Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest m...Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest management effects on the multifunctionality remain unclear,especially for natural mixed forests.In this study,our objective is to address this gap by utilizing simulations of climate-sensitive transition matrix growth models based on national forest inventory plot data.We evaluated the effects of seven management scenarios(combinations of various cutting methods and intensities)on the future provision of ecosystem services and multifunctionality in mixed conifer-broad-leaved forests in northeastern China,under four climate scenarios(SSP1-2.6,SSP2-4.5,SSP5-8.5,and constant climate).Provisioning,regulating,cultural,and supporting services were described by timber production,carbon storage,carbon sequestration,tree species diversity,deadwood volume,and the number of large living trees.Our findings indicated that timber production was significantly influenced by management scenarios,while tree species diversity,deadwood volume,and large living trees were impacted by both climate and management separately.Carbon storage and sequestration were notably influenced by both management and the interaction of climate and management.These findings emphasized the profound impact of forest management on ecosystem services,outweighing that of climate scenarios alone.We found no single management scenario maximized all six ecosystem service indicators.The upper story thinning by 5%intensity with 5-year interval(UST5)management strategy emerged with the highest multifunctionality,surpassing the lowest values by more than 20%across all climate scenarios.In conclusion,our results underlined the potential of climate-sensitive transition matrix growth models as a decision support tool and provided recommendations for long-term strategies for multifunctional forest management under future climate change context.Ecosystem services and multifunctionality of forests could be enhanced by implementing appropriate management measures amidst a changing climate.展开更多
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff...High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.展开更多
Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to p...Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.展开更多
The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functio...The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases.展开更多
To improve the wettability of Al metal matrix composites(Al-MMCs) by common filler metals,Al-12Si-xTi(x=0.1,0.5,1,3.0;mass fraction,%) system active ternary filler metals were prepared.It was demonstrated that alt...To improve the wettability of Al metal matrix composites(Al-MMCs) by common filler metals,Al-12Si-xTi(x=0.1,0.5,1,3.0;mass fraction,%) system active ternary filler metals were prepared.It was demonstrated that although the added Ti existed within Ti(Al1-xSix)3(0≤x≤0.15) phase,the shear strength and shear fracture surface of the developed Al-12Si-xTi brazes were quite similar to those of traditional Al-12Si braze due to the presence of similar microstructure of Al-Si eutectic microstructure with large volume fraction.So,small Ti addition(~1%) did not make the active brazes brittle and hard compared with the conventional Al-12Si braze.The measured melting range of each Al-12Si-xTi foil was very similar,i.e.,580-590 ℃,because the composition was close to that of eutectic.For wettability improvement,with increasing Ti content,the interfacial gap between the Al2O3 reinforcement and filler metal(R/M) could be eliminated,and the amount of the remainder of the active fillers on the composite substrate decreased after sessile drop test at 610 ℃ for 30 min.So,the wettability improvement became easy to observe repeatedly with increasing Ti content.Additionally,the amount and size of Ti(AlSi)3 phase were sensitive to the Ti content(before brazing) and Si content(after brazing).展开更多
The reservoir-monolithic type of the controlled release systems is investigated currently,however,the existing kinetic model could not describe the release process well because the release kinetics is rather complicat...The reservoir-monolithic type of the controlled release systems is investigated currently,however,the existing kinetic model could not describe the release process well because the release kinetics is rather complicated.In this paper,a simplified release kinetic model for diffusion-controlled monolithic matrix coated with outer membrane systems is proposed and verified by the experimental data of mercaptopurinum release experiment.It shows that the model can well describe the release mechanism (the relative error is under 3%) when drug loading (C d) is above its solubility limit (C s).At the same time,the release characteristics of special cases (D mD f and D mD f) are discussed theoretically.When D mD f the release rate becomes constant,namely,zero order release,and the release rate is independent of the drug membrane.This result provides the theoretical basis for the system of zero order release as well as how to control the release rate and the amount of drug release.When D mD f,the release rate is dependent on the drug release coefficient in the monolithic matrix,solubility and drug loading but independent of the process in the outer membrane,and it is similar to monolithic matrix type.展开更多
A plane-based and linear camera calibration technique without considering lens distortion is proposed in a greedy and intuitive framework for the binocular camera system. Characteristic homography matrix and consisten...A plane-based and linear camera calibration technique without considering lens distortion is proposed in a greedy and intuitive framework for the binocular camera system. Characteristic homography matrix and consistency constraints in close range are employed in this calibration. First, in order to calculate the internal geometries of the cameras, total least-square fitting as a robust tool for the geometrical cost function is exploited to recover the accurate principal point of each camera from all the characteristic lines of the homography matrices for all model planes. Secondly, generic prior knowledge of the aspect ratio of pixel cells is incorporated into the system to obtain the exact principal length in each camera. Thirdly, extrinsic geometries are accurately computed for all planar patterns with respect to each monocular camera. Finally, the rigid displacement between binocular cameras can be obtained by imposing the consistency constraints in 3-space geometry. Both simulation and real image experimental results indicate that reasonably reliable results can be obtained by this technique. And the proposed method is sufficient for applications where high precision is not required and can be easily performed by common computer users who are not experts in computer vision.展开更多
Generally unitary solution to the system of martix equations over the quaternion field [X mA ns =B ns ,X nn C nt =D nt ] is considered. A necessary and sufficient condition for the existence o...Generally unitary solution to the system of martix equations over the quaternion field [X mA ns =B ns ,X nn C nt =D nt ] is considered. A necessary and sufficient condition for the existence of and the expression for the generally unitary solution of the system are derived.展开更多
Minor self conjugate (msc) and skewpositive semidefinite (ssd) solutions to the system of matrix equations over skew fields [A mn X nn =A mn ,B sn X nn =O sn ] are considered. Necessary and su...Minor self conjugate (msc) and skewpositive semidefinite (ssd) solutions to the system of matrix equations over skew fields [A mn X nn =A mn ,B sn X nn =O sn ] are considered. Necessary and sufficient conditions for the existence of and the expressions for the msc solutions and the ssd solutions are obtained for the system.展开更多
For an AKNS matrix system,Lie algebraic structure and its mastersymmetry are obtained by a purely algebraic approach;and by using the reduced technique,two similar algebraic structures for MKdV and KdV matrix systems ...For an AKNS matrix system,Lie algebraic structure and its mastersymmetry are obtained by a purely algebraic approach;and by using the reduced technique,two similar algebraic structures for MKdV and KdV matrix systems are given.展开更多
AIM: To investigate the relationship between matrix metalloproteinase-2 (MMP-2) mRNA expression and clinicopathologic and urokinase-type plasminogen activator (uPA) system parameter and prognosis in human gastric canc...AIM: To investigate the relationship between matrix metalloproteinase-2 (MMP-2) mRNA expression and clinicopathologic and urokinase-type plasminogen activator (uPA) system parameter and prognosis in human gastric cancer. METHODS: Expression of MMP-2 mRNA, uPA, and uPA-R mRNA in tumor tissues and ≥5 cm adjacent normal tissues from 67 cases of gastric cancer was studied using RT-PCR and Northern blot respectively.Survival analyses were done using the Kaplan-Meier method. RESULTS: The expression rates of MMP-2 mRNA,uPA and uPA-R mRNA in tumor tissues (31%,41%,and 51%, respectively) were significantly higher than those in ≥5 cm adjacent tissues (19%, 11%, and 9%; X2=4.59,43.58, and 53.24 respectively, P<0.05,0.0001,and 0.0001, respectively). Expression of MMP-2 mRNA was significantly correlated with lymph node metastasis (metastasis: 61.9%, no metastasis: 39.1%, X2= 7.61, P<0.05),Lauren's classification of diffuse/mixed types:54.2%,intestinal type: 26.3%,X2 = 4.25, P<0.05, expression of uPA and uPA-R mRNA (uPA+: 55.1%, uPA-: 22.2% and uPA-R+: 54.9%, uPA-R-: 18.8%, X2=5.72 and 6.40 respectively, P<0.05).Kaplan-Meier survival analysis of MMP-2 mRNA expression did not show significant difference in all 67 cases, but revealed an association of the expression of MMP-2 mRNA, uPA, and uPA-R mRNA with worse prognosis (P= 0.0083, 0.0160, and 0.0094, respectively). CONCLUSION: MMP-2 may play an important role in the development of invasion and metastasis of gastric cancer.展开更多
To characterize effects of plant roots on preferential flow(PF),we measured root length density(RLD)and root biomass(RB) in Jiufeng National Forest Park,Beijing,China.Comparisons were made for RLD and RB between...To characterize effects of plant roots on preferential flow(PF),we measured root length density(RLD)and root biomass(RB) in Jiufeng National Forest Park,Beijing,China.Comparisons were made for RLD and RB between soil preferential pathways and soil matrices.RLD and RB declined with the increasing soil depth(0–10,10–20,20–30,30–40,40–50,50–60 cm) in all experimental plots.RLD was greater in soil preferential pathways than in the surrounding soil matrix and was 69.5,75.0 and72.2 % for plant roots of diameter(d) /1,1 / d / 3 and3 / d / 5 mm,respectively.Fine root systems had the most pivotal influence on soil preferential flow in this forest ecosystem.In all experimental plots,RB content was the sum of RB from soil preferential pathways and the soil matrix in each soil depth.With respect to 6 soil depth gradient(0–10,10–20,20–30,30–40,40–50,50–60 cm) in each plot,the number of soil depth gradient that RB content was greater in soil preferential pathways than in the soil matrix was characterized,and the proportion was68.2 % in all plots.展开更多
In this paper, we address the stabilization problem for linear periodically time-varying switched systems. Using discretization technique, we derive new conditions for the global stabilizability in terms of the soluti...In this paper, we address the stabilization problem for linear periodically time-varying switched systems. Using discretization technique, we derive new conditions for the global stabilizability in terms of the solution of matrix inequalities. An algorithm for finding stabilizing controller and switching strategy is presented.展开更多
A series of (1-x)La0.6Dy0.1Sr0.3MnO3/0.5x(Sb2O3)(x=0.15) samples were prepared by the solid-state reaction method, and the influence of sintering temperature of the matrix on low-field magnetoresistance of (1-x)La0.6D...A series of (1-x)La0.6Dy0.1Sr0.3MnO3/0.5x(Sb2O3)(x=0.15) samples were prepared by the solid-state reaction method, and the influence of sintering temperature of the matrix on low-field magnetoresistance of (1-x)La0.6Dy0.1Sr0.3MnO3/0.5x (Sb2O3) was studied through the measurements of X-ray diffraction (XRD) patterns, scanning electron microscope (SEM) image, resistivity-temperature (ρ-T) curves, and magnetoresistance-temperature (MR-T) curves. The results indicate that for the samples with low sintering temperature of the matrix, lowfield magnetoresistance effect appears on the whole temperature range and can be explained by grain boundary effect; for the sample with high sintering temperature of the matrix, intrinsic magnetoresistance peak appears on the high-temperature range, low-field magnetore-sistance effect appears on low temperature range, and the magnetoresistance in the magnetic field of 0.2 T and on the comparatively large temperature range between 280 K and 225 K hardly changes with temperature and remains at 4.8%, which can be explained by the competition between the intrinsic magnetoresistance induced by double-exchange function inside grains and the tunneling magnetoresis-tance (TMR) induced by grain boundary effect. The temperature stability of magnetoresistance is beneficial to the practical applications of MR.展开更多
A release model for diffusion-controlled monolithic matrix coated with outer membrane system is proposed and solved by using the refined double integral method. The calculated results are in satisfactory agreement wit...A release model for diffusion-controlled monolithic matrix coated with outer membrane system is proposed and solved by using the refined double integral method. The calculated results are in satisfactory agreement with the experimental release data. The present model can be well used to describe the release process for all cd/cs values. In addition, the release effects of the monolithic matrix coated with outer membrane system are discussed theoretically.展开更多
In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to stud...In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to study the dynamics of multibody system with flexible beams moving in space. Formulations and numerical example of a rigid- flexible-body three pendulums system moving in space are given to validate the method. Using the new method to study the dynamics of multi-rigid-flexible-body system mov- ing in space, the global dynamics equations of system are not needed, the orders of involved matrices of the system are very low and the computational speed is high, irrespec- tive of the size of the system. The new method is simple, straightforward, practical, and provides a powerful tool for multi-rigid-flexible-body system dynamics.展开更多
Necessary and sufficient conditions are given for the existence of the general solution, the centrosymmetric solution, and the centroskewsymmetric solution to a system of linear matrix equations over an arbitrary skew...Necessary and sufficient conditions are given for the existence of the general solution, the centrosymmetric solution, and the centroskewsymmetric solution to a system of linear matrix equations over an arbitrary skew field. The representations of such the solutions of the system are also derived.展开更多
Controlling the looper height and strip tension is important in hot strip mills because these variables affect both the strip quality and strip threading. Many researchers have proposed and applied a variety of contro...Controlling the looper height and strip tension is important in hot strip mills because these variables affect both the strip quality and strip threading. Many researchers have proposed and applied a variety of control schemes for this problem, but the increasingly strict market demand for strip quality requires further improvements. This work describes a dynamic matrix predictive control(DMC) strategy that realizes the optimal control of a hydraulic looper multivariable system. Simulation experiments for a traditional controller and the proposed DMC controller were conducted using MATLAB/Simulink software. The simulation results show that both controllers acquire good control effects with model matching. However, when the model is mismatched, the traditional controller produces an overshoot of 32.4% and a rising time of up to 2120.2 ms, which is unacceptable in a hydraulic looper system. The DMC controller restricts the overshoot to less than 0.08%, and the rising time is less than 48.6 ms in all cases.展开更多
We derive necessary and sufficient conditions for the existence and an expression of the (anti)reflexive solution with respect to the nontrivial generalized reflection matrix P to the system of complex matrix equati...We derive necessary and sufficient conditions for the existence and an expression of the (anti)reflexive solution with respect to the nontrivial generalized reflection matrix P to the system of complex matrix equations AX = B and XC = D. The explicit solutions of the approximation problem min x∈Ф ||X - E||F was given, where E is a given complex matrix and Ф is the set of all reflexive (or antireflexive) solutions of the system mentioned above, and ||·|| is the Frobenius norm. Furthermore, it was pointed that some results in a recent paper are special cases of this paper.展开更多
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
基金funded by the National Key R&D Program of China(Grant No.2022YFD2200500)the Forestry Public Welfare Scientific Research Project(Grant No.201504303)。
文摘Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest management effects on the multifunctionality remain unclear,especially for natural mixed forests.In this study,our objective is to address this gap by utilizing simulations of climate-sensitive transition matrix growth models based on national forest inventory plot data.We evaluated the effects of seven management scenarios(combinations of various cutting methods and intensities)on the future provision of ecosystem services and multifunctionality in mixed conifer-broad-leaved forests in northeastern China,under four climate scenarios(SSP1-2.6,SSP2-4.5,SSP5-8.5,and constant climate).Provisioning,regulating,cultural,and supporting services were described by timber production,carbon storage,carbon sequestration,tree species diversity,deadwood volume,and the number of large living trees.Our findings indicated that timber production was significantly influenced by management scenarios,while tree species diversity,deadwood volume,and large living trees were impacted by both climate and management separately.Carbon storage and sequestration were notably influenced by both management and the interaction of climate and management.These findings emphasized the profound impact of forest management on ecosystem services,outweighing that of climate scenarios alone.We found no single management scenario maximized all six ecosystem service indicators.The upper story thinning by 5%intensity with 5-year interval(UST5)management strategy emerged with the highest multifunctionality,surpassing the lowest values by more than 20%across all climate scenarios.In conclusion,our results underlined the potential of climate-sensitive transition matrix growth models as a decision support tool and provided recommendations for long-term strategies for multifunctional forest management under future climate change context.Ecosystem services and multifunctionality of forests could be enhanced by implementing appropriate management measures amidst a changing climate.
基金We would like to thank the associate editor and the reviewers for their constructive comments.This work was supported in part by the National Natural Science Foundation of China under Grant 62203234in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03+1 种基金in part by the Natural Science Foundation of Liaoning Province under Grant 2023-BS-025in part by the Research Program of Liaoning Liaohe Laboratory under Grant LLL23ZZ-02-02.
文摘High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.
基金supported by the Natio`nal Natural Science Foundation of China,No. 81801241a grant from Sichuan Science and Technology Program,No. 2023NSFSC1578Scientific Research Projects of Southwest Medical University,No. 2022ZD002 (all to JX)。
文摘Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.
基金supported by National Institute on Aging(NIH-NIA)R21 AG074152(to KMA)National Institute of Allergy and Infectious Diseases(NIAID)grant DP2 AI171150(to KMA)Department of Defense(DoD)grant AZ210089(to KMA)。
文摘The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases.
基金Project(50875199) supported by the National Natural Science Foundation of ChinaProject supported by State Key Laboratory of Advanced Welding and Joining,China
文摘To improve the wettability of Al metal matrix composites(Al-MMCs) by common filler metals,Al-12Si-xTi(x=0.1,0.5,1,3.0;mass fraction,%) system active ternary filler metals were prepared.It was demonstrated that although the added Ti existed within Ti(Al1-xSix)3(0≤x≤0.15) phase,the shear strength and shear fracture surface of the developed Al-12Si-xTi brazes were quite similar to those of traditional Al-12Si braze due to the presence of similar microstructure of Al-Si eutectic microstructure with large volume fraction.So,small Ti addition(~1%) did not make the active brazes brittle and hard compared with the conventional Al-12Si braze.The measured melting range of each Al-12Si-xTi foil was very similar,i.e.,580-590 ℃,because the composition was close to that of eutectic.For wettability improvement,with increasing Ti content,the interfacial gap between the Al2O3 reinforcement and filler metal(R/M) could be eliminated,and the amount of the remainder of the active fillers on the composite substrate decreased after sessile drop test at 610 ℃ for 30 min.So,the wettability improvement became easy to observe repeatedly with increasing Ti content.Additionally,the amount and size of Ti(AlSi)3 phase were sensitive to the Ti content(before brazing) and Si content(after brazing).
文摘The reservoir-monolithic type of the controlled release systems is investigated currently,however,the existing kinetic model could not describe the release process well because the release kinetics is rather complicated.In this paper,a simplified release kinetic model for diffusion-controlled monolithic matrix coated with outer membrane systems is proposed and verified by the experimental data of mercaptopurinum release experiment.It shows that the model can well describe the release mechanism (the relative error is under 3%) when drug loading (C d) is above its solubility limit (C s).At the same time,the release characteristics of special cases (D mD f and D mD f) are discussed theoretically.When D mD f the release rate becomes constant,namely,zero order release,and the release rate is independent of the drug membrane.This result provides the theoretical basis for the system of zero order release as well as how to control the release rate and the amount of drug release.When D mD f,the release rate is dependent on the drug release coefficient in the monolithic matrix,solubility and drug loading but independent of the process in the outer membrane,and it is similar to monolithic matrix type.
文摘A plane-based and linear camera calibration technique without considering lens distortion is proposed in a greedy and intuitive framework for the binocular camera system. Characteristic homography matrix and consistency constraints in close range are employed in this calibration. First, in order to calculate the internal geometries of the cameras, total least-square fitting as a robust tool for the geometrical cost function is exploited to recover the accurate principal point of each camera from all the characteristic lines of the homography matrices for all model planes. Secondly, generic prior knowledge of the aspect ratio of pixel cells is incorporated into the system to obtain the exact principal length in each camera. Thirdly, extrinsic geometries are accurately computed for all planar patterns with respect to each monocular camera. Finally, the rigid displacement between binocular cameras can be obtained by imposing the consistency constraints in 3-space geometry. Both simulation and real image experimental results indicate that reasonably reliable results can be obtained by this technique. And the proposed method is sufficient for applications where high precision is not required and can be easily performed by common computer users who are not experts in computer vision.
文摘Generally unitary solution to the system of martix equations over the quaternion field [X mA ns =B ns ,X nn C nt =D nt ] is considered. A necessary and sufficient condition for the existence of and the expression for the generally unitary solution of the system are derived.
文摘Minor self conjugate (msc) and skewpositive semidefinite (ssd) solutions to the system of matrix equations over skew fields [A mn X nn =A mn ,B sn X nn =O sn ] are considered. Necessary and sufficient conditions for the existence of and the expressions for the msc solutions and the ssd solutions are obtained for the system.
基金This project is supported by the National Education Foundation of China
文摘For an AKNS matrix system,Lie algebraic structure and its mastersymmetry are obtained by a purely algebraic approach;and by using the reduced technique,two similar algebraic structures for MKdV and KdV matrix systems are given.
文摘AIM: To investigate the relationship between matrix metalloproteinase-2 (MMP-2) mRNA expression and clinicopathologic and urokinase-type plasminogen activator (uPA) system parameter and prognosis in human gastric cancer. METHODS: Expression of MMP-2 mRNA, uPA, and uPA-R mRNA in tumor tissues and ≥5 cm adjacent normal tissues from 67 cases of gastric cancer was studied using RT-PCR and Northern blot respectively.Survival analyses were done using the Kaplan-Meier method. RESULTS: The expression rates of MMP-2 mRNA,uPA and uPA-R mRNA in tumor tissues (31%,41%,and 51%, respectively) were significantly higher than those in ≥5 cm adjacent tissues (19%, 11%, and 9%; X2=4.59,43.58, and 53.24 respectively, P<0.05,0.0001,and 0.0001, respectively). Expression of MMP-2 mRNA was significantly correlated with lymph node metastasis (metastasis: 61.9%, no metastasis: 39.1%, X2= 7.61, P<0.05),Lauren's classification of diffuse/mixed types:54.2%,intestinal type: 26.3%,X2 = 4.25, P<0.05, expression of uPA and uPA-R mRNA (uPA+: 55.1%, uPA-: 22.2% and uPA-R+: 54.9%, uPA-R-: 18.8%, X2=5.72 and 6.40 respectively, P<0.05).Kaplan-Meier survival analysis of MMP-2 mRNA expression did not show significant difference in all 67 cases, but revealed an association of the expression of MMP-2 mRNA, uPA, and uPA-R mRNA with worse prognosis (P= 0.0083, 0.0160, and 0.0094, respectively). CONCLUSION: MMP-2 may play an important role in the development of invasion and metastasis of gastric cancer.
基金supported by a grant from the Natural Science Foundation of China(41271044)
文摘To characterize effects of plant roots on preferential flow(PF),we measured root length density(RLD)and root biomass(RB) in Jiufeng National Forest Park,Beijing,China.Comparisons were made for RLD and RB between soil preferential pathways and soil matrices.RLD and RB declined with the increasing soil depth(0–10,10–20,20–30,30–40,40–50,50–60 cm) in all experimental plots.RLD was greater in soil preferential pathways than in the surrounding soil matrix and was 69.5,75.0 and72.2 % for plant roots of diameter(d) /1,1 / d / 3 and3 / d / 5 mm,respectively.Fine root systems had the most pivotal influence on soil preferential flow in this forest ecosystem.In all experimental plots,RB content was the sum of RB from soil preferential pathways and the soil matrix in each soil depth.With respect to 6 soil depth gradient(0–10,10–20,20–30,30–40,40–50,50–60 cm) in each plot,the number of soil depth gradient that RB content was greater in soil preferential pathways than in the soil matrix was characterized,and the proportion was68.2 % in all plots.
基金This work was supported by the Basic Program in Natural Sciences, Vietnam and Thai Research Fund Grant, Thailand
文摘In this paper, we address the stabilization problem for linear periodically time-varying switched systems. Using discretization technique, we derive new conditions for the global stabilizability in terms of the solution of matrix inequalities. An algorithm for finding stabilizing controller and switching strategy is presented.
基金supported by the National Natural Foundation of China (No. 19934003) the Natural Science Research Key Program of Anhui Educational Committee (No. KJ2011A259)+3 种基金the Opening Program of Cultivating Base of Anhui Key Laboratory of Spintronics and Nanomaterials (Nos. 2010YKF04 2011YKF05)the Professors’and Doctors’Research Startup Foundation of Suzhou University (Nos. 2011jb01 2011jb02)
文摘A series of (1-x)La0.6Dy0.1Sr0.3MnO3/0.5x(Sb2O3)(x=0.15) samples were prepared by the solid-state reaction method, and the influence of sintering temperature of the matrix on low-field magnetoresistance of (1-x)La0.6Dy0.1Sr0.3MnO3/0.5x (Sb2O3) was studied through the measurements of X-ray diffraction (XRD) patterns, scanning electron microscope (SEM) image, resistivity-temperature (ρ-T) curves, and magnetoresistance-temperature (MR-T) curves. The results indicate that for the samples with low sintering temperature of the matrix, lowfield magnetoresistance effect appears on the whole temperature range and can be explained by grain boundary effect; for the sample with high sintering temperature of the matrix, intrinsic magnetoresistance peak appears on the high-temperature range, low-field magnetore-sistance effect appears on low temperature range, and the magnetoresistance in the magnetic field of 0.2 T and on the comparatively large temperature range between 280 K and 225 K hardly changes with temperature and remains at 4.8%, which can be explained by the competition between the intrinsic magnetoresistance induced by double-exchange function inside grains and the tunneling magnetoresis-tance (TMR) induced by grain boundary effect. The temperature stability of magnetoresistance is beneficial to the practical applications of MR.
文摘A release model for diffusion-controlled monolithic matrix coated with outer membrane system is proposed and solved by using the refined double integral method. The calculated results are in satisfactory agreement with the experimental release data. The present model can be well used to describe the release process for all cd/cs values. In addition, the release effects of the monolithic matrix coated with outer membrane system are discussed theoretically.
基金supported by the Natural Science Foundation of China Government (10902051)the Natural Science Foundation of Jiangsu Province (BK2008046)the German Science Foundation
文摘In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to study the dynamics of multibody system with flexible beams moving in space. Formulations and numerical example of a rigid- flexible-body three pendulums system moving in space are given to validate the method. Using the new method to study the dynamics of multi-rigid-flexible-body system mov- ing in space, the global dynamics equations of system are not needed, the orders of involved matrices of the system are very low and the computational speed is high, irrespec- tive of the size of the system. The new method is simple, straightforward, practical, and provides a powerful tool for multi-rigid-flexible-body system dynamics.
基金Supported by the National Natural Science Foundation of China(10471085)
文摘Necessary and sufficient conditions are given for the existence of the general solution, the centrosymmetric solution, and the centroskewsymmetric solution to a system of linear matrix equations over an arbitrary skew field. The representations of such the solutions of the system are also derived.
基金Project(N160704004)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20131033)supported by the Ph D Start-up Fund of Natural Science Foundation of Liaoning Province,China
文摘Controlling the looper height and strip tension is important in hot strip mills because these variables affect both the strip quality and strip threading. Many researchers have proposed and applied a variety of control schemes for this problem, but the increasingly strict market demand for strip quality requires further improvements. This work describes a dynamic matrix predictive control(DMC) strategy that realizes the optimal control of a hydraulic looper multivariable system. Simulation experiments for a traditional controller and the proposed DMC controller were conducted using MATLAB/Simulink software. The simulation results show that both controllers acquire good control effects with model matching. However, when the model is mismatched, the traditional controller produces an overshoot of 32.4% and a rising time of up to 2120.2 ms, which is unacceptable in a hydraulic looper system. The DMC controller restricts the overshoot to less than 0.08%, and the rising time is less than 48.6 ms in all cases.
基金supported by the National Natural Science Foundation of China (Grant No.60672160)
文摘We derive necessary and sufficient conditions for the existence and an expression of the (anti)reflexive solution with respect to the nontrivial generalized reflection matrix P to the system of complex matrix equations AX = B and XC = D. The explicit solutions of the approximation problem min x∈Ф ||X - E||F was given, where E is a given complex matrix and Ф is the set of all reflexive (or antireflexive) solutions of the system mentioned above, and ||·|| is the Frobenius norm. Furthermore, it was pointed that some results in a recent paper are special cases of this paper.