Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Severa...Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Several studies have addressed car HMI but were less attentive to designing and implementing interactive glazing for every day(autonomous)driving contexts.Methods Reflecting on the literature,we describe an engineering psychology practice and the design of six novel future user scenarios,which envision the application of a specific set of augmented reality(AR)support user interactions.Additionally,we conduct evaluations on specific scenarios and experiential prototypes,which reveal that these AR scenarios aid the target user groups in experiencing a new type of interaction.The overall evaluation is positive with valuable assessment results and suggestions.Conclusions This study can interest applied psychology educators who aspire to teach how AR can be operationalized in a human-centered design process to students with minimal pre-existing expertise or minimal scientific knowledge in engineering psychology.展开更多
In telerobotic system for remote welding, human-machine interface is one of the most important factor for enhancing capability and efficiency. This paper presents an architecture design of human-machine interface for ...In telerobotic system for remote welding, human-machine interface is one of the most important factor for enhancing capability and efficiency. This paper presents an architecture design of human-machine interface for welding telerobotic system: welding multi-modal human-machine interface. The human-machine interface integrated several control modes, which are namely shared control, teleteaching, supervisory control and local autonomous control. Space mouse, panoramic vision camera and graphics simulation system are also integrated into the human-machine interface for welding teleoperation. Finally, weld seam tracing and welding experiments of U-shape seam are performed by these control modes respectively. The results show that the system has better performance of human-machine interaction and complexity environment welding.展开更多
Transferring the contralateral C7 nerve root to the median or radial nerve has become an important means of repairing brachial plexus nerve injury.However,outcomes have been disappointing.Electroencephalography(EEG)-b...Transferring the contralateral C7 nerve root to the median or radial nerve has become an important means of repairing brachial plexus nerve injury.However,outcomes have been disappointing.Electroencephalography(EEG)-based human-machine interfaces have achieved promising results in promoting neurological recovery by controlling a distal exoskeleton to perform functional limb exercises early after nerve injury,which maintains target muscle activity and promotes the neurological rehabilitation effect.This review summarizes the progress of research in EEG-based human-machine interface combined with contralateral C7 transfer repair of brachial plexus nerve injury.Nerve transfer may result in loss of nerve function in the donor area,so only nerves with minimal impact on the donor area,such as the C7 nerve,should be selected as the donor.Single tendon transfer does not fully restore optimal joint function,so multiple functions often need to be reestablished simultaneously.Compared with traditional manual rehabilitation,EEG-based human-machine interfaces have the potential to maximize patient initiative and promote nerve regeneration and cortical remodeling,which facilitates neurological recovery.In the early stages of brachial plexus injury treatment,the use of an EEG-based human-machine interface combined with contralateral C7 transfer can facilitate postoperative neurological recovery by making full use of the brain’s computational capabilities and actively controlling functional exercise with the aid of external machinery.It can also prevent disuse atrophy of muscles and target organs and maintain neuromuscular junction effectiveness.Promoting cortical remodeling is also particularly important for neurological recovery after contralateral C7 transfer.Future studies are needed to investigate the mechanism by which early movement delays neuromuscular junction damage and promotes cortical remodeling.Understanding this mechanism should help guide the development of neurological rehabilitation strategies for patients with brachial plexus injury.展开更多
Ionic hydrogel-based sensors have shined a spotlight on wearable electronics.However,the sensitivity and reliability of hydrogel devices are significantly hampered by the weak adhesion of skin-sensor interface as well...Ionic hydrogel-based sensors have shined a spotlight on wearable electronics.However,the sensitivity and reliability of hydrogel devices are significantly hampered by the weak adhesion of skin-sensor interface as well as inferior temperature tolerance.Here,inspired by the structure and composition of dermis,a novel skin-attachable and environment-stable hydrogel was designed by integrating collagen into the LiCl-containing chemically cross-linked polyacrylamide hydrogel.The hydrogel exhibited skin-like mechanical properties of low modulus,superior stretchability as well as excellent elasticity.Furthermore,the introduction of collagen endowed the hydrogel with robust and seamless interfaces with diverse materials,including the curved skin.As a result,the hydrogel is capable of serving as a human-machine interface for collecting reliable electrocardiography(ECG)signals and discerning various human motions,with high sensitivity(gauge factor=10.7),fast response,negligible hysteresis as well as extensive monitoring range.Notably,the hydrogel that can mimick the temperature-tolerant mechanism of most organisms possesses persistent stabilization of adhesive,conductive,sensory and mechanical performances at subzero or ambient conditions.The skin-inspired strategy paves an effective way for the design of multifunctional materials with potential applications in next-generation electronics.展开更多
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con...Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.展开更多
Current stretchable surface electrodes have attracted increasing attention owing to their potential applications in biological signal monitoring, wearable human-machine interfaces(HMIs) and the Internet of Things. T...Current stretchable surface electrodes have attracted increasing attention owing to their potential applications in biological signal monitoring, wearable human-machine interfaces(HMIs) and the Internet of Things. The paper proposed a stretchable HMI based on a surface electromyography(sEMG) electrode with a self-similar serpentine configuration. The sEMG electrode was transfer-printed onto the skin surface conformally to monitor biological signals, followed by signal classification and controlling of a mobile robot. Such electrodes can bear rather large deformation(such as 〉30%) under an appropriate areal coverage. The sEMG electrodes have been used to record electrophysiological signals from different parts of the body with sharp curvature, such as the index finger,back of the neck and face, and they exhibit great potential for HMI in the fields of robotics and healthcare. The electrodes placed onto the two wrists would generate two different signals with the fist clenched and loosened. It is classified to four kinds of signals with a combination of the gestures from the two wrists, that is, four control modes. Experiments demonstrated that the electrodes were successfully used as an HMI to control the motion of a mobile robot remotely.展开更多
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal...As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
We never stop finding better ways to communicate with machines.To interact with computers we tried several ways,from punched tape and tape reader to QWERTY keyboards and command lines,from graphic user interface and m...We never stop finding better ways to communicate with machines.To interact with computers we tried several ways,from punched tape and tape reader to QWERTY keyboards and command lines,from graphic user interface and mouse to multi-touch screens.The way we communicate with computers or devices are getting more direct and easier.In this paper,we give gesture mouse simulation in human–computer interface based on 3 Gear Systems using two Kinect sensors.The Kinect sensor is the perfect device to achieve dynamic gesture tracking and pose recognition.We hope the 3 Gear Systems can work as a mouse,to be more specific,use gestures to do click,double click and scroll.We use Coordinate Converting Matrix and Kalman Filter to reduce the shaking caused by errors and makes the interface create a better user experience.Finally the future of human-computer interface is discussed.展开更多
Wearable human-machine interface(HMI)is an advanced technology that has a wide range of applications from robotics to augmented/virtual reality(AR/VR).In this study,an optically driven wearable human-interactive smart...Wearable human-machine interface(HMI)is an advanced technology that has a wide range of applications from robotics to augmented/virtual reality(AR/VR).In this study,an optically driven wearable human-interactive smart textile is proposed by integrating a polydimethylsiloxane(PDMS)patch embedded with optical micro/nanofibers(MNF)array with a piece of textiles.Enabled by the highly sensitive pressure dependent bending loss of MNF,the smart textile shows high sensitivity(65.5 kPa^(−1))and fast response(25 ms)for touch sensing.Benefiting from the warp and weft structure of the textile,the optical smart textile can feel slight finger slip along the MNF.Furthermore,machine learning is utilized to classify the touch manners,achieving a recognition accuracy as high as 98.1%.As a proof-of-concept,a remote-control robotic hand and a smart interactive doll are demonstrated based on the optical smart textile.This optical smart textile represents an ideal HMI for AR/VR and robotics applications.展开更多
Today’s product creative design has rendered many fe atures and has brought a great change in our everyday life, there are many new c hallenges in its traditional theory and principle. According to the traditional de...Today’s product creative design has rendered many fe atures and has brought a great change in our everyday life, there are many new c hallenges in its traditional theory and principle. According to the traditional design theory, the FBS design model pays more attention to the function and stru cture of the product. But this model still couldn’t strengthen the relation bet ween product appearance design and human-machine design effectively. This paper adopt converse design thinking and presents an improved design thinking methodo logy based on C: FBS for product appearance design and give a general summarizat ion for the features, methods and technology based on human-machine interaction and interface. Meanwhile it also combines with the behavior design of product r elated IT fields and constructs a new outline to improve the design of product a ppearance supported by the technology of computer aided design. So the new metho d about design thinking for computer aided design, the new abstract product design model and the key problem of design thinking based on human-machine inte raction and interface are addressed in this paper. This kind of creative design theory that is driven by human-machine interaction and interface will help the development of CAD software system and the research of product design and manufa cture. Additionally, this paper gives some beneficial characters to address the theory based on human-machine interaction and interface. Meanwhile, combining with the developing of computer technology, the trends of design thinking based on t he technology of human-machine interaction and interface are also analyzed and discussed at the end of this paper.展开更多
The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, ...The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, elements and contents for the Web GIS. The design of the Wuhan Bus Search System is fulfilled to confirm the validity and practicability of the fusion.展开更多
Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently...Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.展开更多
In this paper,we study the one-dimensional motion of viscous gas near a vacuum,with the gas connecting to a vacuum state with a jump in density.The interface behavior,the pointwise decay rates of the density function ...In this paper,we study the one-dimensional motion of viscous gas near a vacuum,with the gas connecting to a vacuum state with a jump in density.The interface behavior,the pointwise decay rates of the density function and the expanding rates of the interface are obtained with the viscosity coefficientμ(ρ)=ρ^(α)for any 0<α<1;this includes the timeweighted boundedness from below and above.The smoothness of the solution is discussed.Moreover,we construct a class of self-similar classical solutions which exhibit some interesting properties,such as optimal estimates.The present paper extends the results in[Luo T,Xin Z P,Yang T.SIAM J Math Anal,2000,31(6):1175-1191]to the jump boundary conditions case with density-dependent viscosity.展开更多
The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide incl...The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide inclusions.Scanning Kelvin Probe Force Microscopy demonstrated that MgO inclusions could act as cathodes for Mg corrosion,but their low conductivity likely precludes this.However,the density of state calculations through density functional theory using hybrid HSE06 functional revealed overlapping electronic states at the Mg/MgO interface,which facilitates electron transfers and participates in redox reactions.Subsequent determination of the hydrogen absorption energy at the Mg/MgO interface reveals it to be an excellent catalytic site,with HER being found to be a factor of 23x more efficient at the interface than on metallic Mg.The results not only support the plausibility of the Mg/MgO interface being an effective cathode to the adjacent anodic Mg matrix during corrosion but also contribute to the understanding of the enhanced cathodic activities observed during the anodic dissolution of magnesium.展开更多
The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables...The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.展开更多
Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT...Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work.展开更多
Despite transosseous rotator cuff tear repair using sutures is widely accepted for tendon-bone fixation,the fibrocartilaginous enthesis regeneration is still hardly achieved with the traditional sutures.In the present...Despite transosseous rotator cuff tear repair using sutures is widely accepted for tendon-bone fixation,the fibrocartilaginous enthesis regeneration is still hardly achieved with the traditional sutures.In the present work,degradable magnesium(Mg)alloy wire was applied to suture supraspinatus tendon in a rat acute rotator cuff tear model with Vicryl Plus 4±0 absorbable suture as control.The shoulder joint humerus-supraspinatus tendon complex specimens were retrieved at 4,8,and 12 weeks after operation.The Mg alloy suture groups showed better biomechanical properties in terms of ultimate load to failure.Gross observation showed that hyperplastic response of the scar tissue at the tendon-bone interface is progressively alleviated over time in the both Mg alloy suture and Vicryl suture groups.In the histological analysis,for Mg alloy suture groups,chondrocytes appear to proliferate at 4 weeks postoperatively,and the tendon-bone interface showed an orderly structural transition zone at 8 weeks postoperatively.The collagenous fiber tended to be aligned and the tendon-bone interlocking structures apparently formed,where transitional structure from unmineralized fibrocartilage to mineralized fibrocartilage was closer to the native fibrocartilaginous enthesis.In vivo degradation of the magnesium alloy wire was completed within 12 weeks.The results indicated that Mg alloy wire was promising as degradable suture with the potential to promotes fibrocartilaginous interface regeneration in rotator cuff repair.展开更多
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe...Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.展开更多
When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by curre...When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by current dam assessment guidelines.However,these asperities can potentially improve the load capacity of a concrete dam in terms of sliding stability.Although their influence in a sliding plane has been thoroughly studied for direct shear,their influence under eccentric loading,as in the case of dams,is unknown.This paper presents the results of a parametric study that used finite element analysis(FEA)to investigate the influence of large-scale asperities on the load capacity of small buttress dams.By varying the inclination and location of an asperity located in the concrete-rock interface along with the strength of the rock foundation material,transitions between different failure modes and correlations between the load capacity and the varied parameters were observed.The results indicated that the inclination of the asperity had a significant impact on the failure mode.When the inclinationwas 30and greater,interlocking occurred between the dam and foundation and the governing failure modes were either rupture of the dam body or asperity.When the asperity inclination was significant enough to provide interlocking,the load capacity of the dam was impacted by the strength of the rock in the foundation through influencing the load capacity of the asperity.The location of the asperity along the concrete-rock interface did not affect the failure mode,except for when the asperity was located at the toe of the dam,but had an influence on the load capacity when the failure occurred by rupture of the buttress or by sliding.By accounting for a single large-scale asperity in the concrete-rock interface of the analysed dam,a horizontal load capacity increase of 30%e160%was obtained,depending on the inclination and location of the asperity and the strength of the foundation material.展开更多
基金Supported by the‘Automotive Glazing Application in Intelligent Cockpit Human-Machine Interface’project(SKHX2021049)a collaboration between the Saint-Go Bain Research and the Beijing Normal University。
文摘Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Several studies have addressed car HMI but were less attentive to designing and implementing interactive glazing for every day(autonomous)driving contexts.Methods Reflecting on the literature,we describe an engineering psychology practice and the design of six novel future user scenarios,which envision the application of a specific set of augmented reality(AR)support user interactions.Additionally,we conduct evaluations on specific scenarios and experiential prototypes,which reveal that these AR scenarios aid the target user groups in experiencing a new type of interaction.The overall evaluation is positive with valuable assessment results and suggestions.Conclusions This study can interest applied psychology educators who aspire to teach how AR can be operationalized in a human-centered design process to students with minimal pre-existing expertise or minimal scientific knowledge in engineering psychology.
文摘In telerobotic system for remote welding, human-machine interface is one of the most important factor for enhancing capability and efficiency. This paper presents an architecture design of human-machine interface for welding telerobotic system: welding multi-modal human-machine interface. The human-machine interface integrated several control modes, which are namely shared control, teleteaching, supervisory control and local autonomous control. Space mouse, panoramic vision camera and graphics simulation system are also integrated into the human-machine interface for welding teleoperation. Finally, weld seam tracing and welding experiments of U-shape seam are performed by these control modes respectively. The results show that the system has better performance of human-machine interaction and complexity environment welding.
基金supported by the National Natural Science Foundation of China, No.31771322(to PXZ)the Natural Science Foundation of Beijing, No.7212121(to PXZ)+2 种基金Shenzhen Science and Technology Plan Project, No.JCYJ20190806162205278(to PXZ)Funds for Severe Trauma Standardized Treatment, No.SZSM202011001(to PXZ)a grant from National Center for Trauma Medicine, Beijing, China, No.BMU2020 XY005-01(to PXZ)
文摘Transferring the contralateral C7 nerve root to the median or radial nerve has become an important means of repairing brachial plexus nerve injury.However,outcomes have been disappointing.Electroencephalography(EEG)-based human-machine interfaces have achieved promising results in promoting neurological recovery by controlling a distal exoskeleton to perform functional limb exercises early after nerve injury,which maintains target muscle activity and promotes the neurological rehabilitation effect.This review summarizes the progress of research in EEG-based human-machine interface combined with contralateral C7 transfer repair of brachial plexus nerve injury.Nerve transfer may result in loss of nerve function in the donor area,so only nerves with minimal impact on the donor area,such as the C7 nerve,should be selected as the donor.Single tendon transfer does not fully restore optimal joint function,so multiple functions often need to be reestablished simultaneously.Compared with traditional manual rehabilitation,EEG-based human-machine interfaces have the potential to maximize patient initiative and promote nerve regeneration and cortical remodeling,which facilitates neurological recovery.In the early stages of brachial plexus injury treatment,the use of an EEG-based human-machine interface combined with contralateral C7 transfer can facilitate postoperative neurological recovery by making full use of the brain’s computational capabilities and actively controlling functional exercise with the aid of external machinery.It can also prevent disuse atrophy of muscles and target organs and maintain neuromuscular junction effectiveness.Promoting cortical remodeling is also particularly important for neurological recovery after contralateral C7 transfer.Future studies are needed to investigate the mechanism by which early movement delays neuromuscular junction damage and promotes cortical remodeling.Understanding this mechanism should help guide the development of neurological rehabilitation strategies for patients with brachial plexus injury.
基金supported by the National Natural Science Foundation of China (51873024)the Science and Technology Department of Jilin Province (20200708102YY and 20190201234JC)
文摘Ionic hydrogel-based sensors have shined a spotlight on wearable electronics.However,the sensitivity and reliability of hydrogel devices are significantly hampered by the weak adhesion of skin-sensor interface as well as inferior temperature tolerance.Here,inspired by the structure and composition of dermis,a novel skin-attachable and environment-stable hydrogel was designed by integrating collagen into the LiCl-containing chemically cross-linked polyacrylamide hydrogel.The hydrogel exhibited skin-like mechanical properties of low modulus,superior stretchability as well as excellent elasticity.Furthermore,the introduction of collagen endowed the hydrogel with robust and seamless interfaces with diverse materials,including the curved skin.As a result,the hydrogel is capable of serving as a human-machine interface for collecting reliable electrocardiography(ECG)signals and discerning various human motions,with high sensitivity(gauge factor=10.7),fast response,negligible hysteresis as well as extensive monitoring range.Notably,the hydrogel that can mimick the temperature-tolerant mechanism of most organisms possesses persistent stabilization of adhesive,conductive,sensory and mechanical performances at subzero or ambient conditions.The skin-inspired strategy paves an effective way for the design of multifunctional materials with potential applications in next-generation electronics.
基金financially supported by the National Natural Science Foundation of China(No.52377026 and No.52301192)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+4 种基金Postdoctoral Fellowship Program of CPSF under Grant Number(No.GZB20240327)Shandong Postdoctoral Science Foundation(No.SDCXZG-202400275)Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)China Postdoctoral Science Foundation(No.2024M751563)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.
基金supported by the National Natural Science Foundation of China(Nos.51635007,91323303)
文摘Current stretchable surface electrodes have attracted increasing attention owing to their potential applications in biological signal monitoring, wearable human-machine interfaces(HMIs) and the Internet of Things. The paper proposed a stretchable HMI based on a surface electromyography(sEMG) electrode with a self-similar serpentine configuration. The sEMG electrode was transfer-printed onto the skin surface conformally to monitor biological signals, followed by signal classification and controlling of a mobile robot. Such electrodes can bear rather large deformation(such as 〉30%) under an appropriate areal coverage. The sEMG electrodes have been used to record electrophysiological signals from different parts of the body with sharp curvature, such as the index finger,back of the neck and face, and they exhibit great potential for HMI in the fields of robotics and healthcare. The electrodes placed onto the two wrists would generate two different signals with the fist clenched and loosened. It is classified to four kinds of signals with a combination of the gestures from the two wrists, that is, four control modes. Experiments demonstrated that the electrodes were successfully used as an HMI to control the motion of a mobile robot remotely.
基金financially supported by the National Key R&D Program of China(No.2022YFE0121300)the National Natural Science Foundation of China(No.52374376)the Introduction Plan for High-end Foreign Experts(No.G2023105001L)。
文摘As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
基金Scientific Research Common Program of Beijing Municipal Commission of Education(KM201411232007)BISTU Teaching Reform Projects(2014KG22)+2 种基金IHLB(PHR201108258,PHR201106226)Beijing Natural Science Foundation(4142017)NSFC(Grant No.61261160497)。
文摘We never stop finding better ways to communicate with machines.To interact with computers we tried several ways,from punched tape and tape reader to QWERTY keyboards and command lines,from graphic user interface and mouse to multi-touch screens.The way we communicate with computers or devices are getting more direct and easier.In this paper,we give gesture mouse simulation in human–computer interface based on 3 Gear Systems using two Kinect sensors.The Kinect sensor is the perfect device to achieve dynamic gesture tracking and pose recognition.We hope the 3 Gear Systems can work as a mouse,to be more specific,use gestures to do click,double click and scroll.We use Coordinate Converting Matrix and Kalman Filter to reduce the shaking caused by errors and makes the interface create a better user experience.Finally the future of human-computer interface is discussed.
基金We acknowledge funding from the National Natural Science Foundation of China(No.61975173)Major Scientific Research Project of Zhejiang Lab(No.2019MC0AD01)+1 种基金Key Research and Development Project of Zhejiang Province(No.2021C05003)the CIE-Tencent Robotics X Rhino-Bird Focused Research Program(No.2020-01-006).
文摘Wearable human-machine interface(HMI)is an advanced technology that has a wide range of applications from robotics to augmented/virtual reality(AR/VR).In this study,an optically driven wearable human-interactive smart textile is proposed by integrating a polydimethylsiloxane(PDMS)patch embedded with optical micro/nanofibers(MNF)array with a piece of textiles.Enabled by the highly sensitive pressure dependent bending loss of MNF,the smart textile shows high sensitivity(65.5 kPa^(−1))and fast response(25 ms)for touch sensing.Benefiting from the warp and weft structure of the textile,the optical smart textile can feel slight finger slip along the MNF.Furthermore,machine learning is utilized to classify the touch manners,achieving a recognition accuracy as high as 98.1%.As a proof-of-concept,a remote-control robotic hand and a smart interactive doll are demonstrated based on the optical smart textile.This optical smart textile represents an ideal HMI for AR/VR and robotics applications.
文摘Today’s product creative design has rendered many fe atures and has brought a great change in our everyday life, there are many new c hallenges in its traditional theory and principle. According to the traditional design theory, the FBS design model pays more attention to the function and stru cture of the product. But this model still couldn’t strengthen the relation bet ween product appearance design and human-machine design effectively. This paper adopt converse design thinking and presents an improved design thinking methodo logy based on C: FBS for product appearance design and give a general summarizat ion for the features, methods and technology based on human-machine interaction and interface. Meanwhile it also combines with the behavior design of product r elated IT fields and constructs a new outline to improve the design of product a ppearance supported by the technology of computer aided design. So the new metho d about design thinking for computer aided design, the new abstract product design model and the key problem of design thinking based on human-machine inte raction and interface are addressed in this paper. This kind of creative design theory that is driven by human-machine interaction and interface will help the development of CAD software system and the research of product design and manufa cture. Additionally, this paper gives some beneficial characters to address the theory based on human-machine interaction and interface. Meanwhile, combining with the developing of computer technology, the trends of design thinking based on t he technology of human-machine interaction and interface are also analyzed and discussed at the end of this paper.
基金Supported by the National Natural Science Foundation of China (No. 40071071).
文摘The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, elements and contents for the Web GIS. The design of the Wuhan Bus Search System is fulfilled to confirm the validity and practicability of the fusion.
基金the National Nature Science Foundation of China(No.22305066).
文摘Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.
基金supported by the NSFC(11931013)the GXNSF(2022GXNSFDA035078)。
文摘In this paper,we study the one-dimensional motion of viscous gas near a vacuum,with the gas connecting to a vacuum state with a jump in density.The interface behavior,the pointwise decay rates of the density function and the expanding rates of the interface are obtained with the viscosity coefficientμ(ρ)=ρ^(α)for any 0<α<1;this includes the timeweighted boundedness from below and above.The smoothness of the solution is discussed.Moreover,we construct a class of self-similar classical solutions which exhibit some interesting properties,such as optimal estimates.The present paper extends the results in[Luo T,Xin Z P,Yang T.SIAM J Math Anal,2000,31(6):1175-1191]to the jump boundary conditions case with density-dependent viscosity.
基金Agency for Science,Technology and Research(A*STAR),under the RIE2020 Advanced Manufacturing and Engineering(AME)Programmatic Grant(Grant no.A18B1b0061)。
文摘The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide inclusions.Scanning Kelvin Probe Force Microscopy demonstrated that MgO inclusions could act as cathodes for Mg corrosion,but their low conductivity likely precludes this.However,the density of state calculations through density functional theory using hybrid HSE06 functional revealed overlapping electronic states at the Mg/MgO interface,which facilitates electron transfers and participates in redox reactions.Subsequent determination of the hydrogen absorption energy at the Mg/MgO interface reveals it to be an excellent catalytic site,with HER being found to be a factor of 23x more efficient at the interface than on metallic Mg.The results not only support the plausibility of the Mg/MgO interface being an effective cathode to the adjacent anodic Mg matrix during corrosion but also contribute to the understanding of the enhanced cathodic activities observed during the anodic dissolution of magnesium.
基金the National Natural Science Foundation of China for Excellent Young Scholar(Grant No.52322313)National Key R&D Project from Minister of Science and Technology(2021YFA1201601)+6 种基金National Science Fund of China(62174014)Beijing Nova program(Z201100006820063)Youth Innovation Promotion Association CAS(2021165)Innovation Project of Ocean Science and Technology(22-3-3-hygg-18-hy)State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(KFZD202202)Fundamental Research Funds for the Central Universities(292022000337)Young Top-Notch Talents Program of Beijing Excellent Talents Funding(2017000021223ZK03).
文摘The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.
基金the National Natural Science Foundation(No.52073187)NSAF Foundation(No.U2230202)for their financial support of this project+3 种基金National Natural Science Foundation(No.51721091)Programme of Introducing Talents of Discipline to Universities(No.B13040)State Key Laboratory of Polymer Materials Engineering(No.sklpme2022-2-03)support of China Scholarship Council
文摘Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work.
基金the National Key Research and Development Program of China(No.2020YFC1107501)the National Natural Science Foundation of China(No.51971222,51801220)+4 种基金the Natural Science Foundation of Liaoning Province of China(No.2020-MS-001)the Dong Guan Innovative Research Team Program(No.2020607134012)the Military Translational Medicine Fund of Chinese PLA General Hospital(ZH19008)Capital’s Funds for Health Improvement and Research(CFH 2022-2-5051)the Dong Guan Science and Technology Service Network Initiative(20201600200042)。
文摘Despite transosseous rotator cuff tear repair using sutures is widely accepted for tendon-bone fixation,the fibrocartilaginous enthesis regeneration is still hardly achieved with the traditional sutures.In the present work,degradable magnesium(Mg)alloy wire was applied to suture supraspinatus tendon in a rat acute rotator cuff tear model with Vicryl Plus 4±0 absorbable suture as control.The shoulder joint humerus-supraspinatus tendon complex specimens were retrieved at 4,8,and 12 weeks after operation.The Mg alloy suture groups showed better biomechanical properties in terms of ultimate load to failure.Gross observation showed that hyperplastic response of the scar tissue at the tendon-bone interface is progressively alleviated over time in the both Mg alloy suture and Vicryl suture groups.In the histological analysis,for Mg alloy suture groups,chondrocytes appear to proliferate at 4 weeks postoperatively,and the tendon-bone interface showed an orderly structural transition zone at 8 weeks postoperatively.The collagenous fiber tended to be aligned and the tendon-bone interlocking structures apparently formed,where transitional structure from unmineralized fibrocartilage to mineralized fibrocartilage was closer to the native fibrocartilaginous enthesis.In vivo degradation of the magnesium alloy wire was completed within 12 weeks.The results indicated that Mg alloy wire was promising as degradable suture with the potential to promotes fibrocartilaginous interface regeneration in rotator cuff repair.
基金the National Natural Science Foundation of China(Nos.22209095 and 22238004).
文摘Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.
基金the Research Council of Norway(Grant No.244029)the project‘Stable dams’,FORMAS(Grant No.2019e01236)+1 种基金the project‘Improved safety assessment of concrete dams’,and SVC(Grant No.VKU32019)the project‘Safe dams’,that supported the development of the research presented in this article.
文摘When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by current dam assessment guidelines.However,these asperities can potentially improve the load capacity of a concrete dam in terms of sliding stability.Although their influence in a sliding plane has been thoroughly studied for direct shear,their influence under eccentric loading,as in the case of dams,is unknown.This paper presents the results of a parametric study that used finite element analysis(FEA)to investigate the influence of large-scale asperities on the load capacity of small buttress dams.By varying the inclination and location of an asperity located in the concrete-rock interface along with the strength of the rock foundation material,transitions between different failure modes and correlations between the load capacity and the varied parameters were observed.The results indicated that the inclination of the asperity had a significant impact on the failure mode.When the inclinationwas 30and greater,interlocking occurred between the dam and foundation and the governing failure modes were either rupture of the dam body or asperity.When the asperity inclination was significant enough to provide interlocking,the load capacity of the dam was impacted by the strength of the rock in the foundation through influencing the load capacity of the asperity.The location of the asperity along the concrete-rock interface did not affect the failure mode,except for when the asperity was located at the toe of the dam,but had an influence on the load capacity when the failure occurred by rupture of the buttress or by sliding.By accounting for a single large-scale asperity in the concrete-rock interface of the analysed dam,a horizontal load capacity increase of 30%e160%was obtained,depending on the inclination and location of the asperity and the strength of the foundation material.