Since 2015,the newly discovered slit-type Danxia landform on the Chinese Loess Plateau has become a hot topic in the field of geomorphology worldwide.However,the relationships among its formation,evolutionary mechanis...Since 2015,the newly discovered slit-type Danxia landform on the Chinese Loess Plateau has become a hot topic in the field of geomorphology worldwide.However,the relationships among its formation,evolutionary mechanism,and mechanical characteristics of its strata and rocks are not clear.In this paper,the Ganquan canyon group is used as the research object.Basic physical and mechanical indices of sandstone in the Ganquan canyon group were measured through field investigation and indoor experiments,and the deterioration trends for the mechanical parameters of sandstone in this area under the action of infiltration,acid dry-wet cycles,and freeze-thaw cycles were revealed.Lastly,the formation and evolutionary mechanism of the slit-type Danxia landform were discussed.The results showed that:(1)The sandstone in the canyon group had a low cementation degree and weak cohesive force,which was easily weakened under the action of water,resulting in a decrease in compressive strength and elastic modulus.(2)Acidic dry-wet cycles caused the mineral composition of the sandstone to be dissolved,and the micropores continued to grow and develop until new cracks were produced.Macroscopically,the compressive strength and elastic modulus of sandstone were greatly reduced,and this damage was cumulative and staged.The greater the acidity,the greater the damage.(3)As the number of freeze-thaw cycles increased,the uniaxial compressive strength and elastic modulus of the sandstone decreased continuously.During the freeze-thaw cycle process,the growth and development of cracks were primarily in fracture mode and usually developed along parallel bedding positions.(4)The interaction of tectonic activity and lithology with different weathering processes was a key factor in the formation and evolution of the slit-type Danxia landform.In conclusion,the intricate process of weathering influenced by historical climatic fluctuations has been pivotal in shaping the topography of Danxia landform.展开更多
The application of ductile rock bolts has been a crucial method for solving the problems of large deformations,energy absorption and stability control issues in deep rock masses.To study the anchoring mechanism of the...The application of ductile rock bolts has been a crucial method for solving the problems of large deformations,energy absorption and stability control issues in deep rock masses.To study the anchoring mechanism of the key expansive structure,this paper proposes a novel type of bolt—the Ductile-Expansion bolt,and conducts research on anchoring mechanics,energy absorption characteristics,and failure modes of the bolt.In addition,this paper defines the concept of load-volume ratio of metal rock bolts and proves the Ductile-Expansion bolt is capable of better improving the unit volume bearing capacity of the bolt material.Furthermore,laboratory and field tests verify the Ductile-Expansion bolt had better anchoring effect than the traditional rebar bolt,with the expansion structure favorably enhancing the ductility and energy absorption performance of the bolt.Finally,this paper microscopically analyzes the crack propagation and distribution morphology of the bolts by establishing a 3D coupled numerical model based on FDM-DEM.Numerical results illustrate the interface at the variable diameter of the Ductile-Expansion bolt serves as the transition zone between high and low stress levels.The expansion structure can impose radial compression on the medium around the bolt,which can improve the bolt anchorage performance.展开更多
With the continuous development of artillery,the disadvantages of hydraulic recoil brakes gradually appear.At the same time,the appearance of high-performance Nd Fe B permanent magnet makes it possible to apply electr...With the continuous development of artillery,the disadvantages of hydraulic recoil brakes gradually appear.At the same time,the appearance of high-performance Nd Fe B permanent magnet makes it possible to apply electromagnetic braking technology to recoil mechanism.In this paper,prototype tests of a certain artillery were carried out to verify the feasibility of the electromagnetic brake(EMB)and obtain the electromagnetic braking force.Due to the brittleness of Nd Fe B,in order to eliminate the worry about the safety of EMB,SHPB experiments of Nd Fe B were carried out.Then,based on the assumption of uniform crack distribution,the law of crack propagation and damage accumulation was described theoretically,and the damage constitutive model suitable for brittle materials was proposed by combining the Zhu-Wang-Tang(ZWT)equation.Finally,the numerical simulation model of the artillery prototype was established and through calculation,the dynamic mechanical characteristics of Nd Fe B in the prototype were analyzed.The calculation results show that the strength of Nd Fe B can meet the requirements of the use in the working process.From the perspective of damage factor,the damage value of the permanent magnet on the far right is larger,and the damage value of the inner ring gradually decreases to the outer ring.展开更多
In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cab...In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety.展开更多
This study compared the microstructure and mechanical characteristics of AA6061-T6 joints produced using friction stir welding(FSW),friction stir vibration welding(FSVW),and tungsten inert gas welding(TIG).FSVW is a m...This study compared the microstructure and mechanical characteristics of AA6061-T6 joints produced using friction stir welding(FSW),friction stir vibration welding(FSVW),and tungsten inert gas welding(TIG).FSVW is a modified version of FSW wherein the joining specimens are vibrated normal to the welding line during FSW.The results indicated that the weld region grains for FSVW and FSW were equiaxed and were smaller than the grains for TIG.In addition,the weld region grains for FSVW were finer compared with those for FSW.Results also showed that the strength,hardness,and toughness values of the joints produced by FSVW were higher than those of the other joints produced by FSW and TIG.The vibration during FSW enhanced dynamic recrystallization,which led to the development of finer grains.The weld efficiency of FSVW was approximately 81%,whereas those of FSW and TIG were approximately 74%and 67%,respectively.展开更多
The relationships between mechanical characteristics of rock and microcosmic mechanism at high temperatures were investigated by MTS815, as well as the stress-strain behavior of granite under the action of temperature...The relationships between mechanical characteristics of rock and microcosmic mechanism at high temperatures were investigated by MTS815, as well as the stress-strain behavior of granite under the action of temperatures ranging from room temperature to 1200 ℃. Based on a micropore structure analyzer and SEM, the changes in rock porosity and micro structural morphology of sample fractures and brittle-plastic characteristics under high temperatures were analyzed. The results are as follows: 1) Mechanical characteristics do not show obvious variations before 800 ℃; strength decreases suddenly after 800 ℃ and bearing capacity is almost lost at 1200 ℃. 2) Rock porosity increases with rising temperatures; the threshold temperature is about 800 ℃; at this temperature its effect is basically uniform with strength decreasing rapidly. 3) The failure type of granite is a brittle tensile fracture at temperatures below 800 ℃ which transforms into plasticity at temperatures higher than 800 ℃ and crystal formation takes place at this time. Chemical reactions take place at 1200 ℃. Failure of granite under high temperature is a common result of thermal stress as indicated by an increase in the thermal expansion coefficient, transformation to crystal formation of minerals and structural chemical reactions.展开更多
Soil-rock mixtures containing macropore(SRMCM)is a kind of geological material with special mechanical properties.Located in the project area of Lenggu hydropower station on the Yalong River,Sichuan Province,China,the...Soil-rock mixtures containing macropore(SRMCM)is a kind of geological material with special mechanical properties.Located in the project area of Lenggu hydropower station on the Yalong River,Sichuan Province,China,there is an extremely unstable Mahe talus slide with a total volume of nearly160 million cubic meters,which is mainly composed of SRMCM.The study on the mechanical properties of SRMCM is of great significance for the engineering construction and safe operation.In this paper,laboratory tests and discrete element numerical tests based on three-dimensional scanning technology were conducted to study the influence of stone content,stone size,and the angle of the macropore structure on shear characteristics of SRMCM.The failure mechanism of SRMCM was discussed from a microscopic perspective.This work explains the internal mechanism of the influence of stone content,stone size,and the angle of the macropore structure on the strength of SRMCM through the microscopic level of stone rotation,force chain distribution,and crack propagation.As the macropore structure that intersects with the preset shear plane at a large angle could act as a skeleton-like support to resist the shear force,the fracture of the weak cemented surface of soil and stone in the macropore structure is an important cause of SRMCM destruction.展开更多
On-site monitoring and numerical simulation have been combined to analyze the stability of the jointed surrounding rock and the stress inside the lining structure of a sample deeply buried hydraulic tunnel.We show tha...On-site monitoring and numerical simulation have been combined to analyze the stability of the jointed surrounding rock and the stress inside the lining structure of a sample deeply buried hydraulic tunnel.We show that the deformation around the tunnel was mainly concentrated in the range 51.37 mm∼66.73 mm,the tunnel circumference was dominated by shear failure,and the maximum plastic zone was about 3.90 m.When the shotcrete treatment was performed immediately after the excavation,the deformation of the surrounding rock was reduced by 58.94%∼76.31%,and the extension of the plastic zone was relatively limited,thereby leading to improvements in terms of the stability of surrounding rock.When the support was provided at different time points,the stress of the surrounding rock in the shallow part of the tunnel was improved everywhere.In the tunnel section with high ground stress and joint development,when 10 cm steel fiber concrete spray layer and 40 cm C25 concrete secondary lining were used,the maximum tensile stress on the lining structure was 0.89 MPa,i.e.,it was less than the tensile strength of concrete,which indicates that the internal force of the lining can meet the overall requirements.展开更多
Fly ash cenospheres(FACs) as a recycling material of industrial waste has become a competitor for other inorganic particle fillers. Epoxy resin(EP) composites reinforced with different content of FACs as well as d...Fly ash cenospheres(FACs) as a recycling material of industrial waste has become a competitor for other inorganic particle fillers. Epoxy resin(EP) composites reinforced with different content of FACs as well as different size grading ratio were prepared. The surface modification of FACs particles was conducted before incorporating into EP matrix. The impact and flexural strengths and the flexural modulus were investigated, and the fracture surfaces of the testing samples were analyzed using SEM. Results showed that FACs had an obvious effect on the mechanical characteristics of the FACs/EP composites. With increasing weight fraction of FACs, the impact and flexural strengths and the flexural modulus of EP composite samples increased, and reached the highest values when the weight fraction of FACs reached 15 wt%. The mechanical characteristics of the FACs/EP composites however deteriorated with further increasing of FACs content. For the EP composites reinforced with different size grading ratio of FACs, the larger proportion of small FACs particles, the better mechanical properties of the EP composites. The results were analyzed from the aspect of the plastic deformation, new surface formation and fracture absorption energy. The synergistic effect of the size grading ratio of FACs was not obvious, which would be further investigated.展开更多
This paper is based on the example of a radial magnetic bearing possessed of eight-pole, and derives the calculation formulas of static and dynamic mechanical characteristics of the bearing, in which the shape and cur...This paper is based on the example of a radial magnetic bearing possessed of eight-pole, and derives the calculation formulas of static and dynamic mechanical characteristics of the bearing, in which the shape and curvature of surface, eccentricity and tilt of the journal are taken into account. Variations of the static and dynamic characteristics of the radial magnetic bearing versus static tilt parameters of journal are discussed. The outcomes show that the static tilt of the journal has influence on the mechanical characteristics of radial magnetic bearing, and change the static load capacity between two radial magnetic bearings and exert coupling effect between them. To study the dynamics of a practical rotor-magnetic bearing system, at least six stiffness coefficients in each radial magnetic bearing must be considered in ideal case, and twelve stiffness coefficients must be considered in general case of tilting journal. Such a find can be used for the coupled electromechanical dynamics analysis of rotor system equipped with magnetic bearings.展开更多
Mechanical characteristics of MO disk are vital for the designer of the drives and the manufacturers who provide the mass-product MO disks. So measuring mechanical characteristics is very significant. We compares the ...Mechanical characteristics of MO disk are vital for the designer of the drives and the manufacturers who provide the mass-product MO disks. So measuring mechanical characteristics is very significant. We compares the existing measuring methods and gives some novel measuring methods we adopted in details. The measuring system based upon these methods was introduced too. Some typical measuring results are also shown in this paper.展开更多
Rotary swaging(RS)of alloy Mg-1.03Zn-0.66Ca(ZX11)was shown to refine the average grain size to 4.5±1.2μm in a longitudinal section and 4.8±0.9μm in a transverse section.In addition,a small amount of Mg2Ca ...Rotary swaging(RS)of alloy Mg-1.03Zn-0.66Ca(ZX11)was shown to refine the average grain size to 4.5±1.2μm in a longitudinal section and 4.8±0.9μm in a transverse section.In addition,a small amount of Mg2Ca particles about 300nm in size and Mg6Zn3Ca2 particles with a size of about lOOnm was detected.This resulted in pronounced strengthening:the yield strength and the ultimate tensile strength rose to 210±8 MPa and 276±6 MPa,respectively,while the elongation hardly decreased(22.0±1.8% and 18.3±2.9% before and after RS).Furthermore,RS led to an increase in the fatigue limit of the alloy from 120 MPa to 135 MPa and did not impair its resistance to chemical corrosion.The studies in vitro showed that ZX11 induces hemolysis without inhibiting the viability of peripheral blood mononuclear cells and has a more pronounced cytotoxic effect on tumor cells in comparison with non-transformed cells.No significant difference of the latter effect between the initial and the deformed states was observed.展开更多
A new isolator composed of a steel rope spring and a magneto-rheological(MR) damper was designed and a study on low-frequency mechanical characteristics of MR dampers in isolators was carried out.It used the character...A new isolator composed of a steel rope spring and a magneto-rheological(MR) damper was designed and a study on low-frequency mechanical characteristics of MR dampers in isolators was carried out.It used the characteristics of the MR damper,such as fast response,controllable damping,small energy consumption,wide dynamic scope,and great adaptation.The relationships between MR damping forces and influencing factors were analyzed based on experimental data.The results show that damping force is not only related to structural dimensions,but also closely related to controllable current and vibration frequency.Finally,the empirical formula for damping forces was corrected,and the relationship between correction coefficients and factors analyzed.展开更多
Carbon fiber reinforced polymer(CFRP)and CFRP-based composite honeycomb sandwich structures are particularly sensitive to impact.The mechanical characteristics of composite honeycomb sandwich structures under oblique ...Carbon fiber reinforced polymer(CFRP)and CFRP-based composite honeycomb sandwich structures are particularly sensitive to impact.The mechanical characteristics of composite honeycomb sandwich structures under oblique impact are studied by numerical simulation and experiment.The oblique impact model is established,and the reliability of the model is verified by the oblique impact test.To further analyze the influence of structural parameters on energy absorption under oblique impact,the influence of impact angle,face sheet thickness and wall thickness of the honeycomb is numerically studied.The results show that the impact angle has an important effect on energy distribution.The structural parameters also have an effect on the peak contact force,contact time,and energy absorption,and the effect is different from normal impact due to the presence of frictional dissipation energy.Compared with normal impact,the debonding of oblique impact will be reduced,but the buckling range of the honeycomb core will be expanded.展开更多
Mechanical characterization of steel frame structure after fire are ana- lyzed based on fire dynamics, heat transfer theory, structural mechanics, and finite element theory. We study the temperature characteristics an...Mechanical characterization of steel frame structure after fire are ana- lyzed based on fire dynamics, heat transfer theory, structural mechanics, and finite element theory. We study the temperature characteristics and mechanical prop- erties of steel flame structure under different fire locations and propose a safety evaluation method. We also analyze damage level of main flame components, maximum temperature of fire, thermal characteristics of flame components, fir- ing duration, etc. to provide useful information for fire resistance design of the steel frame structure and post-disaster safety evaluation.展开更多
Static and dynamic mechanical characteristics of a thrust magnetic bearing are studied owing to the inclination of the runner disk. The application refers to a thrust magnetic bearing for a turbo expander/compressor...Static and dynamic mechanical characteristics of a thrust magnetic bearing are studied owing to the inclination of the runner disk. The application refers to a thrust magnetic bearing for a turbo expander/compressor. The static tilt of the runner disk has remarkable influence on the mechanical characteristics of thrust magnetic bearing, it can change the static load distribution between two radial magnetic bearings and will exert violent coupling effect among a thrust magnetic bearing and two radial magnetic bearings. Such a finding can be used for the coupled electromechanical dynamics analysis of rotor system equipped with magnetic bearings.展开更多
The shallow tunnelling method(STM)often uses temporary supports to divide large section tunnels into several closed or semiclosed sections so as to share the upper load.The complex support system composed of primary a...The shallow tunnelling method(STM)often uses temporary supports to divide large section tunnels into several closed or semiclosed sections so as to share the upper load.The complex support system composed of primary and temporary supports can ensure safety during tunnel construction.Based on the large section tunnel of Beijing Subway Line 12,the mechanical characteristics of support system by the double-side-drift method(DSDM)during excavation and demolition were analyzed through numerical simulation and monitoring.The study showed that the middle cave excavation was the most critical stage of the DSDM,during which the load on the supporting structure increased significantly.The temporary vertical support bore most of the new load during middle cave excavation.During the demolition stage,the load was redistributed,which caused arch settlement and section convergence.The removal of the temporary vertical support exerted the greatest impact in this process.The lateral temporary inverted arch changed from axial compression to axial tension after the middle and lower caves were excavated.Based on the mechanical characteristics of the support system,some engineering suggestions were proposed for large section tunnel construction.These research results can provide reference for the design and construction of similar large section tunnels.展开更多
Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-disp...Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-displacement,failure mode,and shear strength parameters for red-sandstone with different water contents,different compactions,and different grain size distributions were obtained from the tests.A practical procedure of in-situ test for red-sandstone embankment was proposed to normalize the test equipment and test steps.Based on three-dimensional thrust-sliding limit equilibrium method,the formulas for calculating strength parameters of red-sandstone considering three-dimensional sliding surface were inferred.The results show that red-sandstone has typical complete curves of stress-strain,strain softening,which are caused by the special structure of red-sandstone;water content and compaction are important factors for strength and failure mode of red-sandstone;The average value of cohesion and internal friction angle of the specimens calculated by three-dimensional technique are 21.56 kPa and 29.29°,respectively,and those by traditional two-dimensional method are 25.52 kPa and 33.76°,respectively.展开更多
Polycrystalline diamond compact(PDC)bit is one of the most widely used drill bits for improving the rate of penetration in deep oil and gas well and geothermal well.However,the dynamic rock fragmentation mechanics cha...Polycrystalline diamond compact(PDC)bit is one of the most widely used drill bits for improving the rate of penetration in deep oil and gas well and geothermal well.However,the dynamic rock fragmentation mechanics characteristics of PDC bits are still unclearly.A coupled fragmentation mechanics model of PDC cutter-rock interaction is established by combining the mixed fragmentation modes with dynamic strength.The coupling influence laws of cutter angle,cutting depth,dynamic strength ratio,breaking modes on the horizontal force coefficient(HFC),vertical force coefficient(VFC)and specific energy are analyzed.The model of this paper can optimize cutter inclination angle,cutting depth and minimum specific energy.With the increase of the cutter inclination angle,the dynamic VFC changes into two modes.The definition of the dynamic modes depends on the dynamic strength ratio.As the cutting angle increases,the cutting force increases.The cutting force increases nonlinearly with increasing cutting depth.The specific energy of rock fragmentation increases nonlinearly with increasing cutting depth.With the increase of dynamic strength,the specific energy of rock fragmentation increases nonlinearly.When the input-energy increases,the rate of penetration response is divided into three stages.The results have important guiding significance for the PDC bit design and drilling parameters optimization to increase the rate of penetration and the efficiency of exploration and development.展开更多
The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scann...The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.展开更多
基金This research was funded by the National Natural Science Foundation of China(42077282).
文摘Since 2015,the newly discovered slit-type Danxia landform on the Chinese Loess Plateau has become a hot topic in the field of geomorphology worldwide.However,the relationships among its formation,evolutionary mechanism,and mechanical characteristics of its strata and rocks are not clear.In this paper,the Ganquan canyon group is used as the research object.Basic physical and mechanical indices of sandstone in the Ganquan canyon group were measured through field investigation and indoor experiments,and the deterioration trends for the mechanical parameters of sandstone in this area under the action of infiltration,acid dry-wet cycles,and freeze-thaw cycles were revealed.Lastly,the formation and evolutionary mechanism of the slit-type Danxia landform were discussed.The results showed that:(1)The sandstone in the canyon group had a low cementation degree and weak cohesive force,which was easily weakened under the action of water,resulting in a decrease in compressive strength and elastic modulus.(2)Acidic dry-wet cycles caused the mineral composition of the sandstone to be dissolved,and the micropores continued to grow and develop until new cracks were produced.Macroscopically,the compressive strength and elastic modulus of sandstone were greatly reduced,and this damage was cumulative and staged.The greater the acidity,the greater the damage.(3)As the number of freeze-thaw cycles increased,the uniaxial compressive strength and elastic modulus of the sandstone decreased continuously.During the freeze-thaw cycle process,the growth and development of cracks were primarily in fracture mode and usually developed along parallel bedding positions.(4)The interaction of tectonic activity and lithology with different weathering processes was a key factor in the formation and evolution of the slit-type Danxia landform.In conclusion,the intricate process of weathering influenced by historical climatic fluctuations has been pivotal in shaping the topography of Danxia landform.
基金supported by the National Natural Science Foundation of China(Nos.52174101,52474169,and 42477202)Guangdong Basic and Applied Basic Research Foundation(Nos.2023A1515011634 and 2023A1515030243)the Department of Science and Technology of Guangdong Province,China(No.2021ZT09G087).
文摘The application of ductile rock bolts has been a crucial method for solving the problems of large deformations,energy absorption and stability control issues in deep rock masses.To study the anchoring mechanism of the key expansive structure,this paper proposes a novel type of bolt—the Ductile-Expansion bolt,and conducts research on anchoring mechanics,energy absorption characteristics,and failure modes of the bolt.In addition,this paper defines the concept of load-volume ratio of metal rock bolts and proves the Ductile-Expansion bolt is capable of better improving the unit volume bearing capacity of the bolt material.Furthermore,laboratory and field tests verify the Ductile-Expansion bolt had better anchoring effect than the traditional rebar bolt,with the expansion structure favorably enhancing the ductility and energy absorption performance of the bolt.Finally,this paper microscopically analyzes the crack propagation and distribution morphology of the bolts by establishing a 3D coupled numerical model based on FDM-DEM.Numerical results illustrate the interface at the variable diameter of the Ductile-Expansion bolt serves as the transition zone between high and low stress levels.The expansion structure can impose radial compression on the medium around the bolt,which can improve the bolt anchorage performance.
基金financially supported by the“National Natural Science Foundation of China”[Grant No.52105106]the“China National Postdoctoral Program for Innovative Talents”[Grant No.BX2021126]+2 种基金the“Jiangsu Province Natural Science Foundation”[Grant No.BK20210342]the“Jiangsu Planned Projects for Postdoctoral Research Funds”[Grant No.2021K008A]the“Nanjing Municipal Human Resources and Social Security Bureau”[Grant No.MCA21121]。
文摘With the continuous development of artillery,the disadvantages of hydraulic recoil brakes gradually appear.At the same time,the appearance of high-performance Nd Fe B permanent magnet makes it possible to apply electromagnetic braking technology to recoil mechanism.In this paper,prototype tests of a certain artillery were carried out to verify the feasibility of the electromagnetic brake(EMB)and obtain the electromagnetic braking force.Due to the brittleness of Nd Fe B,in order to eliminate the worry about the safety of EMB,SHPB experiments of Nd Fe B were carried out.Then,based on the assumption of uniform crack distribution,the law of crack propagation and damage accumulation was described theoretically,and the damage constitutive model suitable for brittle materials was proposed by combining the Zhu-Wang-Tang(ZWT)equation.Finally,the numerical simulation model of the artillery prototype was established and through calculation,the dynamic mechanical characteristics of Nd Fe B in the prototype were analyzed.The calculation results show that the strength of Nd Fe B can meet the requirements of the use in the working process.From the perspective of damage factor,the damage value of the permanent magnet on the far right is larger,and the damage value of the inner ring gradually decreases to the outer ring.
基金This work was supported by the National Natural Science Foundation of China(Nos.41941018,52074164,and 42077267);the Natural Science Foundation of Shandong Province,China(Nos.2019SDZY04 and ZR2020JQ23)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program,China(No.2019KJG013).
文摘In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety.
文摘This study compared the microstructure and mechanical characteristics of AA6061-T6 joints produced using friction stir welding(FSW),friction stir vibration welding(FSVW),and tungsten inert gas welding(TIG).FSVW is a modified version of FSW wherein the joining specimens are vibrated normal to the welding line during FSW.The results indicated that the weld region grains for FSVW and FSW were equiaxed and were smaller than the grains for TIG.In addition,the weld region grains for FSVW were finer compared with those for FSW.Results also showed that the strength,hardness,and toughness values of the joints produced by FSVW were higher than those of the other joints produced by FSW and TIG.The vibration during FSW enhanced dynamic recrystallization,which led to the development of finer grains.The weld efficiency of FSVW was approximately 81%,whereas those of FSW and TIG were approximately 74%and 67%,respectively.
基金Projects 50579042 supported by the National Natural Science Foundation of China2002CB412705 by the National Basic Research and Development(973) Program of Chinaok060122 by the Young Foundation of China University of Mining & Technology
文摘The relationships between mechanical characteristics of rock and microcosmic mechanism at high temperatures were investigated by MTS815, as well as the stress-strain behavior of granite under the action of temperatures ranging from room temperature to 1200 ℃. Based on a micropore structure analyzer and SEM, the changes in rock porosity and micro structural morphology of sample fractures and brittle-plastic characteristics under high temperatures were analyzed. The results are as follows: 1) Mechanical characteristics do not show obvious variations before 800 ℃; strength decreases suddenly after 800 ℃ and bearing capacity is almost lost at 1200 ℃. 2) Rock porosity increases with rising temperatures; the threshold temperature is about 800 ℃; at this temperature its effect is basically uniform with strength decreasing rapidly. 3) The failure type of granite is a brittle tensile fracture at temperatures below 800 ℃ which transforms into plasticity at temperatures higher than 800 ℃ and crystal formation takes place at this time. Chemical reactions take place at 1200 ℃. Failure of granite under high temperature is a common result of thermal stress as indicated by an increase in the thermal expansion coefficient, transformation to crystal formation of minerals and structural chemical reactions.
基金funded by the National Natural Science Foundation of China(Grant No.41672258)the Land and Resources Science&Technology Project of Jiangsu Province(Grant No.2018045)。
文摘Soil-rock mixtures containing macropore(SRMCM)is a kind of geological material with special mechanical properties.Located in the project area of Lenggu hydropower station on the Yalong River,Sichuan Province,China,there is an extremely unstable Mahe talus slide with a total volume of nearly160 million cubic meters,which is mainly composed of SRMCM.The study on the mechanical properties of SRMCM is of great significance for the engineering construction and safe operation.In this paper,laboratory tests and discrete element numerical tests based on three-dimensional scanning technology were conducted to study the influence of stone content,stone size,and the angle of the macropore structure on shear characteristics of SRMCM.The failure mechanism of SRMCM was discussed from a microscopic perspective.This work explains the internal mechanism of the influence of stone content,stone size,and the angle of the macropore structure on the strength of SRMCM through the microscopic level of stone rotation,force chain distribution,and crack propagation.As the macropore structure that intersects with the preset shear plane at a large angle could act as a skeleton-like support to resist the shear force,the fracture of the weak cemented surface of soil and stone in the macropore structure is an important cause of SRMCM destruction.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51769031)Regional Innovation Guidance Plan Project of the XPCC(Grant No.2021BB004).
文摘On-site monitoring and numerical simulation have been combined to analyze the stability of the jointed surrounding rock and the stress inside the lining structure of a sample deeply buried hydraulic tunnel.We show that the deformation around the tunnel was mainly concentrated in the range 51.37 mm∼66.73 mm,the tunnel circumference was dominated by shear failure,and the maximum plastic zone was about 3.90 m.When the shotcrete treatment was performed immediately after the excavation,the deformation of the surrounding rock was reduced by 58.94%∼76.31%,and the extension of the plastic zone was relatively limited,thereby leading to improvements in terms of the stability of surrounding rock.When the support was provided at different time points,the stress of the surrounding rock in the shallow part of the tunnel was improved everywhere.In the tunnel section with high ground stress and joint development,when 10 cm steel fiber concrete spray layer and 40 cm C25 concrete secondary lining were used,the maximum tensile stress on the lining structure was 0.89 MPa,i.e.,it was less than the tensile strength of concrete,which indicates that the internal force of the lining can meet the overall requirements.
基金Funded by the National Natural Science Foundation of China(No.51305023)the Fundamental Research Funds for the Central Universities of China(No.FRF-GF-17-B20)
文摘Fly ash cenospheres(FACs) as a recycling material of industrial waste has become a competitor for other inorganic particle fillers. Epoxy resin(EP) composites reinforced with different content of FACs as well as different size grading ratio were prepared. The surface modification of FACs particles was conducted before incorporating into EP matrix. The impact and flexural strengths and the flexural modulus were investigated, and the fracture surfaces of the testing samples were analyzed using SEM. Results showed that FACs had an obvious effect on the mechanical characteristics of the FACs/EP composites. With increasing weight fraction of FACs, the impact and flexural strengths and the flexural modulus of EP composite samples increased, and reached the highest values when the weight fraction of FACs reached 15 wt%. The mechanical characteristics of the FACs/EP composites however deteriorated with further increasing of FACs content. For the EP composites reinforced with different size grading ratio of FACs, the larger proportion of small FACs particles, the better mechanical properties of the EP composites. The results were analyzed from the aspect of the plastic deformation, new surface formation and fracture absorption energy. The synergistic effect of the size grading ratio of FACs was not obvious, which would be further investigated.
基金the Special Research Foundation of the National Educational Commission of China for Doctorate Subjects in Universities (9469
文摘This paper is based on the example of a radial magnetic bearing possessed of eight-pole, and derives the calculation formulas of static and dynamic mechanical characteristics of the bearing, in which the shape and curvature of surface, eccentricity and tilt of the journal are taken into account. Variations of the static and dynamic characteristics of the radial magnetic bearing versus static tilt parameters of journal are discussed. The outcomes show that the static tilt of the journal has influence on the mechanical characteristics of radial magnetic bearing, and change the static load capacity between two radial magnetic bearings and exert coupling effect between them. To study the dynamics of a practical rotor-magnetic bearing system, at least six stiffness coefficients in each radial magnetic bearing must be considered in ideal case, and twelve stiffness coefficients must be considered in general case of tilting journal. Such a find can be used for the coupled electromechanical dynamics analysis of rotor system equipped with magnetic bearings.
基金Supported by the State Key Technology Program in the Ninth 5 -year Plan( No.96 -E0 1-0 4-0 3)
文摘Mechanical characteristics of MO disk are vital for the designer of the drives and the manufacturers who provide the mass-product MO disks. So measuring mechanical characteristics is very significant. We compares the existing measuring methods and gives some novel measuring methods we adopted in details. The measuring system based upon these methods was introduced too. Some typical measuring results are also shown in this paper.
基金Funding support of investigations of microstructure,mechanical properties,corrosion resistance,biocompatibility and cytotoxicity was provided by the Russian Science Foundation(project#18-45-06010)Part of this work relating to studies of fatigue behavior was carried out within the governmental task#075-00947-20-00.
文摘Rotary swaging(RS)of alloy Mg-1.03Zn-0.66Ca(ZX11)was shown to refine the average grain size to 4.5±1.2μm in a longitudinal section and 4.8±0.9μm in a transverse section.In addition,a small amount of Mg2Ca particles about 300nm in size and Mg6Zn3Ca2 particles with a size of about lOOnm was detected.This resulted in pronounced strengthening:the yield strength and the ultimate tensile strength rose to 210±8 MPa and 276±6 MPa,respectively,while the elongation hardly decreased(22.0±1.8% and 18.3±2.9% before and after RS).Furthermore,RS led to an increase in the fatigue limit of the alloy from 120 MPa to 135 MPa and did not impair its resistance to chemical corrosion.The studies in vitro showed that ZX11 induces hemolysis without inhibiting the viability of peripheral blood mononuclear cells and has a more pronounced cytotoxic effect on tumor cells in comparison with non-transformed cells.No significant difference of the latter effect between the initial and the deformed states was observed.
文摘A new isolator composed of a steel rope spring and a magneto-rheological(MR) damper was designed and a study on low-frequency mechanical characteristics of MR dampers in isolators was carried out.It used the characteristics of the MR damper,such as fast response,controllable damping,small energy consumption,wide dynamic scope,and great adaptation.The relationships between MR damping forces and influencing factors were analyzed based on experimental data.The results show that damping force is not only related to structural dimensions,but also closely related to controllable current and vibration frequency.Finally,the empirical formula for damping forces was corrected,and the relationship between correction coefficients and factors analyzed.
基金This research was supported by the National Natural Science Foundations of China(Nos.52175153,U1833116,51705468 and 11402234)the China Scholarship Council(CSC).
文摘Carbon fiber reinforced polymer(CFRP)and CFRP-based composite honeycomb sandwich structures are particularly sensitive to impact.The mechanical characteristics of composite honeycomb sandwich structures under oblique impact are studied by numerical simulation and experiment.The oblique impact model is established,and the reliability of the model is verified by the oblique impact test.To further analyze the influence of structural parameters on energy absorption under oblique impact,the influence of impact angle,face sheet thickness and wall thickness of the honeycomb is numerically studied.The results show that the impact angle has an important effect on energy distribution.The structural parameters also have an effect on the peak contact force,contact time,and energy absorption,and the effect is different from normal impact due to the presence of frictional dissipation energy.Compared with normal impact,the debonding of oblique impact will be reduced,but the buckling range of the honeycomb core will be expanded.
基金supported by the National Basic Research Program of China(2012CB719703)University of Anhui Provincial Natural Science Fund Project(J2013A068)
文摘Mechanical characterization of steel frame structure after fire are ana- lyzed based on fire dynamics, heat transfer theory, structural mechanics, and finite element theory. We study the temperature characteristics and mechanical prop- erties of steel flame structure under different fire locations and propose a safety evaluation method. We also analyze damage level of main flame components, maximum temperature of fire, thermal characteristics of flame components, fir- ing duration, etc. to provide useful information for fire resistance design of the steel frame structure and post-disaster safety evaluation.
文摘Static and dynamic mechanical characteristics of a thrust magnetic bearing are studied owing to the inclination of the runner disk. The application refers to a thrust magnetic bearing for a turbo expander/compressor. The static tilt of the runner disk has remarkable influence on the mechanical characteristics of thrust magnetic bearing, it can change the static load distribution between two radial magnetic bearings and will exert violent coupling effect among a thrust magnetic bearing and two radial magnetic bearings. Such a finding can be used for the coupled electromechanical dynamics analysis of rotor system equipped with magnetic bearings.
基金Beijing Science and Technology Planning Project(CN),Grant/Award Number:Z201100008120013Fundamental Research Funds for the Central Universities,Grant/Award Number:2022YQLJ01Major Achievements Transformation and Industrialization Projects of Central Universities in Beijing,Grant/Award Number:ZDZH20141141301。
文摘The shallow tunnelling method(STM)often uses temporary supports to divide large section tunnels into several closed or semiclosed sections so as to share the upper load.The complex support system composed of primary and temporary supports can ensure safety during tunnel construction.Based on the large section tunnel of Beijing Subway Line 12,the mechanical characteristics of support system by the double-side-drift method(DSDM)during excavation and demolition were analyzed through numerical simulation and monitoring.The study showed that the middle cave excavation was the most critical stage of the DSDM,during which the load on the supporting structure increased significantly.The temporary vertical support bore most of the new load during middle cave excavation.During the demolition stage,the load was redistributed,which caused arch settlement and section convergence.The removal of the temporary vertical support exerted the greatest impact in this process.The lateral temporary inverted arch changed from axial compression to axial tension after the middle and lower caves were excavated.Based on the mechanical characteristics of the support system,some engineering suggestions were proposed for large section tunnel construction.These research results can provide reference for the design and construction of similar large section tunnels.
基金Project(200612) supported by Hunan Province Transportation Department of China
文摘Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-displacement,failure mode,and shear strength parameters for red-sandstone with different water contents,different compactions,and different grain size distributions were obtained from the tests.A practical procedure of in-situ test for red-sandstone embankment was proposed to normalize the test equipment and test steps.Based on three-dimensional thrust-sliding limit equilibrium method,the formulas for calculating strength parameters of red-sandstone considering three-dimensional sliding surface were inferred.The results show that red-sandstone has typical complete curves of stress-strain,strain softening,which are caused by the special structure of red-sandstone;water content and compaction are important factors for strength and failure mode of red-sandstone;The average value of cohesion and internal friction angle of the specimens calculated by three-dimensional technique are 21.56 kPa and 29.29°,respectively,and those by traditional two-dimensional method are 25.52 kPa and 33.76°,respectively.
基金work is supported by the project funded by China Post-doctoral Science Foundation(2020M683357)Sichuan Science and Technology Program(2022NSFSC0975)+1 种基金CNPC-SWPU innovation alliance(2020CX040202)Open Fund(PLN2021-19)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University).
文摘Polycrystalline diamond compact(PDC)bit is one of the most widely used drill bits for improving the rate of penetration in deep oil and gas well and geothermal well.However,the dynamic rock fragmentation mechanics characteristics of PDC bits are still unclearly.A coupled fragmentation mechanics model of PDC cutter-rock interaction is established by combining the mixed fragmentation modes with dynamic strength.The coupling influence laws of cutter angle,cutting depth,dynamic strength ratio,breaking modes on the horizontal force coefficient(HFC),vertical force coefficient(VFC)and specific energy are analyzed.The model of this paper can optimize cutter inclination angle,cutting depth and minimum specific energy.With the increase of the cutter inclination angle,the dynamic VFC changes into two modes.The definition of the dynamic modes depends on the dynamic strength ratio.As the cutting angle increases,the cutting force increases.The cutting force increases nonlinearly with increasing cutting depth.The specific energy of rock fragmentation increases nonlinearly with increasing cutting depth.With the increase of dynamic strength,the specific energy of rock fragmentation increases nonlinearly.When the input-energy increases,the rate of penetration response is divided into three stages.The results have important guiding significance for the PDC bit design and drilling parameters optimization to increase the rate of penetration and the efficiency of exploration and development.
基金supported by the National Natural Science Foundation of China under Grants Nos.52165013 and 51565021.
文摘The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.