期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种相关性与聚类自适应融合技术窃电检测方法 被引量:14
1
作者 赵云 肖勇 +3 位作者 曾勇刚 徐迪 陆煜锌 孔政敏 《南方电网技术》 CSCD 北大核心 2021年第9期69-74,共6页
篡改电表数据是一种典型的窃电行为。针对此类窃电行为,现有的检测方法需要标记好的数据集或额外的电力系统状态信息,这在现实中很难获得或即使获得也与实际值存在较大误差。因此,利用较低维度的数据来实现对此类窃电行为进行检测的方... 篡改电表数据是一种典型的窃电行为。针对此类窃电行为,现有的检测方法需要标记好的数据集或额外的电力系统状态信息,这在现实中很难获得或即使获得也与实际值存在较大误差。因此,利用较低维度的数据来实现对此类窃电行为进行检测的方法亟待深入研究。创新性地结合最大互信息系数(maximum information coefficient,MIC)技术和基于密度峰值的快速聚类算法提出了一种新的融合检测方法。该方法利用最大互信息系数度量管理线损与用户特定行为之间的相关性,采用CFSFDP定位异常用电用户,适用性强,能够检测多种不同类型的窃电行为。最后利用爱尔兰智能电表数据集进行了算法验证,结果证明了该方法的良好性能。 展开更多
关键词 窃电检测 数据挖掘 最大互信息系数(maximum information coefficient MIC)
下载PDF
Short-term Load Forecasting of Regional Distribution Network Based on Generalized Regression Neural Network Optimized by Grey Wolf Optimization Algorithm 被引量:12
2
作者 Leijiao Ge Yiming Xian +3 位作者 Zhongguan Wang Bo Gao Fujian Chi Kuo Sun 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第5期1093-1101,共9页
Short-term load forecasting of regional distribution network is the key to the economic operation of smart distribution systems,which not only requires high accuracy and fast calculation speed,but also has a diversity... Short-term load forecasting of regional distribution network is the key to the economic operation of smart distribution systems,which not only requires high accuracy and fast calculation speed,but also has a diversity of influential factors and strong randomness.This paper proposes a short-term load forecasting model for regional distribution network combining the maximum information coefficient,factor analysis,gray wolf optimization,and generalized regression neural network(MIC-FA-GWO-GRNN).To screen and decrease the dimension of the multiple-input features of the short-term load forecasting model,MIC is first used to quantify the non-linear correlation between the load and input features,and to eliminate the ineffective features,and then FA is used to reduce the dimension of the screened input features on the premise of preserving the main information of input features.After that the high-precision short-term丨oad forecasting based on GWO-GRNN model is realized.GRNN is used to regressively analyze the input features after screening and dimension reduction,and the parameter of GRNN is optimized by using the GWO,which has strong global searching ability and fast convergence.Finally a case study of a regional distribution network in Tianjin,China verifies the accuracy and applicability of the proposed forecasting model. 展开更多
关键词 Factor analysis generalized regression neural network gray wolf optimization maximum information coefficient short-term load forecasting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部