inspired MAAMs-SW.We first review the history of the basic theory of special wettability and discuss representative structures and corresponding functions of some biological surfaces,thus setting the stage for the design and fabrication of bio-inspired MAAMs-SW.We then summarize the fabrication methods of special wetting MAAs in terms of three categories:additive manufacturing,subtractive manufacturing,and formative manufacturing,as well as their diverse functional applications,providing insights into the development of these MAAMs-SW.Finally,the challenges and directions of future research on bio-inspired MAAMs-SW are briefy addressed.Worldwide efforts,progress,and breakthroughs from surface engineering to functional applications elaborated herein will promote the practical application of bio-inspired MAAMs-SW.展开更多
In recent years,numerous textual studies have appeared.However,the majority of them concentrated on the study of cohesion and coherence of sentences.Van Dijk(1977,1980),Holland famous linguist,put forward"Macrost...In recent years,numerous textual studies have appeared.However,the majority of them concentrated on the study of cohesion and coherence of sentences.Van Dijk(1977,1980),Holland famous linguist,put forward"Macrostructures"which provide us with a theo retical basis to study macrostructure of texts.The paper aims to introduce it in very detail and make it known to all the English learners.展开更多
The macrostructure and properties of the thin walled copper tube prepared by the downward continuous unidirectional solidification (DCUS) method were studied. The result shows that the macrostructure is closely rela...The macrostructure and properties of the thin walled copper tube prepared by the downward continuous unidirectional solidification (DCUS) method were studied. The result shows that the macrostructure is closely related to the solid-liquid interface profile, which is influenced by the distance between the cooling water location and the solidification front. The mechanical properties of the thin walled copper tube prepared by the DCUS method are near those of the normal cast copper, and it has good relative density, electrical conductivity, and elongation, which are not greatly affected by casting speed. The thin walled copper tube prepared by the DCUS method also has good processing properties that can be taken to further drawing procedures directly without an intermediate process, and obtains good mechanical properties with the total processing rate of 89.8%.展开更多
Rotating electromagnetic field is applied to the centrifugal casting, the macrostructure of centrifugal casting Al-1%Cu alloy stirred with driving or backing magnetic field are both examined. It is shown that both kin...Rotating electromagnetic field is applied to the centrifugal casting, the macrostructure of centrifugal casting Al-1%Cu alloy stirred with driving or backing magnetic field are both examined. It is shown that both kinds of electromagnetic filed can enforce the columnar-equiaxed transition, the driving one decrease the tendency of porosity occurring due to the increase in the bulk liquid pressure. Stirring with braking electromagnetic field produces the mixture of outer fine grains and inner coarse grains in the casting, this is analyzed to be contributed to the differences both in electric conductivity and density between the crystal and the melt, as well as skin effects.展开更多
In friction stir welding of aluminum alloys, tunnel defect may occur due to insufficient plastic material flow caused by lower heat input in the weld region. The inadequacy in heat input is due to improper selection o...In friction stir welding of aluminum alloys, tunnel defect may occur due to insufficient plastic material flow caused by lower heat input in the weld region. The inadequacy in heat input is due to improper selection of friction stir welding tool and process parameters. Ultimately, such defects degrade the properties of weld and may pose serious concerns towards the integrity and safety of the weld component. In order to improve the properties of weld joints, an ultrasonic-assisted friction stir welding device has been configured where ultrasonic energy is transferred from an ultrasonic unit directly into one of the workpieces near the tool. Using this configuration, ultrassonic-assisted friction stir welding was conducted on 6 mm thick 2024- 73 aluminum alloy sheets. The macrostructure and mechanical properties of these welds were compared with the welds of this alloy prepared by conventional friction stir welding using identical process parameters. The results show that the welding speed can be increased while satisfactory weld quality is still ensured. The ultrasonic energy transferred in this configuration could enlarge the volume of weld nugget zone. Also, the influence of ultrasonic energy on the suppression or elimination of the tunnel defect is quite apparent. However, any beneficial effects of ultrasonic vibration on the tensile strength and the elongation of the joint were less obvious in this configuration.展开更多
Controlled synthesis of hierarchically assembled titanium dioxide (TiO2) nano- structures is important for practical applications in environmental purification and solar energy conversion. We present here the fabric...Controlled synthesis of hierarchically assembled titanium dioxide (TiO2) nano- structures is important for practical applications in environmental purification and solar energy conversion. We present here the fabrication of interconnected TiO2 nanotubes as a macroscopic bulk material by using a porous carbon nanotube (CNT) sponge as a template. The basic idea is to uniformly coat an amorphous titania layer onto the CNT surface by the infiltration of a TiO2 precursor into the sponge followed by a subsequent hydrolysis process. After calcination, the CNTs are completely removed and the titania is simultaneously crystallized, which results in a porous macrostructure composed of interconnected anatase TiO2 nanotubes. The TiO2 nanotube macrostructures show comparable photocatalytic activities to commercial products (AEROXIDE TiO2 P25) for the degradation of rhodamine B (RhB). Moreover, the TiO2 nanotube macrostructures can be settled and separated from water within 12 h after photocatalysis, whereas P25 remains suspended in solution after weeks. Thus the TiO2 nanotube macrostructures offer the advantage of easy catalyst separation and recycle and can be a promising candidate for wastewater treatment.展开更多
As structural materials, closed-cell aluminum foams possess obvious advantages in product dimension, strength and process economics compared with open cell aluminum foams. However, as a kind of structure-function inte...As structural materials, closed-cell aluminum foams possess obvious advantages in product dimension, strength and process economics compared with open cell aluminum foams. However, as a kind of structure-function integration materials, the application of closed-cell aluminum foams has been restricted greatly in acoustic fields due to the difficulty of sound wave penetration. It was reported that closed-cell foams with macrostructures have important effect on the propagation of sound waves. To date, the relationship between macrostructures and acoustic properties of commercially pure closedcell aluminum foams is ambiguous. In this work, different perforation and air gap types were designed for changing the macrostructures of the foam. Meanwhile, the effect of macrostructures on the sound absorption coefficient and sound reduction index were investigated. The results showed that the foams with half-hole exhibited excellent sound absorption and sound insulation behaviors in high frequency range(〉2500 Hz). In addition, specimens with air gaps showed good sound absorption properties in low frequency compared with the foams without air gaps. Based on the experiment results, propagation structural models of sound waves in commercially pure closed-cell aluminum foams with different macrostructures were built and the influence of macrostructures on acoustic properties was discussed.展开更多
1 Results Carbon nanotubes (CNTs) have fascinating properties.In order to use these novel one-dimensional structures for applications such as in nano-electronic,nano-mechanical and electrochemical energy storage devic...1 Results Carbon nanotubes (CNTs) have fascinating properties.In order to use these novel one-dimensional structures for applications such as in nano-electronic,nano-mechanical and electrochemical energy storage device and as structural elements in various composites,the structure of nanotubes needs to be tailored and various architectures and macroscale assembles have to be configured using nanotube building blocks.Nanotube macrostructures are macroscopically organized groups of CNTs,which are expecte...展开更多
Great experimental results and observations achieved by Astronomy in the last decades revealed new unexplainable phenomena. Astronomers have conclusive new evidence that a recently discovered “dark galaxy” is, in fa...Great experimental results and observations achieved by Astronomy in the last decades revealed new unexplainable phenomena. Astronomers have conclusive new evidence that a recently discovered “dark galaxy” is, in fact, an object the size of a galaxy, made entirely of dark matter. They found that the speed of the Earth’s rotation varies randomly each day. 115 years ago, the Tunguska Event was observed, and astronomers still do not have an explanation of It. Main results of the present article are: 1) Dark galaxies explained by the spinning of their Dark Matter Cores with the surface speed at equator less than the escape velocity. Their Rotational Fission is not happening. Extrasolar systems do not emerge;2) 21-cm Emission explained by the self-annihilation of Dark Matter particles XIONs (5.3 μeV);3) Sun-Earth-Moon Interaction explained by the influence of the Sun’s and the Moon’s magnetic field on the electrical currents of the charged Geomagma (the 660-km layer), and, as a result, the Earth’s daylength varies;4) Tunguska Event explained by a huge atmospheric explosion of the Superbolide, which was a stable Dark Matter Bubble before entering the Earth’s atmosphere.展开更多
In order to get a better understanding of the vacuum consumable arc remelting(VAR) processes and thus to optimize them,a 3D finite element model was developed for the temperature fields and heat transfer of titanium a...In order to get a better understanding of the vacuum consumable arc remelting(VAR) processes and thus to optimize them,a 3D finite element model was developed for the temperature fields and heat transfer of titanium alloy ingots during VAR process.The results show that the temperature fields obtained by the simulation are well validated through the experiment results.The temperature distribution is different during the whole VAR process and the steady-state molten pool forms at 329 s for d100 mm × 180 mm ingots.At the initial stage of remelting,the heat dissipation of crucible bottom plays an important role in the whole heat dissipation system.At the middle of remelting,the crucible wall becomes a major heat dissipation way.The effect of cooling velocity on the solidification structure of ingots was investigated based on the temperature fields and the results can well explain the macrostructure of titanium alloy ingots.展开更多
Ion conductive membranes(ICMs)are frequently used as separators for energy conversion and storage technologies of fuel cells,flow battery,and hydrogen pump,because of their good ion-selective conduction and low electr...Ion conductive membranes(ICMs)are frequently used as separators for energy conversion and storage technologies of fuel cells,flow battery,and hydrogen pump,because of their good ion-selective conduction and low electronic conductivity.Firstly,this feature article reviews the recent studies on the development of new nonfluorinated ICMs with low cost and their macro/micro-structure control.In general,these new nonfluorinated ICMs have lower conductivity than commercial perfluorinated ones,due to their poor ion transport channels.Increasing ion exchange capacity(IEC)would create more continuous hydrophilic channels,thus enhancing the conductivity.However,high IEC also expands the overall hydrophilic domains,weakens the interaction between polymer chains,enhances the mobility of polymer chains,and eventually induces larger swelling.The micro-scale expansion and macro-scale swelling of the ICMs with high IEC could be controlled by limiting the mobility of polymer chains.Based on this strategy,some ef ficient techniques have been developed,including covalent crosslinking,semi-interpenatrating polymer network,and blending.Secondly,this review introduces the optimization of macro/microstructure of both perfluorinated and nonfluorinated ICMs to improve the performance.Macro-scale multilayer composite is an ef ficient way to enhance the mechanical strength and the dimensional stability of the ICMs,and could also decrease the content of per fluorosulfonic acid resin in the membrane,thereby reducing the cost of the perfluorinated ICMs.Long side chain,multiple functionalization,small molecule inducing micro-phase separation,electrospun nano fiber,and organic–inorganic hybrid could construct more ef ficient ion transport channels,improving the ion conductivity of ICMs.展开更多
Bead-on-plate CO2 laser welding of 1 000 MPa grade transformation induced plasticity (TRIP) steel was conducted under different welding powers, welding speeds and shield gases. The macrostructural and microstructura...Bead-on-plate CO2 laser welding of 1 000 MPa grade transformation induced plasticity (TRIP) steel was conducted under different welding powers, welding speeds and shield gases. The macrostructural and microstructural features of the welded joint were investigated. The increase of welding speed reduced the width of the weld bead and the porosities in the weld bead resulting from the different flow mode of melted metal in weld pool. The decrease of welding power or use of shield gas of helium also contributed to the reduction of porosity in the weld bead due to the alleviation of induced plasma formation, thus stabilizing the keyhole. The porosity formation intimately correlated with the evaporation of alloy element Mn in the base metal. The laser welded metal had same martensite microstructure as that of water-quenched base metal. The welding parameters which increased cooling rate all led to fine microstructures of the weld bead.展开更多
The development of a numerical model for the melting process of Al--Ti alloy targetmaterial in vacuum induction furnace with cold crucible (VIFCC)was described. It isa two--dimensional computational methodology to cal...The development of a numerical model for the melting process of Al--Ti alloy targetmaterial in vacuum induction furnace with cold crucible (VIFCC)was described. It isa two--dimensional computational methodology to calculate electromagnetic field, heattransfer field and fluid flow field. Based on the aid of the finite element method withthe commercial software--ANSYS, a superimposition method of a layer of copper anda slit to simulate the VIFCC melting process was used. The method was effectiveto save large quantity of memory and computing time. Meanwhile, a temperaturedistribution profile during the melting process was obtained. Validity of the model wasconfirmed by comparison between the result from calculation and those from directmeasurement by optical pyrometer and indirect investigation by ingot macrostructure.A relatively good agreement was found. Further, a nearly directional solidificationstrvcture was obtained under properly controlling the cooling rate and heating power.Therefore, such model developed in this article is feasible.展开更多
In this paper,the results of exploration macrostructure and microstructure of continuous cast copper bars are shown. Quantitative parameters of copper cast bars depending on the speed of continuous casting are rated. ...In this paper,the results of exploration macrostructure and microstructure of continuous cast copper bars are shown. Quantitative parameters of copper cast bars depending on the speed of continuous casting are rated. It is fixed that independent of speed of casting the macrocrystalline columnar structure consisting of four zones is formed. By means of raster electron microscopy,the microstructure of cast copper is studied. It is determined that the accumulations of eutectic Cu-Cu2O in the form of lines and gas pores by size from 2 to 35 microns at the boundaries grain are observed. With the use of the transmission electron microscope,specific dislocation configuration on cast copper sub-boundary grains is determined. It indicates to high-temperature strain of cupper in the course of cast bar solidification. The important finding can be used for the design technology of copper continuous casting and plastic working of cast bars.展开更多
Oxford Advanced Learners' Dictionary (OALD) stands out, on the EFL market, as the only EFL dictionary which has been continuously republished for over 70 years. With each new edition upgraded, OALD conforms to the ...Oxford Advanced Learners' Dictionary (OALD) stands out, on the EFL market, as the only EFL dictionary which has been continuously republished for over 70 years. With each new edition upgraded, OALD conforms to the contemporary language teaching and learning processes worldwide. This article presents its structural development--an evolution from its very first, Japanese edition in 1942 towards the latest one in 2015. The analysis deals with the development and changes within the macrostructural (front matter, the body, appendices) and microstructural (headword, spelling, pronunciation, part of speech, senses, definitions, illustrations, usage) frames of the dictionary.展开更多
Based on the comparison between the improvements in the English-Chinese Dictionary and A New English-Chinese Dictionary some discussions are made on the improvements in the English'Chinese Dictionary in terms of macr...Based on the comparison between the improvements in the English-Chinese Dictionary and A New English-Chinese Dictionary some discussions are made on the improvements in the English'Chinese Dictionary in terms of macrostructure and microstructure. Therefore, some differences are highlighted, with which users can make better use of the English-Chinese Dictionaries.展开更多
This paper explores the advantages and disadvantages of paper printed and on-line dictionaries in terms of macrostructure and microstructure,availability,portability and practicality etc.Different kinds of dictionarie...This paper explores the advantages and disadvantages of paper printed and on-line dictionaries in terms of macrostructure and microstructure,availability,portability and practicality etc.Different kinds of dictionaries have unique features that cannot be fully replaced by other kinds.展开更多
The relationships between microhardness and microstructure, macrostructure and mechanical properties of friction stir welded joints AA6061-T913 were studied. Three equations were suggested to predict the grain size, u...The relationships between microhardness and microstructure, macrostructure and mechanical properties of friction stir welded joints AA6061-T913 were studied. Three equations were suggested to predict the grain size, ultimate tensile strength and yield strength from the hardness throughout the weld. Two-dimensional contour of grain size and three-dimensional maps of ultimate tensile and yield strengths were plotted according to the proposed equations. Also, the location of macroscopic zones was estimated based on hardness distribution. The modeling results were compared with the results obtained from microscopy and tensile tests. The modeling results show good agreement with the experimental findings, and the average differences between them for the ultimate tensile strength and yield strength were about 8% and 3%, respectively.展开更多
A volume average solidification model is extended to incorporate fragmentation as the source of equiaxed crystals during mixed columnar-equiaxed solidification. This study is to use this model to analyze the role of f...A volume average solidification model is extended to incorporate fragmentation as the source of equiaxed crystals during mixed columnar-equiaxed solidification. This study is to use this model to analyze the role of fragmentation in the formation of as-cast structure. Test simulations are made for the solidification of a model alloy(Sn-10wt.%Pb) with two different geometries. The first one is a 2D rectangular domain(50 × 60 mm^2) as cooled from the top boundary. Solidification starts unidirectionally as columnar structure from the top. The solute(Pb) enriched interdendritic melt is heavier than the bulk melt, and sinks downwards, hence leads to solutal convection. Fragmentation phenomenon occurs near the columnar tip front. The fragments are transported out of the columnar region, and they continue to grow and sink, and finally settle down and pile up at the bottom. The growing columnar structure from the top and pile-up of equiaxed crystals from the bottom finally lead to a mixed columnar-equiaxed structure, in turn leading to a columnar-to-equiaxed transition(CET). The second geometry is a 3D plate, 100 × 60 ×10 mm^3, as cooled laterally from one side. It was cast experimentally and analyzed for the as-cast structure. The equiaxed fragments are produced in the solidification front and transported into the bulk melt, leading to a special pattern of as-cast structure: columnar structure in the cool wall side and equiaxed structure in the upper left corner near the hot wall side, extending downwards to the middle bottom region. Numerically calculated as-cast structures agree with the experiment results.展开更多
The results of measurements of the Hubble constant H<sub>0</sub>, which characterizes the expansion rate of the universe, show that the values of H<sub>0</sub> vary significantly depending on M...The results of measurements of the Hubble constant H<sub>0</sub>, which characterizes the expansion rate of the universe, show that the values of H<sub>0</sub> vary significantly depending on Methodology. The disagreement in the values of H<sub>0</sub> obtained by the various teams far exceeds the standard uncertainties provided with the values. This discrepancy is called the Hubble Tension. In this paper, we discuss Macrostructures of the World (Superclusters and Galaxies);explain their Origin and Evolution in frames of the developed Hypersphere World-Universe Model (WUM), which is an alternative to the prevailing Big Bang Model (BBM) [1];and provide the explanation of the Hubble Tension. The main difference between WUM and BBM is: Instead of the Infinite Homogeneous and Isotropic Universe around the Initial Singularity in BBM, in WUM, the 3D Finite Boundless World (a Hypersphere) presents a Patchwork Quilt of different Luminous Superclusters (10<sup>3</sup>), which emerged in various places of the World at different Cosmological times. In WUM, the Medium of the World is Homogeneous and Isotropic. The distribution of Macroobjects in the World is spatially Inhomogeneous and Anisotropic and temporally Non-simultaneous.展开更多
基金supported by the National Defense Basic Scientific Research Project(No.JCKY2020210B001)the National Natural Science Foundation of China(No.U19A20103),the China Postdoctoral Science Foundation(No.2019M661184)+2 种基金the Jilin Province Scientific and Technological Development Program(No.YDZJ202101ZYTS025)the Jilin Province Young Science and Technology Talent Lift Project(No.QT202030)the Science and Technology Innovation Fund of CUST(No.XJJLG-2019-05)。
文摘Bio-inspired macrostructure array(MAA,size:submillimeter to millimeter scale)materials with special wettability(MAAMs-SW)have attracted significant research attention due to their outstanding performance in many applications,including oil repellency,liquid/droplet manipulation,anti-icing,heat transfer,water collection,and oil–water separation.In this review,we focus on recent developments in the theory,design,fabrication,and application of bio-inspired MAAMs-SW.We first review the history of the basic theory of special wettability and discuss representative structures and corresponding functions of some biological surfaces,thus setting the stage for the design and fabrication of bio-inspired MAAMs-SW.We then summarize the fabrication methods of special wetting MAAs in terms of three categories:additive manufacturing,subtractive manufacturing,and formative manufacturing,as well as their diverse functional applications,providing insights into the development of these MAAMs-SW.Finally,the challenges and directions of future research on bio-inspired MAAMs-SW are briefy addressed.Worldwide efforts,progress,and breakthroughs from surface engineering to functional applications elaborated herein will promote the practical application of bio-inspired MAAMs-SW.
文摘In recent years,numerous textual studies have appeared.However,the majority of them concentrated on the study of cohesion and coherence of sentences.Van Dijk(1977,1980),Holland famous linguist,put forward"Macrostructures"which provide us with a theo retical basis to study macrostructure of texts.The paper aims to introduce it in very detail and make it known to all the English learners.
文摘The macrostructure and properties of the thin walled copper tube prepared by the downward continuous unidirectional solidification (DCUS) method were studied. The result shows that the macrostructure is closely related to the solid-liquid interface profile, which is influenced by the distance between the cooling water location and the solidification front. The mechanical properties of the thin walled copper tube prepared by the DCUS method are near those of the normal cast copper, and it has good relative density, electrical conductivity, and elongation, which are not greatly affected by casting speed. The thin walled copper tube prepared by the DCUS method also has good processing properties that can be taken to further drawing procedures directly without an intermediate process, and obtains good mechanical properties with the total processing rate of 89.8%.
文摘Rotating electromagnetic field is applied to the centrifugal casting, the macrostructure of centrifugal casting Al-1%Cu alloy stirred with driving or backing magnetic field are both examined. It is shown that both kinds of electromagnetic filed can enforce the columnar-equiaxed transition, the driving one decrease the tendency of porosity occurring due to the increase in the bulk liquid pressure. Stirring with braking electromagnetic field produces the mixture of outer fine grains and inner coarse grains in the casting, this is analyzed to be contributed to the differences both in electric conductivity and density between the crystal and the melt, as well as skin effects.
基金Acknowledgement The authors are grateful to the financial support for this research from the National Natural Science Foundation of China (Grant No. 51475272).
文摘In friction stir welding of aluminum alloys, tunnel defect may occur due to insufficient plastic material flow caused by lower heat input in the weld region. The inadequacy in heat input is due to improper selection of friction stir welding tool and process parameters. Ultimately, such defects degrade the properties of weld and may pose serious concerns towards the integrity and safety of the weld component. In order to improve the properties of weld joints, an ultrasonic-assisted friction stir welding device has been configured where ultrasonic energy is transferred from an ultrasonic unit directly into one of the workpieces near the tool. Using this configuration, ultrassonic-assisted friction stir welding was conducted on 6 mm thick 2024- 73 aluminum alloy sheets. The macrostructure and mechanical properties of these welds were compared with the welds of this alloy prepared by conventional friction stir welding using identical process parameters. The results show that the welding speed can be increased while satisfactory weld quality is still ensured. The ultrasonic energy transferred in this configuration could enlarge the volume of weld nugget zone. Also, the influence of ultrasonic energy on the suppression or elimination of the tunnel defect is quite apparent. However, any beneficial effects of ultrasonic vibration on the tensile strength and the elongation of the joint were less obvious in this configuration.
文摘Controlled synthesis of hierarchically assembled titanium dioxide (TiO2) nano- structures is important for practical applications in environmental purification and solar energy conversion. We present here the fabrication of interconnected TiO2 nanotubes as a macroscopic bulk material by using a porous carbon nanotube (CNT) sponge as a template. The basic idea is to uniformly coat an amorphous titania layer onto the CNT surface by the infiltration of a TiO2 precursor into the sponge followed by a subsequent hydrolysis process. After calcination, the CNTs are completely removed and the titania is simultaneously crystallized, which results in a porous macrostructure composed of interconnected anatase TiO2 nanotubes. The TiO2 nanotube macrostructures show comparable photocatalytic activities to commercial products (AEROXIDE TiO2 P25) for the degradation of rhodamine B (RhB). Moreover, the TiO2 nanotube macrostructures can be settled and separated from water within 12 h after photocatalysis, whereas P25 remains suspended in solution after weeks. Thus the TiO2 nanotube macrostructures offer the advantage of easy catalyst separation and recycle and can be a promising candidate for wastewater treatment.
基金supported financially by the National Natural Science Foundation of China (Nos. 51501053, 51325401 and U1660201)the National Magnetic Confinement Fusion Energy Research Program (No. 2014GB125006)Science and Technology Plan Projects of Hebei Province (No. 15211026)
文摘As structural materials, closed-cell aluminum foams possess obvious advantages in product dimension, strength and process economics compared with open cell aluminum foams. However, as a kind of structure-function integration materials, the application of closed-cell aluminum foams has been restricted greatly in acoustic fields due to the difficulty of sound wave penetration. It was reported that closed-cell foams with macrostructures have important effect on the propagation of sound waves. To date, the relationship between macrostructures and acoustic properties of commercially pure closedcell aluminum foams is ambiguous. In this work, different perforation and air gap types were designed for changing the macrostructures of the foam. Meanwhile, the effect of macrostructures on the sound absorption coefficient and sound reduction index were investigated. The results showed that the foams with half-hole exhibited excellent sound absorption and sound insulation behaviors in high frequency range(〉2500 Hz). In addition, specimens with air gaps showed good sound absorption properties in low frequency compared with the foams without air gaps. Based on the experiment results, propagation structural models of sound waves in commercially pure closed-cell aluminum foams with different macrostructures were built and the influence of macrostructures on acoustic properties was discussed.
文摘1 Results Carbon nanotubes (CNTs) have fascinating properties.In order to use these novel one-dimensional structures for applications such as in nano-electronic,nano-mechanical and electrochemical energy storage device and as structural elements in various composites,the structure of nanotubes needs to be tailored and various architectures and macroscale assembles have to be configured using nanotube building blocks.Nanotube macrostructures are macroscopically organized groups of CNTs,which are expecte...
文摘Great experimental results and observations achieved by Astronomy in the last decades revealed new unexplainable phenomena. Astronomers have conclusive new evidence that a recently discovered “dark galaxy” is, in fact, an object the size of a galaxy, made entirely of dark matter. They found that the speed of the Earth’s rotation varies randomly each day. 115 years ago, the Tunguska Event was observed, and astronomers still do not have an explanation of It. Main results of the present article are: 1) Dark galaxies explained by the spinning of their Dark Matter Cores with the surface speed at equator less than the escape velocity. Their Rotational Fission is not happening. Extrasolar systems do not emerge;2) 21-cm Emission explained by the self-annihilation of Dark Matter particles XIONs (5.3 μeV);3) Sun-Earth-Moon Interaction explained by the influence of the Sun’s and the Moon’s magnetic field on the electrical currents of the charged Geomagma (the 660-km layer), and, as a result, the Earth’s daylength varies;4) Tunguska Event explained by a huge atmospheric explosion of the Superbolide, which was a stable Dark Matter Bubble before entering the Earth’s atmosphere.
基金Project(2007CB613802) supported by the National Basic Research Program of China
文摘In order to get a better understanding of the vacuum consumable arc remelting(VAR) processes and thus to optimize them,a 3D finite element model was developed for the temperature fields and heat transfer of titanium alloy ingots during VAR process.The results show that the temperature fields obtained by the simulation are well validated through the experiment results.The temperature distribution is different during the whole VAR process and the steady-state molten pool forms at 329 s for d100 mm × 180 mm ingots.At the initial stage of remelting,the heat dissipation of crucible bottom plays an important role in the whole heat dissipation system.At the middle of remelting,the crucible wall becomes a major heat dissipation way.The effect of cooling velocity on the solidification structure of ingots was investigated based on the temperature fields and the results can well explain the macrostructure of titanium alloy ingots.
基金Supported by the National Science Fund for Distinguished Young Scholars of China(Grant No.21125628)the Major National Scienti fic Instrument Development Project(Grant No.21527812)+3 种基金the National Natural Science Foundation of China(Grant Nos.21406031 and 21476044)the State Key Laboratory of Fine Chemicals(KF1507)the Fundamental Research Funds for the Central Universities(Grant Nos.DUTPJ14RC(3)003)State Key Laboratory of fine chemicals(Panjin)project(Grant No.JH2014009)
文摘Ion conductive membranes(ICMs)are frequently used as separators for energy conversion and storage technologies of fuel cells,flow battery,and hydrogen pump,because of their good ion-selective conduction and low electronic conductivity.Firstly,this feature article reviews the recent studies on the development of new nonfluorinated ICMs with low cost and their macro/micro-structure control.In general,these new nonfluorinated ICMs have lower conductivity than commercial perfluorinated ones,due to their poor ion transport channels.Increasing ion exchange capacity(IEC)would create more continuous hydrophilic channels,thus enhancing the conductivity.However,high IEC also expands the overall hydrophilic domains,weakens the interaction between polymer chains,enhances the mobility of polymer chains,and eventually induces larger swelling.The micro-scale expansion and macro-scale swelling of the ICMs with high IEC could be controlled by limiting the mobility of polymer chains.Based on this strategy,some ef ficient techniques have been developed,including covalent crosslinking,semi-interpenatrating polymer network,and blending.Secondly,this review introduces the optimization of macro/microstructure of both perfluorinated and nonfluorinated ICMs to improve the performance.Macro-scale multilayer composite is an ef ficient way to enhance the mechanical strength and the dimensional stability of the ICMs,and could also decrease the content of per fluorosulfonic acid resin in the membrane,thereby reducing the cost of the perfluorinated ICMs.Long side chain,multiple functionalization,small molecule inducing micro-phase separation,electrospun nano fiber,and organic–inorganic hybrid could construct more ef ficient ion transport channels,improving the ion conductivity of ICMs.
文摘Bead-on-plate CO2 laser welding of 1 000 MPa grade transformation induced plasticity (TRIP) steel was conducted under different welding powers, welding speeds and shield gases. The macrostructural and microstructural features of the welded joint were investigated. The increase of welding speed reduced the width of the weld bead and the porosities in the weld bead resulting from the different flow mode of melted metal in weld pool. The decrease of welding power or use of shield gas of helium also contributed to the reduction of porosity in the weld bead due to the alleviation of induced plasma formation, thus stabilizing the keyhole. The porosity formation intimately correlated with the evaporation of alloy element Mn in the base metal. The laser welded metal had same martensite microstructure as that of water-quenched base metal. The welding parameters which increased cooling rate all led to fine microstructures of the weld bead.
文摘The development of a numerical model for the melting process of Al--Ti alloy targetmaterial in vacuum induction furnace with cold crucible (VIFCC)was described. It isa two--dimensional computational methodology to calculate electromagnetic field, heattransfer field and fluid flow field. Based on the aid of the finite element method withthe commercial software--ANSYS, a superimposition method of a layer of copper anda slit to simulate the VIFCC melting process was used. The method was effectiveto save large quantity of memory and computing time. Meanwhile, a temperaturedistribution profile during the melting process was obtained. Validity of the model wasconfirmed by comparison between the result from calculation and those from directmeasurement by optical pyrometer and indirect investigation by ingot macrostructure.A relatively good agreement was found. Further, a nearly directional solidificationstrvcture was obtained under properly controlling the cooling rate and heating power.Therefore, such model developed in this article is feasible.
文摘In this paper,the results of exploration macrostructure and microstructure of continuous cast copper bars are shown. Quantitative parameters of copper cast bars depending on the speed of continuous casting are rated. It is fixed that independent of speed of casting the macrocrystalline columnar structure consisting of four zones is formed. By means of raster electron microscopy,the microstructure of cast copper is studied. It is determined that the accumulations of eutectic Cu-Cu2O in the form of lines and gas pores by size from 2 to 35 microns at the boundaries grain are observed. With the use of the transmission electron microscope,specific dislocation configuration on cast copper sub-boundary grains is determined. It indicates to high-temperature strain of cupper in the course of cast bar solidification. The important finding can be used for the design technology of copper continuous casting and plastic working of cast bars.
文摘Oxford Advanced Learners' Dictionary (OALD) stands out, on the EFL market, as the only EFL dictionary which has been continuously republished for over 70 years. With each new edition upgraded, OALD conforms to the contemporary language teaching and learning processes worldwide. This article presents its structural development--an evolution from its very first, Japanese edition in 1942 towards the latest one in 2015. The analysis deals with the development and changes within the macrostructural (front matter, the body, appendices) and microstructural (headword, spelling, pronunciation, part of speech, senses, definitions, illustrations, usage) frames of the dictionary.
文摘Based on the comparison between the improvements in the English-Chinese Dictionary and A New English-Chinese Dictionary some discussions are made on the improvements in the English'Chinese Dictionary in terms of macrostructure and microstructure. Therefore, some differences are highlighted, with which users can make better use of the English-Chinese Dictionaries.
文摘This paper explores the advantages and disadvantages of paper printed and on-line dictionaries in terms of macrostructure and microstructure,availability,portability and practicality etc.Different kinds of dictionaries have unique features that cannot be fully replaced by other kinds.
基金The support of Iran National Science Foundation(INSF)(Grant No.91051732)
文摘The relationships between microhardness and microstructure, macrostructure and mechanical properties of friction stir welded joints AA6061-T913 were studied. Three equations were suggested to predict the grain size, ultimate tensile strength and yield strength from the hardness throughout the weld. Two-dimensional contour of grain size and three-dimensional maps of ultimate tensile and yield strengths were plotted according to the proposed equations. Also, the location of macroscopic zones was estimated based on hardness distribution. The modeling results were compared with the results obtained from microscopy and tensile tests. The modeling results show good agreement with the experimental findings, and the average differences between them for the ultimate tensile strength and yield strength were about 8% and 3%, respectively.
基金supported by the Austrian Research Promotion Agency(FFG)through the project of Bridge Early Stage(No.842441)technically supported by the industrial partner Primetals(former Siemens VAI)
文摘A volume average solidification model is extended to incorporate fragmentation as the source of equiaxed crystals during mixed columnar-equiaxed solidification. This study is to use this model to analyze the role of fragmentation in the formation of as-cast structure. Test simulations are made for the solidification of a model alloy(Sn-10wt.%Pb) with two different geometries. The first one is a 2D rectangular domain(50 × 60 mm^2) as cooled from the top boundary. Solidification starts unidirectionally as columnar structure from the top. The solute(Pb) enriched interdendritic melt is heavier than the bulk melt, and sinks downwards, hence leads to solutal convection. Fragmentation phenomenon occurs near the columnar tip front. The fragments are transported out of the columnar region, and they continue to grow and sink, and finally settle down and pile up at the bottom. The growing columnar structure from the top and pile-up of equiaxed crystals from the bottom finally lead to a mixed columnar-equiaxed structure, in turn leading to a columnar-to-equiaxed transition(CET). The second geometry is a 3D plate, 100 × 60 ×10 mm^3, as cooled laterally from one side. It was cast experimentally and analyzed for the as-cast structure. The equiaxed fragments are produced in the solidification front and transported into the bulk melt, leading to a special pattern of as-cast structure: columnar structure in the cool wall side and equiaxed structure in the upper left corner near the hot wall side, extending downwards to the middle bottom region. Numerically calculated as-cast structures agree with the experiment results.
文摘The results of measurements of the Hubble constant H<sub>0</sub>, which characterizes the expansion rate of the universe, show that the values of H<sub>0</sub> vary significantly depending on Methodology. The disagreement in the values of H<sub>0</sub> obtained by the various teams far exceeds the standard uncertainties provided with the values. This discrepancy is called the Hubble Tension. In this paper, we discuss Macrostructures of the World (Superclusters and Galaxies);explain their Origin and Evolution in frames of the developed Hypersphere World-Universe Model (WUM), which is an alternative to the prevailing Big Bang Model (BBM) [1];and provide the explanation of the Hubble Tension. The main difference between WUM and BBM is: Instead of the Infinite Homogeneous and Isotropic Universe around the Initial Singularity in BBM, in WUM, the 3D Finite Boundless World (a Hypersphere) presents a Patchwork Quilt of different Luminous Superclusters (10<sup>3</sup>), which emerged in various places of the World at different Cosmological times. In WUM, the Medium of the World is Homogeneous and Isotropic. The distribution of Macroobjects in the World is spatially Inhomogeneous and Anisotropic and temporally Non-simultaneous.