The structure and microfabrication,the detecting theory and the way of biomolecular recognition device based on giant magnetoresistance(GMR) effect are introduced,also the signal detecting and processing instrumentati...The structure and microfabrication,the detecting theory and the way of biomolecular recognition device based on giant magnetoresistance(GMR) effect are introduced,also the signal detecting and processing instrumentation are presented. Here the GMR biosensor was fabricated with magnetic tunnel junction(MJT) material.The biomolecular recognition device contains an array of MJT sensors,single MJT sensor size is 10μm×20μm,tunneling magnetoresistance ratio(TMR) at room temperature is 52.2%,the typical values of junction resistance-area product Rs is 2.6 kΩμm^2,detecting sensitivity of this system is about 8×10^(-4) A·m^(-1).Bioadaptation layer of this device was fabricated with PDMS the thickness of which is less than 100 nm.展开更多
Phase structures, the transport ana magnetic properties of the Perovskite-type manganite (La0.8-x CexSr0.2)0.97 MnO3(x = 0 - 0. 26) prepared by La2O3 containing CeO2 with different contents were studied. Experimen...Phase structures, the transport ana magnetic properties of the Perovskite-type manganite (La0.8-x CexSr0.2)0.97 MnO3(x = 0 - 0. 26) prepared by La2O3 containing CeO2 with different contents were studied. Experiments show that the compounds consist of a magnetic perovskite phase and non-magnetic CeO2 and Mn3O4. The resistivity and magnetoresistance ratio (MR) of the samples vary with changing x. Their room-temperature MR reaches -3% - - 14% at the magnetic field of 1 T. For x =0; x =0.037 and x = 0.26 samples, the conductance keeps unchanged basically in a relatively wide temperature range above 600 K, and the result shows that it is feasible for producing SOFC cathode materials with these samples.展开更多
In this paper, by using the transfer matrix method, we theoretically investigate the magnetoresistance (MR) effect in a two-dimensional electron gas (2DEG) modulated by two Schottky metal (SM) stripes and two fe...In this paper, by using the transfer matrix method, we theoretically investigate the magnetoresistance (MR) effect in a two-dimensional electron gas (2DEG) modulated by two Schottky metal (SM) stripes and two ferromagnetic (FM) stripes on the top and bottom of the 2DEG. From the numerical results, we find that a considerable MR effect can be achieved in this device due to the significant difference between electron transmissions through the parallel and antiparallel magnetization configurations. We also find that the MR ratio obviously depends on the magnetic strength and the electric-barrier height as well as the distance between the FM and SM stripes. These characters are very helpful for making the new type of MR devices according to their practical applications.展开更多
文摘The structure and microfabrication,the detecting theory and the way of biomolecular recognition device based on giant magnetoresistance(GMR) effect are introduced,also the signal detecting and processing instrumentation are presented. Here the GMR biosensor was fabricated with magnetic tunnel junction(MJT) material.The biomolecular recognition device contains an array of MJT sensors,single MJT sensor size is 10μm×20μm,tunneling magnetoresistance ratio(TMR) at room temperature is 52.2%,the typical values of junction resistance-area product Rs is 2.6 kΩμm^2,detecting sensitivity of this system is about 8×10^(-4) A·m^(-1).Bioadaptation layer of this device was fabricated with PDMS the thickness of which is less than 100 nm.
文摘Phase structures, the transport ana magnetic properties of the Perovskite-type manganite (La0.8-x CexSr0.2)0.97 MnO3(x = 0 - 0. 26) prepared by La2O3 containing CeO2 with different contents were studied. Experiments show that the compounds consist of a magnetic perovskite phase and non-magnetic CeO2 and Mn3O4. The resistivity and magnetoresistance ratio (MR) of the samples vary with changing x. Their room-temperature MR reaches -3% - - 14% at the magnetic field of 1 T. For x =0; x =0.037 and x = 0.26 samples, the conductance keeps unchanged basically in a relatively wide temperature range above 600 K, and the result shows that it is feasible for producing SOFC cathode materials with these samples.
基金supported by Hubei Province Key Laboratory of Systems Science in Metallurgical Process,Wuhan University of Science and Technology(No.C201018)
文摘In this paper, by using the transfer matrix method, we theoretically investigate the magnetoresistance (MR) effect in a two-dimensional electron gas (2DEG) modulated by two Schottky metal (SM) stripes and two ferromagnetic (FM) stripes on the top and bottom of the 2DEG. From the numerical results, we find that a considerable MR effect can be achieved in this device due to the significant difference between electron transmissions through the parallel and antiparallel magnetization configurations. We also find that the MR ratio obviously depends on the magnetic strength and the electric-barrier height as well as the distance between the FM and SM stripes. These characters are very helpful for making the new type of MR devices according to their practical applications.