The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR)including the gas holdup,volumetric mass transfer coefficient and specific interfacial area were assessed experimentally inve...The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR)including the gas holdup,volumetric mass transfer coefficient and specific interfacial area were assessed experimentally investigating the influence of temperature,pH and superficial gas velocity.The reactor diameter and height were 11 and 30 cm,respectively.It was equipped with a single sparger,operating at atmospheric pressure,20 and 40℃,and two pH values of 3 and 6.The height of the liquid was 23 cm,while the superficial gas velocity changed within 0.010-0.040 m·s^(-1)range.Experiments were conducted with pure oxygen as the gas phase and saturated lime solution as the liquid phase.The liquid-side volumetric mass transfer coefficient was determined under unsteady-state oxygen absorption in a saturated lime solution.The gas holdup was calculated based on the liquid height change,while the specific interfacial area was obtained by a physical method based on the bubble size distribution(BSD)in different superficial gas velocities.The results indicated that at the same temperature but different pH,the gas holdup variation was negligible,while the liquid-side volumetric mass transfer coefficient at the pH value of 6 was higher than that at the pH=3.At a constant pH but different temperatures,the gas holdup and the liquid-side volumetric mass transfer coefficients at 40℃were higher than that of the same at 20℃.A reasonable and appropriate estimation of the liquid-side volumetric mass transfer coefficient(kla)in a pilot-scale JBR was provided which can be applied to the design and scale-up of JBRs.展开更多
Mass transfer characteristics have been investigated in a 113 mm diameter asymmetric rotating disk contactor of the pilot plant scale for two different liquid–liquid systems. The effects of operating parameters inclu...Mass transfer characteristics have been investigated in a 113 mm diameter asymmetric rotating disk contactor of the pilot plant scale for two different liquid–liquid systems. The effects of operating parameters including rotor speed and continuous and dispersed phase velocities on the volumetric overall mass transfer coefficients are investigated. The results show that the mass transfer performance is strongly dependent on agitation rate and interfacial tension, but only slightly dependent on phase flow rates. In this study, effective diffusivity is used instead of molecular diffusivity in the Grober equation for estimation of dispersed phase overall mass transfer coefficient.The enhancement factor is determined experimentally and there from an empirical expression is derived for prediction of the enhancement factor as a function of Reynolds number. The predicted results compared to the experimental data show that the proposed correlation can efficiently predict the overall mass transfer coefficients in asymmetric rotating disk contactors.展开更多
Overall dispersed side volumetric mass transfer coefficients for protein and amino acids were measured in continuous countercurrent PEG4000/KHP aqueous two-phase systems in a 57mm I.D. packed extraction column. A mode...Overall dispersed side volumetric mass transfer coefficients for protein and amino acids were measured in continuous countercurrent PEG4000/KHP aqueous two-phase systems in a 57mm I.D. packed extraction column. A model for overall dispersed side volumetric mass transfer coefficients was derived by describing the motion of the drops based upon Navier-Stokes equation combined with the relationship between mass transfer coefficients and the drop velocity. The model provides good predictions and can be successfully used in aqueous two-phase extraction. The average relative deviation between calculated values and experimental data ranges from 8% to 14%.展开更多
In this research gasoil desalting was investigated from mass transfer point of view in an eductor liquid–liquid extraction column(eductor-LLE device).Mass transfer characteristics of the eductor-LLE device were evalu...In this research gasoil desalting was investigated from mass transfer point of view in an eductor liquid–liquid extraction column(eductor-LLE device).Mass transfer characteristics of the eductor-LLE device were evaluated and an empirical correlation was obtained by dimensional analysis of the dispersed phase Sherwood number.The Results showed that the overall mass transfer coefficient of the dispersed phase and extraction efficiency have been increased by increasing Sauter mean diameter(SMD)and decreasing the nozzle diameter from 2 to 1 mm,respectively.The effects of Reynolds number(R_(e)),projection ratio(ratio of the distance between venturi throat and nozzle tip to venturi throat diameter,Rpr),venturi throat area to nozzle area ratio(R_(th-n))and two phases flow rates ratio(R_(Q))on the mass transfer coefficient(K)were determined.According to the results,K increase with increasing Re and RQ and also with decreasing Rpr and R_(th-n).Semi-empirical models of drop formation,rising and coalescence were compared with our proposed empirical model.It was revealed that the present model provided a relatively good fitting for the mass transfer model of drop coalescence.Moreover,experimental data were in better agreement with calculated data with AARE value of 0.085.展开更多
For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass t...For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass transfer coefficient during absorption and both methods give almost the same mass transfer coefficient.While for chemical absorption with ozone decomposition reaction,the common linear least square fitting method is not applicable for the evaluation of ozone mass transfer coefficient due to the difficulty of model linearization for describing ozone concentration dissolved in water.The nonlinear Simplex method obtains the mass transfer coefficient by minimizing the sum of the differences between the simulated and experimental ozone concentration during the whole absorption process,without the limitation of linear relationship between the dissolved ozone concentration and absorption time during the initial stage of absorption.Comparison of the ozone concentration profiles between the simulation and experimental data demonstrates that Simplex method may determine ozone mass transfer coefficient during absorption in an accurate and high efficiency way with wide applicability.展开更多
Recovery of carbon monoxide from flue gases by selective absorption of carbon monoxide in an imidazolium chlorocuprate(l) ionic liquid is considered in this work as an alternative to the use of molecular volatile so...Recovery of carbon monoxide from flue gases by selective absorption of carbon monoxide in an imidazolium chlorocuprate(l) ionic liquid is considered in this work as an alternative to the use of molecular volatile solvents such as aromatic hydrocarbons. The present work evaluates the CO mass transfer rates from the gas phase to the ionic liquid solutions in the absence of chemical reaction. To that end, carbon dioxide was employed as an inert model gas and absorption experiments were performed to assess the influence of different process variables in a batch reactor with fiat gas-liquid interface. The experimental mass transfer coefficients showed significant var- iation with temperature, (3.4-10.9) × 10^-7 m·s^-1 between 293 and 313 K; stirring speed, (10.2- 33.1)× 10^-7 m.s 1 between 100 and 300 r·min^-1; and concentration of copper(1), (6.6-10.2) × 10^-7 m·s^-1 between 0.25 and 2 mol· L^- 1. In addition, the mass transfer coefficients were eventually found to follow a poten- tial proportionality of the type kL ∝μ^-0.5 and the dimensionless correlation that makes the estimation of the mass transfer coefficients possible in the studied range of process variables was obtained: Sh=10^-2.64 Re^1.07 , Sc^0.75,These results constitute the first step in the kinetic analysis of the reaction between CO and imidazolium chlorocuprate(I) ionic liquid that determines the design of the separation units.展开更多
The mass transfer process in a perforated rotating disk contactor(PRDC) using a toluene-acetone-water system was investigated.The volumetric overall mass transfer coefficients are calculated in a PRDC column.Both mass...The mass transfer process in a perforated rotating disk contactor(PRDC) using a toluene-acetone-water system was investigated.The volumetric overall mass transfer coefficients are calculated in a PRDC column.Both mass transfer directions are considered in experiments.The influences of operating variables containing agitation rate,dispersed and continuous phase flow rates and mass transfer in the extraction column are studied.According to obtained results,mass transfer is significantly dependent on agitation rate,while the dispersed and continuous phase flow rates have a minor effect on mass transfer in the extraction column.Furthermore,a novel empirical correlation is developed for prediction of overall continuous phase Sherwood number based on dispersed phase holdup,Reynolds number and mass transfer direction.There has been great agreement between experimental data and predicted values using a proposed correlation for all operating conditions.展开更多
Based on analysis of energy dissipation in the core region of gas-solid fluidized bed risers, a simplified model for determination of core-annulus solids mass transfer coefficient was developed according to turbulent ...Based on analysis of energy dissipation in the core region of gas-solid fluidized bed risers, a simplified model for determination of core-annulus solids mass transfer coefficient was developed according to turbulent diffusion mechanism of particles. The simulation results are consistent with published experimental data. Core-annulus solids mass transfer coefficient decreases with increasing particle size, particle density and solids circulation rate,but generally increases with increasing superficial gas velocity and riser diameter. In the upper dilute region of gas-solid fluidized bed risers, core-annulus solids mass transfer coefficient was found to change little with the axial coordinate in the bed.展开更多
The effects of operation parameters of combined blowing converter on the volumetric mass transfer coefficient between slag and steel are studied with a cold model with water simulating steel, oil simulating slag and b...The effects of operation parameters of combined blowing converter on the volumetric mass transfer coefficient between slag and steel are studied with a cold model with water simulating steel, oil simulating slag and benzoic acid as the transferred substance between water and oil. The results show that, with lance level of 2.1m and the top blowing rate of 25000Nm3/h, the volumetric mass transfer coefficient changes most significantly when the bottom blowing rate ranges from 384 to 540Nm3/h. The volumetric mass transfer coefficient reaches its maximum when the lance level is 2.1m, the top blowing rates is 30000Nm3/h, and the bottom blowing rate is 384Nm3/h with tuyeres located symmetrically at 0.66D of the converter bottom.展开更多
The research on gas-liquid multiphase reactions using micro reactors is becoming increasingly widespread, given their excellent mass transfer performance. Establishing an accurate and reliable method to measure the ga...The research on gas-liquid multiphase reactions using micro reactors is becoming increasingly widespread, given their excellent mass transfer performance. Establishing an accurate and reliable method to measure the gas-liquid mass transfer performance of micro reactors is crucial for evaluating and optimizing the design of micro reactor structure. In this paper, the physical absorption method of aqueous solution-CO_(2) and the chemical absorption method of sodium carbonate solution-CO_(2) were proposed. By analyzing the chemical reaction equilibrium during the absorption process, the relationship between the mass transfer of CO_(2) and the solubility of hydroxide ions in the solution was established, and the total gas-liquid mass transfer coefficient was immediately obtained by measuring the p H value. The corresponding testing platform and process have been established based on the characteristics of the proposed method to ensure fast and accurate measurement. In addition, the chemical absorption method takes into account temperature factors that were not previously considered. The volumetric mass transfer coefficient measured by these two methods is in the same range as those measured by other methods using the same microchannel structure in previous literature. The methods have the advantages of low equipment cost, faster measurement speed, and simpler procedures, which can facilitate its wide application to the evaluation of the mass transfer performance and hence can guide the structure optimization of microchannel reactors.展开更多
In-site soil flushing and aeration are the typical synergetic remediation technology for contaminated sites.The surfactant present in flushing solutions is bound to affect the aeration efficiency.The purpose of this s...In-site soil flushing and aeration are the typical synergetic remediation technology for contaminated sites.The surfactant present in flushing solutions is bound to affect the aeration efficiency.The purpose of this study is to evaluate the effect of surfactant frequently used in soil flushing on the oxygen mass transfer in micro-nano-bubble(MNB)aeration system.Firstly,bio-surfactants and chemical surfactants were used to investigate their effects on Sauter mean diameter of bubble(dBS),gas holdup(ε),volumetric mass-transfer coefficient(kLa)and liquid-side mass-transfer coefficient(kL)in the MNB aeration system.Then,based upon the experimental results,the Sardeing's and Frossling's models were modified to describe the effect of surfactant on kL in the MNB aeration.The results showed that,for the twenty aqueous surfactant solutions,with the increase in surfactant concentration,the value of dBS,kLa and kL decreased,while the value ofεand gas-liquid interfacial area(a)increased.These phenomena were mainly attributed to the synergistic effects of immobile bubble surface and the suppression of coalescence in the surfactant solutions.In addition,with the presence of electric charge,MNBs in anionic surfactant solutions were smaller and higher in number than in non-ionic surfactant solutions.Furthermore,the accumulation of surfactant on the gas-liquid interface was more conspicuous for small MNB,so the reduction of kL in anionic surfactant solutions was larger than that in non-ionic surfactant solutions.Besides,the modified Frossling's model predicted the effect of surfactant on kL in MNB aeration system with reasonable accuracy.展开更多
This study deals with the effect of hydrotropes on the solubility and mass transfer coefficient of salicylic acid. The solubility and mass transfer studies were performed using the hydrotropes, i.e., sodium acetate, s...This study deals with the effect of hydrotropes on the solubility and mass transfer coefficient of salicylic acid. The solubility and mass transfer studies were performed using the hydrotropes, i.e., sodium acetate, sodium salicylate, citric acid, and urea at concentrations of 0-3.0 mol/L and system temperatures of 303-333 K. It was found that the solubility and mass transfer coefficient of salicylic acid increases with increase in hydrotrope concentration and also with system temperature. All hydrotropes used in this work showed an enhancement in solubility and mass transfer coefficient to different degrees. The maximum enhancement factor values were determined for all hydrotropes used in this study. The highest value was 28.08 for solubility studies and 10.42 for mass transfer studies. The performance of hydrotropes was measured in terms of the Setschenow constant (Ks). The highest value observed was 0.696.展开更多
In the present work,artificial neuron network(ANN)based models for predicting equilibrium solubility and mass transfer coefficient of CO_(2) absorption into aqueous solutions of high performance alternative 4-diethyla...In the present work,artificial neuron network(ANN)based models for predicting equilibrium solubility and mass transfer coefficient of CO_(2) absorption into aqueous solutions of high performance alternative 4-diethylamino-2-butanol(DEAB)solvent were successfully developed.The ANN models show an outstanding predictive performance over the predictive correlations proposed in the literature.In order to predict the equilibrium solubility,the ANN model were developed based on three input parameters of operating temperature,concentration of DEAB and partial pressure of CO_(2).An outstanding prediction performance of 2.4%average absolute deviation(AAD)can be obtained(comparing with 7.1–8.3%AAD from the literature).Additionally,a significant improvement on predicting mass transfer coefficient can also be achieved through the developed ANN model with 3.1%AAD(comparing with 14.5%AAD from the existing semi-empirical model).The mass transfer coefficient is considered to be a function of liquid flow rate,liquid inlet temperature,concentration of DEAB,inlet CO_(2) loading,outlet CO_(2) loading,concentration of CO_(2) along the height of the column.展开更多
Danckwert’s method was used to determine the specific interfacial area, a, and the individual mass transfer coefficient, kL, during absorption of CO2 in a bubble column with an anionic surfactant in the carbonate-bi...Danckwert’s method was used to determine the specific interfacial area, a, and the individual mass transfer coefficient, kL, during absorption of CO2 in a bubble column with an anionic surfactant in the carbonate-bicarbonate buffer solution and NaAsO2 as catalyst, the presence of which decreases the specific interfacial area and the individual mass transfer coefficient. The specific interfacial area and the individual mass transfer coefficient increase with increasing su- perficial gas velocity. The specific interfacial area decreases whereas the individual mass transfer coefficient increases with increasing temperature. The results of experiments were used to determine the dependence of a, kL, and kLa on the surface tension, the temperature of the absorption phase, and the superficial velocity of the gas. The calculated results from the correlation were found to be within 10% deviation from the actual experimental results.展开更多
A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow charac- teristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a...A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow charac- teristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume (Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coeffi- cient), and gas utilization ratio (t/) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and n steadily increased. When the converter was rotated clockwise, both Ak/F and t/increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these para- meters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3.h-1 and 10°, respectively.展开更多
This study investigated catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-MnCu/γ-Al_(2)O_(3)(Cat)in a rotating packed bed(RPB)for the first time.The results showed that the value of the overal...This study investigated catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-MnCu/γ-Al_(2)O_(3)(Cat)in a rotating packed bed(RPB)for the first time.The results showed that the value of the overall decomposition rate constant of ozone(K_(c))and overall volumetric mass transfer coefficient(K_(L)a)are 4.28×10^(-3) s^(-1) and 11.60×10^(-3) s^(-1) respectively at an initial pH of 6,βof 40,Co3(g)of 60 mg·L^(-1)and Q_(L) of 85 L·h^(-1) in deionized water,respectively.Meanwhile,the K_(c) and K_(L)a values of Fenhe water are0.88×10^(-3) s^(-1) and 2.51×10^(-3) s^(-1) lower than deionized water,respectively.In addition,the K_(c) and K_(L)a values in deionized water for the Cat/O_(3)-RPB system are 44.86%and 47.41%higher than that for the Cat/O_(3)-BR(bubbling reactor)system,respectively,indicating that the high gravity technology can facilitate the decomposition and mass transfer of ozone in heterogeneous catalytic ozonation and provide some insights into the industrial wastewater.展开更多
Mass transfer of phosphorus in high-phosphorus hot-metal refining was investigated using CaO-FetO-SiO2 slags at 1623 K. Based on a two-film theory kinetic model and experimental results, it was found that the overall ...Mass transfer of phosphorus in high-phosphorus hot-metal refining was investigated using CaO-FetO-SiO2 slags at 1623 K. Based on a two-film theory kinetic model and experimental results, it was found that the overall mass transfer coefficient, which includes the effects of mass transfer in both the slag phase and metal phase, is in the range of 0.0047 to 0.0240 cm/s. With the addition of a small amount of fluxing agents A1203 or Na20 into the slag, the overall mass transfer coefficient has an obvious increase. Silicon content in the hot metal also influences the overall mass transfer coefficient. The overall mass transfer coefficient in the lower [Si] heat is much higher than that in the higher [Si] heat. It is concluded that both fluxing agents and lower [Si] hot metal facilitate mass transfer of phosphorus in liquid phases. Fur- thermore, the addition of Na20 could also prevent rephosphorization at the end of the experiment.展开更多
The Intalox metal tower packing was used to simulate an industrial relevant extractive distillation column for purifying azeotropic multicomponent mixture.In order to explain the inconsistencies in the modeling of tra...The Intalox metal tower packing was used to simulate an industrial relevant extractive distillation column for purifying azeotropic multicomponent mixture.In order to explain the inconsistencies in the modeling of transfer process in nonideal multicomponent distillation column,a method was developed with equilibrium stage models(EQ)and non-equilibrium model(NEQ)incorporated with Maxwell-Stefan diffusion equations in the framework of AspenONE simulator.Dortmund Modified UNIFAC(UNIFAC-DMD)thermodynamic model was employed to estimate activity coefficients.In addition,to understand the reason for the diffusion against driving force and the different results by EQ and NEQ models,explicit investigations were made on diffusion coefficients, component Murphree efficiency and mass transfer coefficients.The results provide valuable information for basic design and applications associated with extractive distillation.展开更多
The accuracy of the knowledge of mass transfer parameters (effective moisture diffusivity, mass transfer Biot number and mass transfer coefficient) in the case of frying food, is essential and important for designin...The accuracy of the knowledge of mass transfer parameters (effective moisture diffusivity, mass transfer Biot number and mass transfer coefficient) in the case of frying food, is essential and important for designing, modeling and process optimization. This study is undertaken to develop an approach for determining mass transfer parameters during frying of spherical rice cracker in sunflower oil at 150, 170 and 190 ℃. These parameters were evaluated from the plots of dimensionless concentration ratios against time of frying. Effective moisture diffusivity, mass transfer Biot number and mass transfer coefficient ranged between 1.24×10^-8 to 2.36×10^-8 m^2/s, 1.96 to 2.34 and 5.51×10^-6 to 9.70×10^-6 m/s, respectively. Effective moisture diffusivity and mass transfer coefficient were found to increase with an increasing frying temperature, whereas mass transfer Biot number decreased. An Arrhenius-type relationship was found between effective diffusivity coefficient and frying temperature.展开更多
The mass transfer model describing the separation of essential oils from plant materials has been proposed and the mass transfer coefficient has been obtained by fitting the present model to the experimental data for ...The mass transfer model describing the separation of essential oils from plant materials has been proposed and the mass transfer coefficient has been obtained by fitting the present model to the experimental data for three kinds of plant materials. The validity of the model has been verified. To im' prove the vapor-solid contact, a mechanical agitator has been installed in the steam distillator. The effect of agitating rate on mass transfer coefficient has also been examined.展开更多
基金the authors appreciate the vice-chancellor of research and technology of the University of Isfahan for supporting this work under Grant No.911401707。
文摘The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR)including the gas holdup,volumetric mass transfer coefficient and specific interfacial area were assessed experimentally investigating the influence of temperature,pH and superficial gas velocity.The reactor diameter and height were 11 and 30 cm,respectively.It was equipped with a single sparger,operating at atmospheric pressure,20 and 40℃,and two pH values of 3 and 6.The height of the liquid was 23 cm,while the superficial gas velocity changed within 0.010-0.040 m·s^(-1)range.Experiments were conducted with pure oxygen as the gas phase and saturated lime solution as the liquid phase.The liquid-side volumetric mass transfer coefficient was determined under unsteady-state oxygen absorption in a saturated lime solution.The gas holdup was calculated based on the liquid height change,while the specific interfacial area was obtained by a physical method based on the bubble size distribution(BSD)in different superficial gas velocities.The results indicated that at the same temperature but different pH,the gas holdup variation was negligible,while the liquid-side volumetric mass transfer coefficient at the pH value of 6 was higher than that at the pH=3.At a constant pH but different temperatures,the gas holdup and the liquid-side volumetric mass transfer coefficients at 40℃were higher than that of the same at 20℃.A reasonable and appropriate estimation of the liquid-side volumetric mass transfer coefficient(kla)in a pilot-scale JBR was provided which can be applied to the design and scale-up of JBRs.
文摘Mass transfer characteristics have been investigated in a 113 mm diameter asymmetric rotating disk contactor of the pilot plant scale for two different liquid–liquid systems. The effects of operating parameters including rotor speed and continuous and dispersed phase velocities on the volumetric overall mass transfer coefficients are investigated. The results show that the mass transfer performance is strongly dependent on agitation rate and interfacial tension, but only slightly dependent on phase flow rates. In this study, effective diffusivity is used instead of molecular diffusivity in the Grober equation for estimation of dispersed phase overall mass transfer coefficient.The enhancement factor is determined experimentally and there from an empirical expression is derived for prediction of the enhancement factor as a function of Reynolds number. The predicted results compared to the experimental data show that the proposed correlation can efficiently predict the overall mass transfer coefficients in asymmetric rotating disk contactors.
基金Supported by the National Natural Science Foundation of China.
文摘Overall dispersed side volumetric mass transfer coefficients for protein and amino acids were measured in continuous countercurrent PEG4000/KHP aqueous two-phase systems in a 57mm I.D. packed extraction column. A model for overall dispersed side volumetric mass transfer coefficients was derived by describing the motion of the drops based upon Navier-Stokes equation combined with the relationship between mass transfer coefficients and the drop velocity. The model provides good predictions and can be successfully used in aqueous two-phase extraction. The average relative deviation between calculated values and experimental data ranges from 8% to 14%.
文摘In this research gasoil desalting was investigated from mass transfer point of view in an eductor liquid–liquid extraction column(eductor-LLE device).Mass transfer characteristics of the eductor-LLE device were evaluated and an empirical correlation was obtained by dimensional analysis of the dispersed phase Sherwood number.The Results showed that the overall mass transfer coefficient of the dispersed phase and extraction efficiency have been increased by increasing Sauter mean diameter(SMD)and decreasing the nozzle diameter from 2 to 1 mm,respectively.The effects of Reynolds number(R_(e)),projection ratio(ratio of the distance between venturi throat and nozzle tip to venturi throat diameter,Rpr),venturi throat area to nozzle area ratio(R_(th-n))and two phases flow rates ratio(R_(Q))on the mass transfer coefficient(K)were determined.According to the results,K increase with increasing Re and RQ and also with decreasing Rpr and R_(th-n).Semi-empirical models of drop formation,rising and coalescence were compared with our proposed empirical model.It was revealed that the present model provided a relatively good fitting for the mass transfer model of drop coalescence.Moreover,experimental data were in better agreement with calculated data with AARE value of 0.085.
基金Project(2011467001)supported by the Ministry of Environment Protection of ChinaProject(2010DFB94130)supported by the Ministry of Science and Technology of China
文摘For physical ozone absorption without reaction,two parametric estimation methods,i.e.the common linear least square fitting and non-linear Simplex search methods,were applied,respectively,to determine the ozone mass transfer coefficient during absorption and both methods give almost the same mass transfer coefficient.While for chemical absorption with ozone decomposition reaction,the common linear least square fitting method is not applicable for the evaluation of ozone mass transfer coefficient due to the difficulty of model linearization for describing ozone concentration dissolved in water.The nonlinear Simplex method obtains the mass transfer coefficient by minimizing the sum of the differences between the simulated and experimental ozone concentration during the whole absorption process,without the limitation of linear relationship between the dissolved ozone concentration and absorption time during the initial stage of absorption.Comparison of the ozone concentration profiles between the simulation and experimental data demonstrates that Simplex method may determine ozone mass transfer coefficient during absorption in an accurate and high efficiency way with wide applicability.
基金the projects ENE2010-15585 and CTQ2012-31639the FPI postgraduate research grant(BES-2011-046279)
文摘Recovery of carbon monoxide from flue gases by selective absorption of carbon monoxide in an imidazolium chlorocuprate(l) ionic liquid is considered in this work as an alternative to the use of molecular volatile solvents such as aromatic hydrocarbons. The present work evaluates the CO mass transfer rates from the gas phase to the ionic liquid solutions in the absence of chemical reaction. To that end, carbon dioxide was employed as an inert model gas and absorption experiments were performed to assess the influence of different process variables in a batch reactor with fiat gas-liquid interface. The experimental mass transfer coefficients showed significant var- iation with temperature, (3.4-10.9) × 10^-7 m·s^-1 between 293 and 313 K; stirring speed, (10.2- 33.1)× 10^-7 m.s 1 between 100 and 300 r·min^-1; and concentration of copper(1), (6.6-10.2) × 10^-7 m·s^-1 between 0.25 and 2 mol· L^- 1. In addition, the mass transfer coefficients were eventually found to follow a poten- tial proportionality of the type kL ∝μ^-0.5 and the dimensionless correlation that makes the estimation of the mass transfer coefficients possible in the studied range of process variables was obtained: Sh=10^-2.64 Re^1.07 , Sc^0.75,These results constitute the first step in the kinetic analysis of the reaction between CO and imidazolium chlorocuprate(I) ionic liquid that determines the design of the separation units.
文摘The mass transfer process in a perforated rotating disk contactor(PRDC) using a toluene-acetone-water system was investigated.The volumetric overall mass transfer coefficients are calculated in a PRDC column.Both mass transfer directions are considered in experiments.The influences of operating variables containing agitation rate,dispersed and continuous phase flow rates and mass transfer in the extraction column are studied.According to obtained results,mass transfer is significantly dependent on agitation rate,while the dispersed and continuous phase flow rates have a minor effect on mass transfer in the extraction column.Furthermore,a novel empirical correlation is developed for prediction of overall continuous phase Sherwood number based on dispersed phase holdup,Reynolds number and mass transfer direction.There has been great agreement between experimental data and predicted values using a proposed correlation for all operating conditions.
文摘Based on analysis of energy dissipation in the core region of gas-solid fluidized bed risers, a simplified model for determination of core-annulus solids mass transfer coefficient was developed according to turbulent diffusion mechanism of particles. The simulation results are consistent with published experimental data. Core-annulus solids mass transfer coefficient decreases with increasing particle size, particle density and solids circulation rate,but generally increases with increasing superficial gas velocity and riser diameter. In the upper dilute region of gas-solid fluidized bed risers, core-annulus solids mass transfer coefficient was found to change little with the axial coordinate in the bed.
文摘The effects of operation parameters of combined blowing converter on the volumetric mass transfer coefficient between slag and steel are studied with a cold model with water simulating steel, oil simulating slag and benzoic acid as the transferred substance between water and oil. The results show that, with lance level of 2.1m and the top blowing rate of 25000Nm3/h, the volumetric mass transfer coefficient changes most significantly when the bottom blowing rate ranges from 384 to 540Nm3/h. The volumetric mass transfer coefficient reaches its maximum when the lance level is 2.1m, the top blowing rates is 30000Nm3/h, and the bottom blowing rate is 384Nm3/h with tuyeres located symmetrically at 0.66D of the converter bottom.
文摘The research on gas-liquid multiphase reactions using micro reactors is becoming increasingly widespread, given their excellent mass transfer performance. Establishing an accurate and reliable method to measure the gas-liquid mass transfer performance of micro reactors is crucial for evaluating and optimizing the design of micro reactor structure. In this paper, the physical absorption method of aqueous solution-CO_(2) and the chemical absorption method of sodium carbonate solution-CO_(2) were proposed. By analyzing the chemical reaction equilibrium during the absorption process, the relationship between the mass transfer of CO_(2) and the solubility of hydroxide ions in the solution was established, and the total gas-liquid mass transfer coefficient was immediately obtained by measuring the p H value. The corresponding testing platform and process have been established based on the characteristics of the proposed method to ensure fast and accurate measurement. In addition, the chemical absorption method takes into account temperature factors that were not previously considered. The volumetric mass transfer coefficient measured by these two methods is in the same range as those measured by other methods using the same microchannel structure in previous literature. The methods have the advantages of low equipment cost, faster measurement speed, and simpler procedures, which can facilitate its wide application to the evaluation of the mass transfer performance and hence can guide the structure optimization of microchannel reactors.
基金financially supported by the National Natural Science Foundation of China(41877240)National Key Research and Development Program of China(2018YFC1802300)Scientific Research Foundation of Graduate School of Southeast University(YBPY2154).
文摘In-site soil flushing and aeration are the typical synergetic remediation technology for contaminated sites.The surfactant present in flushing solutions is bound to affect the aeration efficiency.The purpose of this study is to evaluate the effect of surfactant frequently used in soil flushing on the oxygen mass transfer in micro-nano-bubble(MNB)aeration system.Firstly,bio-surfactants and chemical surfactants were used to investigate their effects on Sauter mean diameter of bubble(dBS),gas holdup(ε),volumetric mass-transfer coefficient(kLa)and liquid-side mass-transfer coefficient(kL)in the MNB aeration system.Then,based upon the experimental results,the Sardeing's and Frossling's models were modified to describe the effect of surfactant on kL in the MNB aeration.The results showed that,for the twenty aqueous surfactant solutions,with the increase in surfactant concentration,the value of dBS,kLa and kL decreased,while the value ofεand gas-liquid interfacial area(a)increased.These phenomena were mainly attributed to the synergistic effects of immobile bubble surface and the suppression of coalescence in the surfactant solutions.In addition,with the presence of electric charge,MNBs in anionic surfactant solutions were smaller and higher in number than in non-ionic surfactant solutions.Furthermore,the accumulation of surfactant on the gas-liquid interface was more conspicuous for small MNB,so the reduction of kL in anionic surfactant solutions was larger than that in non-ionic surfactant solutions.Besides,the modified Frossling's model predicted the effect of surfactant on kL in MNB aeration system with reasonable accuracy.
文摘This study deals with the effect of hydrotropes on the solubility and mass transfer coefficient of salicylic acid. The solubility and mass transfer studies were performed using the hydrotropes, i.e., sodium acetate, sodium salicylate, citric acid, and urea at concentrations of 0-3.0 mol/L and system temperatures of 303-333 K. It was found that the solubility and mass transfer coefficient of salicylic acid increases with increase in hydrotrope concentration and also with system temperature. All hydrotropes used in this work showed an enhancement in solubility and mass transfer coefficient to different degrees. The maximum enhancement factor values were determined for all hydrotropes used in this study. The highest value was 28.08 for solubility studies and 10.42 for mass transfer studies. The performance of hydrotropes was measured in terms of the Setschenow constant (Ks). The highest value observed was 0.696.
文摘In the present work,artificial neuron network(ANN)based models for predicting equilibrium solubility and mass transfer coefficient of CO_(2) absorption into aqueous solutions of high performance alternative 4-diethylamino-2-butanol(DEAB)solvent were successfully developed.The ANN models show an outstanding predictive performance over the predictive correlations proposed in the literature.In order to predict the equilibrium solubility,the ANN model were developed based on three input parameters of operating temperature,concentration of DEAB and partial pressure of CO_(2).An outstanding prediction performance of 2.4%average absolute deviation(AAD)can be obtained(comparing with 7.1–8.3%AAD from the literature).Additionally,a significant improvement on predicting mass transfer coefficient can also be achieved through the developed ANN model with 3.1%AAD(comparing with 14.5%AAD from the existing semi-empirical model).The mass transfer coefficient is considered to be a function of liquid flow rate,liquid inlet temperature,concentration of DEAB,inlet CO_(2) loading,outlet CO_(2) loading,concentration of CO_(2) along the height of the column.
文摘Danckwert’s method was used to determine the specific interfacial area, a, and the individual mass transfer coefficient, kL, during absorption of CO2 in a bubble column with an anionic surfactant in the carbonate-bicarbonate buffer solution and NaAsO2 as catalyst, the presence of which decreases the specific interfacial area and the individual mass transfer coefficient. The specific interfacial area and the individual mass transfer coefficient increase with increasing su- perficial gas velocity. The specific interfacial area decreases whereas the individual mass transfer coefficient increases with increasing temperature. The results of experiments were used to determine the dependence of a, kL, and kLa on the surface tension, the temperature of the absorption phase, and the superficial velocity of the gas. The calculated results from the correlation were found to be within 10% deviation from the actual experimental results.
基金financially supported by the National Natural Science Foundation of China(No.51504018)the China Postdoctoral Science Foundation(2015M580986)the Fundamental Research Funds for the Central Universities(FRF-TP-17-038A2)
文摘A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow charac- teristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume (Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coeffi- cient), and gas utilization ratio (t/) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and n steadily increased. When the converter was rotated clockwise, both Ak/F and t/increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these para- meters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3.h-1 and 10°, respectively.
基金supported by the Specialized Research Fund for Sanjin Scholars Program of Shanxi Province(201707)Key Research&Development Plan of Shanxi Province(201903D321059)+2 种基金Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20200004)Transformation and Cultivation Projects of Scientific and Technological Achievements in Universities of Shanxi Province Institutions(2020CG040)the China National Key Project of Science and Technology “Major Science and Technology Program for Water Pollution Control and Treatment”(2018ZX07601001)。
文摘This study investigated catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-MnCu/γ-Al_(2)O_(3)(Cat)in a rotating packed bed(RPB)for the first time.The results showed that the value of the overall decomposition rate constant of ozone(K_(c))and overall volumetric mass transfer coefficient(K_(L)a)are 4.28×10^(-3) s^(-1) and 11.60×10^(-3) s^(-1) respectively at an initial pH of 6,βof 40,Co3(g)of 60 mg·L^(-1)and Q_(L) of 85 L·h^(-1) in deionized water,respectively.Meanwhile,the K_(c) and K_(L)a values of Fenhe water are0.88×10^(-3) s^(-1) and 2.51×10^(-3) s^(-1) lower than deionized water,respectively.In addition,the K_(c) and K_(L)a values in deionized water for the Cat/O_(3)-RPB system are 44.86%and 47.41%higher than that for the Cat/O_(3)-BR(bubbling reactor)system,respectively,indicating that the high gravity technology can facilitate the decomposition and mass transfer of ozone in heterogeneous catalytic ozonation and provide some insights into the industrial wastewater.
基金financially supported by the Fundamental Research Funds for Central Universities of China (No. CDJZR 14130001)
文摘Mass transfer of phosphorus in high-phosphorus hot-metal refining was investigated using CaO-FetO-SiO2 slags at 1623 K. Based on a two-film theory kinetic model and experimental results, it was found that the overall mass transfer coefficient, which includes the effects of mass transfer in both the slag phase and metal phase, is in the range of 0.0047 to 0.0240 cm/s. With the addition of a small amount of fluxing agents A1203 or Na20 into the slag, the overall mass transfer coefficient has an obvious increase. Silicon content in the hot metal also influences the overall mass transfer coefficient. The overall mass transfer coefficient in the lower [Si] heat is much higher than that in the higher [Si] heat. It is concluded that both fluxing agents and lower [Si] hot metal facilitate mass transfer of phosphorus in liquid phases. Fur- thermore, the addition of Na20 could also prevent rephosphorization at the end of the experiment.
基金Supported by the National Natural Science Foundation of China (20776118), Science & Technology Bureau of Xi'an [CXY09019 (1)], Innovation Foundation for Graduated Student of Northwest University (08YJC21), Shaanxi Research Center of Engineering Technology for Clean Coal Conversion (2008ZDGC-13).
文摘The Intalox metal tower packing was used to simulate an industrial relevant extractive distillation column for purifying azeotropic multicomponent mixture.In order to explain the inconsistencies in the modeling of transfer process in nonideal multicomponent distillation column,a method was developed with equilibrium stage models(EQ)and non-equilibrium model(NEQ)incorporated with Maxwell-Stefan diffusion equations in the framework of AspenONE simulator.Dortmund Modified UNIFAC(UNIFAC-DMD)thermodynamic model was employed to estimate activity coefficients.In addition,to understand the reason for the diffusion against driving force and the different results by EQ and NEQ models,explicit investigations were made on diffusion coefficients, component Murphree efficiency and mass transfer coefficients.The results provide valuable information for basic design and applications associated with extractive distillation.
文摘The accuracy of the knowledge of mass transfer parameters (effective moisture diffusivity, mass transfer Biot number and mass transfer coefficient) in the case of frying food, is essential and important for designing, modeling and process optimization. This study is undertaken to develop an approach for determining mass transfer parameters during frying of spherical rice cracker in sunflower oil at 150, 170 and 190 ℃. These parameters were evaluated from the plots of dimensionless concentration ratios against time of frying. Effective moisture diffusivity, mass transfer Biot number and mass transfer coefficient ranged between 1.24×10^-8 to 2.36×10^-8 m^2/s, 1.96 to 2.34 and 5.51×10^-6 to 9.70×10^-6 m/s, respectively. Effective moisture diffusivity and mass transfer coefficient were found to increase with an increasing frying temperature, whereas mass transfer Biot number decreased. An Arrhenius-type relationship was found between effective diffusivity coefficient and frying temperature.
文摘The mass transfer model describing the separation of essential oils from plant materials has been proposed and the mass transfer coefficient has been obtained by fitting the present model to the experimental data for three kinds of plant materials. The validity of the model has been verified. To im' prove the vapor-solid contact, a mechanical agitator has been installed in the steam distillator. The effect of agitating rate on mass transfer coefficient has also been examined.