By virtue of the well-behaved properties of the bipartite entangled states representation, this paper analyse and solves some master equations for generalized phase diffusion models, which seems concise and effective....By virtue of the well-behaved properties of the bipartite entangled states representation, this paper analyse and solves some master equations for generalized phase diffusion models, which seems concise and effective. This method can also be applied to solve other master equations.展开更多
By virtue of the squeezing-rotating entangled representation, we mainly establish the new two-mode phase operator and phase angle operat, or, which is a general form including the foregoing formalist in two-mode Fock ...By virtue of the squeezing-rotating entangled representation, we mainly establish the new two-mode phase operator and phase angle operat, or, which is a general form including the foregoing formalist in two-mode Fock space. In addition, the corresponding phase distribution function is given in the entangled representation. In terms of this definition, we also analyze the phase behavior of some simple two-mode states such as squeezing-rotatlng coherent state, squeezing-rotating vacuum state, and so on. It is found that the results exactly agree with the foregoing phase theory.展开更多
A new complete and orthonormal < q,n|| representation is constructed in which Hradil’s two-mode phase operator R exhibits its phase behavior manifestly and can be put into R = Σ^(∞)_(q=-∞)Σ^(∞)_(n=0) ||q-1,n&...A new complete and orthonormal < q,n|| representation is constructed in which Hradil’s two-mode phase operator R exhibits its phase behavior manifestly and can be put into R = Σ^(∞)_(q=-∞)Σ^(∞)_(n=0) ||q-1,n> < q, n||, which resembles S-G phase operator (N + l)^(-1/2a) = Σ^(∞)_(n=1|n–l > < n|). The corresponding phase state is also obtained, which is quaJified to make up a phase representation.展开更多
We present a method for derivation of the density matrix of an arbitrary multi-mode continuous variable Gaussian entangled state from its phase space representation.An explicit computer algorithm is given to reconstru...We present a method for derivation of the density matrix of an arbitrary multi-mode continuous variable Gaussian entangled state from its phase space representation.An explicit computer algorithm is given to reconstruct the density matrix from Gaussian covariance matrix and quadrature average values.As an example,we apply our method to the derivation of three-mode symmetric continuous variable entangled state.Our method can be used to analyze the entanglement and correlation in continuous variable quantum network with multi-mode quantum entanglement states.展开更多
Objective:To determine the deference between phase sensitive magnetic resonance(MR) imaging and magnitude reconstruction to detect infracted myocardium.Methods:Twenty patients(16 men;4 women;mean age,56 years),experie...Objective:To determine the deference between phase sensitive magnetic resonance(MR) imaging and magnitude reconstruction to detect infracted myocardium.Methods:Twenty patients(16 men;4 women;mean age,56 years),experienced Q-wave myocardial infarction 2 weeks earlier were examined with a 3.0-T MR system 10 minutes after administration of 0.1 mmol/kg body weight gadobenate dimeglumine.To determine the optimal TI,a TI scout sequence was used.A segmented 2D IR true fast imaging with steady-state precession(trueFISP) sequence that produces both phase-sensitive and magnitude-reconstructed images were used at TI values of 200-600 msec(TI values were varied in 100-msec steps) and at optimal TI(mean value,330 msec).Contrast- noise ratios(CNRs) of normal and infarcted myocardium and the area of infarcted myocardium were determined.Two-tailed unpaired sample Student t test was used to compare CNRs,and area of infarction.Results:MMean CNR phase-sensitive and magnitude-reconstructed images at optimal TI(mean value,330 msec) were 6.2,and 6.1,respectively.For a TI of 200 msec,CNR values were 5.5,and 4.2,respectively;for TI of 600 msec,CNR values were 5.8 and 4.3,respectively.Area of infarcted myocardium was underestimated on magnitude-reconstruction images(P = 0.002-0.03) for short TI values(ie.,200 msec) but not on phase sensitive reconstructed when compared with IR tureFISP images obtained at optimal TI.Conclusions: LPhase-sensitive image reconstruction results in reduced need for precise choice of TI and more consistent image quality.展开更多
By introducing a fictitious mode to be a counterpart mode of the system mode under review we introduce the entangled state representation (η|, which can arrange master equations of density operators p(t) in quant...By introducing a fictitious mode to be a counterpart mode of the system mode under review we introduce the entangled state representation (η|, which can arrange master equations of density operators p(t) in quantum statistics as state-vector evolution equations due to the elegant properties of (η|. In this way many master equations (respectively describing damping oscillator, laser, phase sensitive, and phase diffusion processes with different initial density operators) can be concisely solved. Specially, for a damping process characteristic of the decay constant k we find that the matrix element of p(t) at time t in 〈η| representation is proportional to that of the initial po in the decayed entangled state (ηe^-kt| representation, accompanying with a Gaussian damping factor. Thus we have a new insight about the nature of the dissipative process. We also set up the so-called thermo-entangled state representation of density operators, ρ = f(d^2η/π)(η|ρ〉D(η), which is different from all the previous known representations.展开更多
In similar to the derivation of phase angle operator conjugate to the number operator by Arroyo Carrasco-Moya Cessay we deduce the Hermitian phase operators that are conjugate to the two-mode number-difference operato...In similar to the derivation of phase angle operator conjugate to the number operator by Arroyo Carrasco-Moya Cessay we deduce the Hermitian phase operators that are conjugate to the two-mode number-difference operatorand the three-mode number combination operator.It is shown that these operators are on the same footing in theentangled state representation as the one of Turski in the coherent state representation.展开更多
Within the Born-Oppenheimer(BO)approximation,nuclear motions of a molecule are often envisioned to occur on an adiabatic potential energy surface(PES).However,this single PES picture should be reconsidered if a conica...Within the Born-Oppenheimer(BO)approximation,nuclear motions of a molecule are often envisioned to occur on an adiabatic potential energy surface(PES).However,this single PES picture should be reconsidered if a conical intersection(CI)is present,although the energy is well below the CI.The presence of the CI results in two additional terms in the nuclear Hamiltonian in the adiabatic presentation,i.e.,the diagonal BO correction(DBOC)and the geometric phase(GP),which are divergent at the CI.At the same time,there are cusps in the adiabatic PESs.Thus usually it is regarded that there is numerical difficulty in a quantum dynamics calculation for treating CI in the adiabatic representation.A popular numerical method in nuclear quantum dynamics calculations is the Sinc discrete variable representation(DVR)method.We examine the numerical accuracy of the Sinc DVR method for solving the Schrodinger equation of a two dimensional model of two electronic states with a CI in both the adiabatic and diabatic representation.The results suggest that the Sinc DVR method is capable of giving reliable results in the adiabatic representation with usual density of the grid points,without special treatment of the divergence of the DBOC and the GP.The numerical uncertainty is not worse than that after the introduction of an arbitrary vector potential for accounting the GP,whose accurate form usually is not easy to obtain.展开更多
<div style="text-align:justify;"> Error vector magnitude (EVM) as a performance metric for <em>M</em>-ary quadrature amplitude modulation (QAM) formats in optical coherent systems is presen...<div style="text-align:justify;"> Error vector magnitude (EVM) as a performance metric for <em>M</em>-ary quadrature amplitude modulation (QAM) formats in optical coherent systems is presented. It is shown that the calibrated BER, which would otherwise be under-estimated without the correction factor, can reliably monitor the performance of optical coherent systems near the target BER of 10<sup>-3</sup> for quadrature phase shift keying (QPSK), 16-QAM, and 64-QAM employing carrier phase recovery with differential decoding to compensate for laser phase noise. The impact on the number of symbols used to estimate the BER from EVM analysis is also presented and compared to the BER obtained by error counting. </div>展开更多
Deep learning has transformed computational imaging,but traditional pixel-based representations limit their ability to capture continuous multiscale object features.Addressing this gap,we introduce a local conditional...Deep learning has transformed computational imaging,but traditional pixel-based representations limit their ability to capture continuous multiscale object features.Addressing this gap,we introduce a local conditional neural field(LCNF)framework,which leverages a continuous neural representation to provide flexible object representations.LCNF’s unique capabilities are demonstrated in solving the highly ill-posed phase retrieval problem of multiplexed Fourier ptychographic microscopy.Our network,termed neural phase retrieval(NeuPh),enables continuous-domain resolution-enhanced phase reconstruction,offering scalability,robustness,accuracy,and generalizability that outperform existing methods.NeuPh integrates a local conditional neural representation and a coordinate-based training strategy.We show that NeuPh can accurately reconstruct high-resolution phase images from low-resolution intensity measurements.Furthermore,NeuPh consistently applies continuous object priors and effectively eliminates various phase artifacts,demonstrating robustness even when trained on imperfect datasets.Moreover,NeuPh improves accuracy and generalization compared with existing deep learning models.We further investigate a hybrid training strategy combining both experimental and simulated datasets,elucidating the impact of domain shift between experiment and simulation.Our work underscores the potential of the LCNF framework in solving complex large-scale inverse problems,opening up new possibilities for deep-learning-based imaging techniques.展开更多
A new lighting and enlargement on phase spectrogram (PS) and frequency spectrogram (FS) is presented in this paper. These representations result from the coupling of power spectrogram and short time Fourier transf...A new lighting and enlargement on phase spectrogram (PS) and frequency spectrogram (FS) is presented in this paper. These representations result from the coupling of power spectrogram and short time Fourier transform (STFT). The main contribution is the construction of the 3D phase spectrogram (3DPS) and the 3D frequency spectrogram (3DFS). These new tools allow such specific test signals as small slope linear chirp, phase jump case of musical signal analysis is reported. The main objective is to and small frequency jump to be analyzed. An application detect small frequency and phase variations in order to characterize each type of sound attack without losing the amplitude information given by power spectrogram展开更多
This paper examines the quantization of mesoscopic circuit including Josephson junctions. Following Feynman's assumption, via the Hamilton dynamic approach and by virtue of the entangled state representation, it cons...This paper examines the quantization of mesoscopic circuit including Josephson junctions. Following Feynman's assumption, via the Hamilton dynamic approach and by virtue of the entangled state representation, it constructs Hamiltonian operator for the double-Josephson-junction mesoscopic circuit coupled by a capacitor. Then it uses the Heisenberg equation of motion to derive the induction voltage across each Josephson junction. The result manifestly shows how the voltage is affected by the capacitance coupling.展开更多
In time division synchronous code division multiple access (TD-SCDMA) wireless communication systems, QPSK or 8PSK has been employed to support high data rate services and high efficiency in available bandwidth. The...In time division synchronous code division multiple access (TD-SCDMA) wireless communication systems, QPSK or 8PSK has been employed to support high data rate services and high efficiency in available bandwidth. The performance of such systems is affected by the phase noise of the microwave local oscillator. The phase noise model of synthesizer and the RF transceiver model for the phase noise effect are proposed for applications of TD-SCDMA systems. The relationship between the power spectral density (PSD) and root mean square (RMS) phase error is given. Then, the error vector magnitude (EVM) performance is analytically evaluated by using the single side band (SSB) phase noise. Theoretical results show agreement with those obtained by measurement data and therefore can be used to derive the TD-SCDMA system performance.展开更多
In this paper, some practical problems in seismological observations are discussed on the identification of seismiccrustal phase, such as: “whether P (Pg) and S(Sg) are direct waves or not?”; “whether S(Sg) and Lg ...In this paper, some practical problems in seismological observations are discussed on the identification of seismiccrustal phase, such as: “whether P (Pg) and S(Sg) are direct waves or not?”; “whether S(Sg) and Lg as well asng and P (Pg) are two kinds of waves or identical wave?”;“on seismoiogicai phases in regional travel-timetable”;“on the symbols and identifications of phases in seismological observation repors”;“on the relation between mLg and ML”, and so on. Some confused ideas on these problems are clarified.展开更多
The objective of this paper is to show an alternative model of a non-transposed three-phase transmission line with a vertical symmetry plane in phase domain. Due the line physical characteristics, it can be represente...The objective of this paper is to show an alternative model of a non-transposed three-phase transmission line with a vertical symmetry plane in phase domain. Due the line physical characteristics, it can be represented by a system consisting of a single?phase and a two-phase line. In this system, the equations describing the behavior of the values in single-phase line terminals are known, while the equations for two-phase line to be obtained. Using a transformation matrix written explicitly according to three-phase line parameters, it is possible to obtain the currents and voltages in phase domain of two-phase line. Then, modal values of three-phase line are converted into phase domain and thus obtain the analytical model for this line. To verify the performance of this model, it was used to simulate the energization of a 440 kV three-phase line and the results were compared to results obtained using a classical model.展开更多
We show that the Susskind-Glogower phase state is a limiting case of a kind of SU(1,1) coherent states. By analogy, based on the bipartite entangled state representation (ESR) we demonstrate that an appropriate SU...We show that the Susskind-Glogower phase state is a limiting case of a kind of SU(1,1) coherent states. By analogy, based on the bipartite entangled state representation (ESR) we demonstrate that an appropriate SU(1,1) coherent state composed of the two-mode unitary phase operator e^i also leads to a new phase state in two-mode Fock space, e^i is diagonalized in the ESR.展开更多
基金supported by the Natural Science Foundation of Heze University of Shandong Province,China (Grant No XY07WL01)the University Experimental Technology Foundation of Shandong Province,China (Grant No S04W138)
文摘By virtue of the well-behaved properties of the bipartite entangled states representation, this paper analyse and solves some master equations for generalized phase diffusion models, which seems concise and effective. This method can also be applied to solve other master equations.
文摘By virtue of the squeezing-rotating entangled representation, we mainly establish the new two-mode phase operator and phase angle operat, or, which is a general form including the foregoing formalist in two-mode Fock space. In addition, the corresponding phase distribution function is given in the entangled representation. In terms of this definition, we also analyze the phase behavior of some simple two-mode states such as squeezing-rotatlng coherent state, squeezing-rotating vacuum state, and so on. It is found that the results exactly agree with the foregoing phase theory.
基金the National Natural Science Foundation of China under Grant No.19875046。
文摘A new complete and orthonormal < q,n|| representation is constructed in which Hradil’s two-mode phase operator R exhibits its phase behavior manifestly and can be put into R = Σ^(∞)_(q=-∞)Σ^(∞)_(n=0) ||q-1,n> < q, n||, which resembles S-G phase operator (N + l)^(-1/2a) = Σ^(∞)_(n=1|n–l > < n|). The corresponding phase state is also obtained, which is quaJified to make up a phase representation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11574400 and 11204379the Beijing Institute of Technology Research Fund Program for Young Scholarsthe NSFC-ICTP Proposal under Grant No 11981240356
文摘We present a method for derivation of the density matrix of an arbitrary multi-mode continuous variable Gaussian entangled state from its phase space representation.An explicit computer algorithm is given to reconstruct the density matrix from Gaussian covariance matrix and quadrature average values.As an example,we apply our method to the derivation of three-mode symmetric continuous variable entangled state.Our method can be used to analyze the entanglement and correlation in continuous variable quantum network with multi-mode quantum entanglement states.
基金supported by Haikou Key Science and Technology Project (2012-075)Haikou Science and Technology Planning Project(2009-049-1)Science and Technology Fund of Haikou Health Bureau(2010-SWY-13-058)
文摘Objective:To determine the deference between phase sensitive magnetic resonance(MR) imaging and magnitude reconstruction to detect infracted myocardium.Methods:Twenty patients(16 men;4 women;mean age,56 years),experienced Q-wave myocardial infarction 2 weeks earlier were examined with a 3.0-T MR system 10 minutes after administration of 0.1 mmol/kg body weight gadobenate dimeglumine.To determine the optimal TI,a TI scout sequence was used.A segmented 2D IR true fast imaging with steady-state precession(trueFISP) sequence that produces both phase-sensitive and magnitude-reconstructed images were used at TI values of 200-600 msec(TI values were varied in 100-msec steps) and at optimal TI(mean value,330 msec).Contrast- noise ratios(CNRs) of normal and infarcted myocardium and the area of infarcted myocardium were determined.Two-tailed unpaired sample Student t test was used to compare CNRs,and area of infarction.Results:MMean CNR phase-sensitive and magnitude-reconstructed images at optimal TI(mean value,330 msec) were 6.2,and 6.1,respectively.For a TI of 200 msec,CNR values were 5.5,and 4.2,respectively;for TI of 600 msec,CNR values were 5.8 and 4.3,respectively.Area of infarcted myocardium was underestimated on magnitude-reconstruction images(P = 0.002-0.03) for short TI values(ie.,200 msec) but not on phase sensitive reconstructed when compared with IR tureFISP images obtained at optimal TI.Conclusions: LPhase-sensitive image reconstruction results in reduced need for precise choice of TI and more consistent image quality.
基金supported by President Foundation of Chinese Academy of Sciences and National Natural Science Foundation of China under Grant Nos. 10775097 and 10874174
文摘By introducing a fictitious mode to be a counterpart mode of the system mode under review we introduce the entangled state representation (η|, which can arrange master equations of density operators p(t) in quantum statistics as state-vector evolution equations due to the elegant properties of (η|. In this way many master equations (respectively describing damping oscillator, laser, phase sensitive, and phase diffusion processes with different initial density operators) can be concisely solved. Specially, for a damping process characteristic of the decay constant k we find that the matrix element of p(t) at time t in 〈η| representation is proportional to that of the initial po in the decayed entangled state (ηe^-kt| representation, accompanying with a Gaussian damping factor. Thus we have a new insight about the nature of the dissipative process. We also set up the so-called thermo-entangled state representation of density operators, ρ = f(d^2η/π)(η|ρ〉D(η), which is different from all the previous known representations.
基金National Natural Science Foundation of China under Grant No.10774108the Basic Research Fund of Jiangsu Teacher University of Technology
文摘In similar to the derivation of phase angle operator conjugate to the number operator by Arroyo Carrasco-Moya Cessay we deduce the Hermitian phase operators that are conjugate to the two-mode number-difference operatorand the three-mode number combination operator.It is shown that these operators are on the same footing in theentangled state representation as the one of Turski in the coherent state representation.
基金was supported by the National Natural Science Foundation of China(No.21733006 and No.21825303)NSFC Center for Chemical Dynamics(No.21688102)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB17000000)the Chinese Academy of Sciences,and the Key Research Program of the Chinese Academy of Sciences
文摘Within the Born-Oppenheimer(BO)approximation,nuclear motions of a molecule are often envisioned to occur on an adiabatic potential energy surface(PES).However,this single PES picture should be reconsidered if a conical intersection(CI)is present,although the energy is well below the CI.The presence of the CI results in two additional terms in the nuclear Hamiltonian in the adiabatic presentation,i.e.,the diagonal BO correction(DBOC)and the geometric phase(GP),which are divergent at the CI.At the same time,there are cusps in the adiabatic PESs.Thus usually it is regarded that there is numerical difficulty in a quantum dynamics calculation for treating CI in the adiabatic representation.A popular numerical method in nuclear quantum dynamics calculations is the Sinc discrete variable representation(DVR)method.We examine the numerical accuracy of the Sinc DVR method for solving the Schrodinger equation of a two dimensional model of two electronic states with a CI in both the adiabatic and diabatic representation.The results suggest that the Sinc DVR method is capable of giving reliable results in the adiabatic representation with usual density of the grid points,without special treatment of the divergence of the DBOC and the GP.The numerical uncertainty is not worse than that after the introduction of an arbitrary vector potential for accounting the GP,whose accurate form usually is not easy to obtain.
文摘<div style="text-align:justify;"> Error vector magnitude (EVM) as a performance metric for <em>M</em>-ary quadrature amplitude modulation (QAM) formats in optical coherent systems is presented. It is shown that the calibrated BER, which would otherwise be under-estimated without the correction factor, can reliably monitor the performance of optical coherent systems near the target BER of 10<sup>-3</sup> for quadrature phase shift keying (QPSK), 16-QAM, and 64-QAM employing carrier phase recovery with differential decoding to compensate for laser phase noise. The impact on the number of symbols used to estimate the BER from EVM analysis is also presented and compared to the BER obtained by error counting. </div>
基金supported by the National Science Foundation(Grant No.1846784).
文摘Deep learning has transformed computational imaging,but traditional pixel-based representations limit their ability to capture continuous multiscale object features.Addressing this gap,we introduce a local conditional neural field(LCNF)framework,which leverages a continuous neural representation to provide flexible object representations.LCNF’s unique capabilities are demonstrated in solving the highly ill-posed phase retrieval problem of multiplexed Fourier ptychographic microscopy.Our network,termed neural phase retrieval(NeuPh),enables continuous-domain resolution-enhanced phase reconstruction,offering scalability,robustness,accuracy,and generalizability that outperform existing methods.NeuPh integrates a local conditional neural representation and a coordinate-based training strategy.We show that NeuPh can accurately reconstruct high-resolution phase images from low-resolution intensity measurements.Furthermore,NeuPh consistently applies continuous object priors and effectively eliminates various phase artifacts,demonstrating robustness even when trained on imperfect datasets.Moreover,NeuPh improves accuracy and generalization compared with existing deep learning models.We further investigate a hybrid training strategy combining both experimental and simulated datasets,elucidating the impact of domain shift between experiment and simulation.Our work underscores the potential of the LCNF framework in solving complex large-scale inverse problems,opening up new possibilities for deep-learning-based imaging techniques.
文摘A new lighting and enlargement on phase spectrogram (PS) and frequency spectrogram (FS) is presented in this paper. These representations result from the coupling of power spectrogram and short time Fourier transform (STFT). The main contribution is the construction of the 3D phase spectrogram (3DPS) and the 3D frequency spectrogram (3DFS). These new tools allow such specific test signals as small slope linear chirp, phase jump case of musical signal analysis is reported. The main objective is to and small frequency jump to be analyzed. An application detect small frequency and phase variations in order to characterize each type of sound attack without losing the amplitude information given by power spectrogram
基金Project supported by the National Natural Science Foundation of China (Grant No 10574060)the Natural Science Foundation(Grant No Y2004A09) of Shandong Province,China
文摘This paper examines the quantization of mesoscopic circuit including Josephson junctions. Following Feynman's assumption, via the Hamilton dynamic approach and by virtue of the entangled state representation, it constructs Hamiltonian operator for the double-Josephson-junction mesoscopic circuit coupled by a capacitor. Then it uses the Heisenberg equation of motion to derive the induction voltage across each Josephson junction. The result manifestly shows how the voltage is affected by the capacitance coupling.
文摘In time division synchronous code division multiple access (TD-SCDMA) wireless communication systems, QPSK or 8PSK has been employed to support high data rate services and high efficiency in available bandwidth. The performance of such systems is affected by the phase noise of the microwave local oscillator. The phase noise model of synthesizer and the RF transceiver model for the phase noise effect are proposed for applications of TD-SCDMA systems. The relationship between the power spectral density (PSD) and root mean square (RMS) phase error is given. Then, the error vector magnitude (EVM) performance is analytically evaluated by using the single side band (SSB) phase noise. Theoretical results show agreement with those obtained by measurement data and therefore can be used to derive the TD-SCDMA system performance.
文摘In this paper, some practical problems in seismological observations are discussed on the identification of seismiccrustal phase, such as: “whether P (Pg) and S(Sg) are direct waves or not?”; “whether S(Sg) and Lg as well asng and P (Pg) are two kinds of waves or identical wave?”;“on seismoiogicai phases in regional travel-timetable”;“on the symbols and identifications of phases in seismological observation repors”;“on the relation between mLg and ML”, and so on. Some confused ideas on these problems are clarified.
文摘The objective of this paper is to show an alternative model of a non-transposed three-phase transmission line with a vertical symmetry plane in phase domain. Due the line physical characteristics, it can be represented by a system consisting of a single?phase and a two-phase line. In this system, the equations describing the behavior of the values in single-phase line terminals are known, while the equations for two-phase line to be obtained. Using a transformation matrix written explicitly according to three-phase line parameters, it is possible to obtain the currents and voltages in phase domain of two-phase line. Then, modal values of three-phase line are converted into phase domain and thus obtain the analytical model for this line. To verify the performance of this model, it was used to simulate the energization of a 440 kV three-phase line and the results were compared to results obtained using a classical model.
文摘We show that the Susskind-Glogower phase state is a limiting case of a kind of SU(1,1) coherent states. By analogy, based on the bipartite entangled state representation (ESR) we demonstrate that an appropriate SU(1,1) coherent state composed of the two-mode unitary phase operator e^i also leads to a new phase state in two-mode Fock space, e^i is diagonalized in the ESR.