The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribut...The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.展开更多
In order to analyze the factors influencing sandstone mechanical compaction and its physical property evolution during compaction processes, simulation exper- iments on sandstone mechanical compaction were carried out...In order to analyze the factors influencing sandstone mechanical compaction and its physical property evolution during compaction processes, simulation exper- iments on sandstone mechanical compaction were carried out with a self-designed diagenetic simulation system. The experimental materials were modem sediments from dif- ferent sources, and the experiments were conducted under high temperature and high pressure. Results of the exper- iments show a binary function relation between primary porosity and mean size as well as sorting. With increasing overburden pressure during mechanical compaction, the evolution of porosity and permeability can be divided into rapid compaction at an early stage and slow compaction at a late stage, and the dividing pressure value of the two stages is about 12 MPa and the corresponding depth is about 600 m. In the slow compaction stage, there is a good exponential relationship between porosity and overburden pressure, while a good power function relationship exists between permeability and overburden pressure. There is also a good exponential relationship between porosity and permeability. The influence of particle size on sandstone mechanical compaction is mainly reflected in the slowcompaction stage, and the influence of sorting is mainly reflected in the rapid compaction stage. Abnormally high pressure effectively inhibits sandstone mechanical com- paction, and its control on sandstone mechanical com- paction is stronger than that of particle size and sorting. The influence of burial time on sandstone mechanical compaction is mainly in the slow compaction stage, and the porosity reduction caused by compaction is mainly con- trolled by average particle size.展开更多
Axial structural damping behavior induced by internal friction and viscoelastic properties of polymeric layers may have an inevitable influence on the global analysis of flexible pipes.In order to characterize this ph...Axial structural damping behavior induced by internal friction and viscoelastic properties of polymeric layers may have an inevitable influence on the global analysis of flexible pipes.In order to characterize this phenomenon and axial mechanical responses,a full-scale axial tensile experiment on a complex flexible pipe is conducted at room temperature,in which oscillation forces at different frequencies are applied on the sample.The parameters to be identified are axial strains which are measured by three kinds of instrumentations:linear variable differential transformer,strain gauge and camera united particle-tracking technology.The corresponding plots of axial force versus axial elongation exhibit obvious nonlinear hysteretic relationship.Consequently,the loss factor related to the axial structural damping behavior is found,which increases as the oscillation loading frequency grows.The axial strains from the three measurement systems in the mechanical experiment indicate good agreement,as well as the values of the equivalent axial stiffness.The damping generated by polymeric layers is relatively smaller than that caused by friction forces.Therefore,it can be concluded that friction forces maybe dominate the axial structural damping,especially on the conditions of high frequency.展开更多
With the reform of experimental teaching in colleges and universities,the teaching mode of"experimental students as the main body,experimental teachers as the guide"needs to constantly explore new experiment...With the reform of experimental teaching in colleges and universities,the teaching mode of"experimental students as the main body,experimental teachers as the guide"needs to constantly explore new experimental teaching methods.In this paper,knowledge graph is integrated into the experiment of mechanical principle to guide undergraduates to use knowledge graph to analyze and summarize independently in experimental teaching activities,aiming at cultivating undergraduates interest in learning and innovative thinking,so as to improve the quality of experimental teaching.This study has a certain reference significance for experimental teaching in colleges and universities.展开更多
Two kinds of clamping in micro/nano scale experiments are investigated in this paper, one based on electron-beam-induced deposition, and the other on the van der Waals interaction. The clamping strength and mechanism ...Two kinds of clamping in micro/nano scale experiments are investigated in this paper, one based on electron-beam-induced deposition, and the other on the van der Waals interaction. The clamping strength and mechanism are analyzed both theoretically and experimentally. The influence of relative humidity on the micro/nano clamping and the method of electrostatic clamping are discussed. The clamping strength and performance of different clamping methods are compared considering the size and material of the clamped objects, and the application environments.展开更多
Hydraulic structures such as groin, longitudinal dike and seawall are common in water conservancy and water transportation engineering projects at home and abroad, which have long been dominated by solid mass structur...Hydraulic structures such as groin, longitudinal dike and seawall are common in water conservancy and water transportation engineering projects at home and abroad, which have long been dominated by solid mass structural form. With brush and stone as building materials, this kind of structure has an obvious engineering effect. However, it not only requires huge capital investments, but also has negative impacts on the ecological environment. The suspended flexible dam is an innovative engineering measure, and few theoretical and experimental researches of this type dam can be found at present. This paper studies the mechanism and shape characteristics of this dam and obtains the dynamic equilibrium equation of flexible dam, the float buoyancy expression, and the condition for transformation among three forms of the underwater shape of the dam. The results are valuable in engineering application and can be used as the reference for the future work due to the distinctive design philosophy, the small negative effects on environment and the consistency for sustainable development.展开更多
Two rock samples with different structures and materials were deformed under a biaxial loading system, and multi-point strain measurements were performed for each sample. The distribution of strain anomalies during th...Two rock samples with different structures and materials were deformed under a biaxial loading system, and multi-point strain measurements were performed for each sample. The distribution of strain anomalies during the deformation and the instability process were analyzed by using Cv value put forward by WANG Xiao-qing and CHEN Xue-zhong, et al, a parameter to describe the heterogeneous distribution of earthquake precursors, so as to examine the method of Cv value and to explore its physical meaning experimentally. The result shows that the change of Cv value is correlated to the change of deformation characteristics and is an effective parameter to describe the heterogeneity of precursor distribution. Cv value increases firstly and then decreases before the instability, and the instability occurs when Cv value decreases to the level before increasing. This indicates that Cv value may be a useful parameter for earthquake prediction.展开更多
In order to improve the comprehensive utilization of solid waste such as iron tailings and waste glass and so on,mechanical property test of cement tailings mortar mixed waste glass and curing mechanism research were ...In order to improve the comprehensive utilization of solid waste such as iron tailings and waste glass and so on,mechanical property test of cement tailings mortar mixed waste glass and curing mechanism research were conducted in the key materials mechanics lab of Liaoning province.The experimental results show that adding waste glass particles can improve the grain size distribution of tailings.The effect is proportional to the content.The compressive strength of tailings mortar has increased significantly.The fineness modulus of tailings mortar mixture adding waste glass powder was gradually reducing with the increase of the dosage of waste glass powder,but the compressive strength of the mixture has gradually enhanced with the increase of the dosage.Microscopic analysis shows that the waste glass particles in the mortar mainly play a role of coarse aggregate and glass powder after grinding fine below a certain size shows strong volcanic activity,which can act hydration with tailings,at the same time glass powder also,plays a role in fine aggregate filling.Therefore,all of glass particles and glass powder can be used as the additive material for improving and optimizing the mechanical property of tailings mortar.展开更多
Shape memory effect is capability of certain materials to recover its original shape after an apparently permanent deformation. The NiTi alloy of the composition is approximately equiatomic and it is the materials tha...Shape memory effect is capability of certain materials to recover its original shape after an apparently permanent deformation. The NiTi alloy of the composition is approximately equiatomic and it is the materials that exhibit the best characteristics for application of these properties, especially in the biomedical area, because of their excellent biocompatibility as: in the manufacture of medical and dental instruments, orthodontic wires, orthopedic materials, guide wires, stents, filters and components to realize the less invasive surgeries. In other areas, they are used for confections of electronic keys, spectacle frames, application in controllers, junction of pipes and electronic connectors among others. New research topics involving the application of these alloys super-elasticity are also known as pseudo elasticity. This event has an isothermal nature and involves the storage of potential energy in the shape memory effect and super-elasticity. In this context, this work falls within the scope of use of the technologies being an example of the work undertaken, in the course Graduate of Federal University of Pernambuco in skills in these technologies. It will present the results of a heat engine which engine element is a helical spring made of a NiTi alloy equiatomic with memory effect reversibly. The spring is triggered by a hot source (- 373.15 K) and a cold source (273.15 K). The machine is capable of producing a reciprocating oscillating between the two sources. Heat equations and the equations that describe the dynamic behavior of the spring were developed. Through the development of dynamic equations, it can determine the minimum mass for the motion of the machine, as well as the instantaneous and average power and overall efficiency. You can check the functionality of the machine by way of the inclination angle of the propeller and the coefficient of static friction. Among the main results, it was observed that the overall performance of the machine compared to the machines of this category showed the feasibility of the project.展开更多
Background: The Tiêu equation has a ground roots approach to the process of Quantum Biology and goes deeper through the incorporation of Quantum Mechanics. The process can be measured in plant, animal, and human ...Background: The Tiêu equation has a ground roots approach to the process of Quantum Biology and goes deeper through the incorporation of Quantum Mechanics. The process can be measured in plant, animal, and human usage through a variety of experimental or testing forms. Animal studies were conducted for which, in the first day of the study all the animals consistently gained dramatic weight, even as a toxic substance was introduced as described in the introduction of the paper to harm animal subjects which induced weight loss through toxicity. Tests can be made by incorporating blood report results. Human patients were also observed to show improvement to their health as administration of the substance was introduced to the biological mechanism and plants were initially exposed to the substance to observe results. This is consistent with the Tiêu equation which provides that wave function is created as the introduction of the substance to the biological mechanism which supports Quantum Mechanics. The Tiêu equation demonstrates that Quantum Mechanics moves a particle by temperature producing energy thru the blood-brain barrier for example. Methods: The methods for the Tiêu equation incorporate animal studies to include the substance administered through laboratory standards using Good Laboratory Practices under Title 40 C.F.R. § 158. Human patients were treated with the substance by medical professionals who are experts in their field and have knowledge to the response of patients. Plant applications were acquired for observation and guidance of ongoing experiments of animals’ representative for the biologics mechanism. Results: The animal studies along with patient blood testing results have been an impressive line that has followed the Tiêu equation to consistently show improvement in the introduction of the innovation to biologic mechanisms. The mechanism responds to the substance by producing energy to the mechanism with efficient effect. For plant observations, plant organisms responded, and were seen as showing improvement thru visual observation.展开更多
According to National Science Foundation (NSF) Director A. Bement, ‘Transformative research is... research driven by ideas that stand a reasonable chance of radically changing our understanding of an important exis...According to National Science Foundation (NSF) Director A. Bement, ‘Transformative research is... research driven by ideas that stand a reasonable chance of radically changing our understanding of an important existing scientific concept or leading to the creation of a new paradigm or field of science is also characterized by its challenge to current understanding or its pathway to new frontiers.' Nanotechnology is one of such frontiers. It is the creation of new materials, devices and systems at the molecular level--phenomena associated with atomic and molecular interactions strongly influence macroscopic material properties with significantly improved mechanical, optical, chemical, electrical... properties. Former NSF Director Rita Colwell in 2002 declared, ‘nanoscale technology will have an impact equal to the Industrial Revolution'. The transcendent technologies include nanotechnology, microelectronics, information technology and biotechnology as well as the enabling and supporting mechanical and civil infrastructure systems and materials. These technologies are the primary drivers of the twenty first century and the new economy. Mechanics is an essential eleraent in all of the transcendent technologies. Research opportunities, education and challenges in mechanics, including experimental, numerical and analytical methods in nanomechanics, carbon nano-tubes, bio-inspired materials, fuel cells, as well as improved engineering and design of materials are presented and discussed in this paper.展开更多
Underground lifeline engineering (ULE for short) in modern city demands the appreciation of an active fault in buried bedrock . Generally speaking , a large number of urban geological textures of a basement may all be...Underground lifeline engineering (ULE for short) in modern city demands the appreciation of an active fault in buried bedrock . Generally speaking , a large number of urban geological textures of a basement may all be simplified into a dual geological texture model , i. e., the upper part of the basement consists of loose covering layer and the lower part consists of bedrock . The study of an active fault should include three parts of contents , i . e ., to determine the lower time limit of activity of the fault , and the time limit must be recognized by both of designing engineers and geologists ; on the basis of the studies of repetition periods of earthquake occurrence to deter mine whether the fault moves or not during the allowed time of efficacy of buildings and constructions ; for the sake of engineering practice , the active rate of the fault must be given . The fault with different active mechanism has different effects on the ULE . The authors studied the effect of lateral non-uniform overburden site on the ULE by means of the supersonic earthquake modelling . Owing to the lateral non - uniformity of the covering sediments , there occurs an obvious jump of amplitude of the seismic wave propagation near the contact surface between two different sedi ments . In addition , from the modelling experiment curves it may be seen that the different focus mechanisms and different medium characters may also exert an effect in different degrees .展开更多
Stresses, particularly those at geometric discontinuities, can influence structural integrity of engineering components. Motivated by the prevalence of cutouts in components, the objective of this paper is to demonstr...Stresses, particularly those at geometric discontinuities, can influence structural integrity of engineering components. Motivated by the prevalence of cutouts in components, the objective of this paper is to demonstrate ability to stress analyze finite, circularly-perforated orthotropic composites whose external loading may be unknown. Recognizing difficulties in obtaining purely theoretical or numerical solutions, the paper presents a hybrid means of stress analyzing such structures. Individual stresses, including those on the edge of the hole, are obtained in a loaded finite graphite/epoxy composite tensile plate containing a round hole by processing measured values of a single displacement field with an Airy stress function in complex variables. Displacements are recorded by digital image correlation. Traction-free conditions are satisfied analytically at the edge of the hole using conformal mapping and analytic continuation. Stresses satisfy equilibrium and strains satisfy compatibility. Significant features of the technique include its wide applicability, it smooths the measured information, does not require knowing the applied loading, and the rigorous mechanics foundation by which strains are determined from measured displacements.展开更多
The development of personalized healthcare is rapidly growing thanks to the support of low-power electronics,advanced fabrication processes and secured data transmission protocols.Long-acting drug delivery systems abl...The development of personalized healthcare is rapidly growing thanks to the support of low-power electronics,advanced fabrication processes and secured data transmission protocols.Long-acting drug delivery systems able to sustain the release of therapeutics in a controllable manner can provide several advantages in the treatment of chronic diseases.Various systems under development control drug release from an implantable reservoir via concentration driven diffusion through nanofluidic membranes.Given the high drug concentration in the reservoir,an inward osmotic fluid transport occurs across the membrane,which counters the outward diffusion of drugs.The resulting osmotic pressure buildup may be sufficient to cause the failure of implants with associated risks to patients.Confidently assessing the osmotic pressure buildup requires testing in vivo.Here,using metal and polymer AM(additive manufacturing)processes,we designed and developed implantable drug reservoirs with embedded strain sensors to directly measure the osmotic pressure in drug delivery implants in vitro and in vivo.展开更多
In order to investigate detonation propagation and distribution problems of premixed CH_4 + 2O_2 mixture around a concrete structure such as a refuge chamber,detonation experiments in one small size tube were conduct...In order to investigate detonation propagation and distribution problems of premixed CH_4 + 2O_2 mixture around a concrete structure such as a refuge chamber,detonation experiments in one small size tube were conducted. A simulation method was developed to obtain the flow field load distribution in the coal mine lane and pressure load of each part for the refuge chamber. Firstly,a physical model of a full-size explosiontest lane was established,which included the refuge chamber. With the calculations of the exact initial detonation pressure,the propagation characteristics of CH_4 + 2O_2 premixed mixture detonation in the lane was simulated. Simulation results of various parts from AUTODYN are recorded,and the shock wave arrival time and the pressure peak can be observed from the detonation pressure-time curve over the changing propagation distance. So curve differences in different locations cannot be ignored. Then by detonation experiments in the small size tube,detonation pressure-time curves and velocity were obtained. Finally the simulation waveform of variation curve agreed well with the experimental results,which validated the detonation simulation method. The difference between shockwaves of the two sensors confirmed that detonation wave changed along with distance and time. These results should be taken into serious consideration for the detonation progration and distribution problem in future researches.展开更多
The present work is intended to simulate, in a rotating annulus of stratified liquid, the me-chanical effect of the Xizang (Tibetan) Plateau on the zonal circulation. The main featuresof three flow patterns around the...The present work is intended to simulate, in a rotating annulus of stratified liquid, the me-chanical effect of the Xizang (Tibetan) Plateau on the zonal circulation. The main featuresof three flow patterns around the plateau for different Rossby number R and rotating Eulernumber E are analysed. and a division diagram of the flow pattern in (R, E) plane is given.It has been found that under the condition that similarity criterions R and E of the experimentalfluid are the same as those existing in the atmosphere for monthly mean states in spring, au-tumn and winter months, the experimental results are satisfied for the following weathersystems over the plateau and its vicinities: the low vortex, trough and shear line over thesoutheast part of the plateau, the tilted ridge over the northwest part of the plateau, the troughpatterns over the upstream and dewnstream of the plateau, the vertical circulation structure, thejets on both north and southeast sides of the plateau, and so on. This shows that the mechanicaleffect of the Tibetan Plateau on the general circulation over East Asia deserves close atten-tion.展开更多
Amyotrophic lateral sclerosis(ALS) is the most common degenerative disease of the motor neuron system. Over the last years, a growing interest was aimed to discovery new innovative and safer therapeutic approaches i...Amyotrophic lateral sclerosis(ALS) is the most common degenerative disease of the motor neuron system. Over the last years, a growing interest was aimed to discovery new innovative and safer therapeutic approaches in the ALS treatment. In this context, the bioactive compounds of Cannabis sativa have shown antioxidant, anti-inflammatory and neuroprotective effects in preclinical models of central nervous system disease. However, most of the studies proving the ability of cannabinoids in delay disease progression and prolong survival in ALS were performed in animal model, whereas the few clinical trials that investigated cannabinoids-based medicines were focused only on the alleviation of ALS-related symptoms, not on the control of disease progression. The aim of this report was to provide a short but important overview of evidences that are useful to better characterize the efficacy as well as the molecular pathways modulated by cannabinoids.展开更多
CFD (computational fluid dynamics) is following the trend of CAD and FEA (finite element analysis) to undergraduate education especially with recent advances in commercial codes. It will soon take its place as an ...CFD (computational fluid dynamics) is following the trend of CAD and FEA (finite element analysis) to undergraduate education especially with recent advances in commercial codes. It will soon take its place as an expected skill for new engineering graduates. CFD was added as a component to an experiment in a junior level fluid mechanics course. The objectives were to introduce CFD, as an analysis tool, to the students and to support the theoretical concepts of the course. The students were asked to complete an experimental two-dimensional study for a wing in a wind tunnel, to use CFD to simulate the flow, and to predict the aerodynamic lift using CFD as well as the experimentally obtained pressure distribution. In addition, they had to compare their results to published data for the studied wing. Details of the course, the wind tunnel test and the CFD simulations are presented. Samples from the students' work are used in the discussion. The lab activities were successfully completed by the students and the learning objectives were well addressed. One of the valuable outcomes from this lab was the opportunity for the students to integrate multiple fluid mechanics analysis tools and learn about the limits for each tool. CFD also enhanced the learning in the lab activities and increased students' interest in the subject.展开更多
Research into the fundamental properties of microcapsules and use of the results to develop a wide variety of products in industries such as printing, fast-moving consumer goods, construction, pharmaceuticals, and agr...Research into the fundamental properties of microcapsules and use of the results to develop a wide variety of products in industries such as printing, fast-moving consumer goods, construction, pharmaceuticals, and agrochemicals is a dynamic and ever-progressing field of study. For microcapsules to be effective in providing protection from harsh environments or delivering large payloads, it is essential to have a good understanding of their properties to enable quality control during formulation, storage, and applications. This review aims to outline the commonly used techniques for determining the physicochemical, struc- tural, and mechanical properties of microcapsules, and highlights the interlinked nature of these three areas with respect to the end-use industrial application. This review provides information on techniques that are well supported in the literature, and also examines microcapsule analytical techniques that will become more prevalent as a result of new technological developments or extensions from other areas of study.展开更多
文摘The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.
基金co-funded by the National Natural Science Foundation of China (Grant No.U1262203)the National Science and Technology Special Grant (Grant No.2011ZX05009003)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.14CX06013A)the Chinese Scholarship Council (No.201406450019)
文摘In order to analyze the factors influencing sandstone mechanical compaction and its physical property evolution during compaction processes, simulation exper- iments on sandstone mechanical compaction were carried out with a self-designed diagenetic simulation system. The experimental materials were modem sediments from dif- ferent sources, and the experiments were conducted under high temperature and high pressure. Results of the exper- iments show a binary function relation between primary porosity and mean size as well as sorting. With increasing overburden pressure during mechanical compaction, the evolution of porosity and permeability can be divided into rapid compaction at an early stage and slow compaction at a late stage, and the dividing pressure value of the two stages is about 12 MPa and the corresponding depth is about 600 m. In the slow compaction stage, there is a good exponential relationship between porosity and overburden pressure, while a good power function relationship exists between permeability and overburden pressure. There is also a good exponential relationship between porosity and permeability. The influence of particle size on sandstone mechanical compaction is mainly reflected in the slowcompaction stage, and the influence of sorting is mainly reflected in the rapid compaction stage. Abnormally high pressure effectively inhibits sandstone mechanical com- paction, and its control on sandstone mechanical com- paction is stronger than that of particle size and sorting. The influence of burial time on sandstone mechanical compaction is mainly in the slow compaction stage, and the porosity reduction caused by compaction is mainly con- trolled by average particle size.
基金the support from the National Natural Science Foundation of China(Youth Program)(Grant No.51809276)the National Key Research and Development Plan of China(Grant No.2018YFC0310504)CNPq-National Council of Scientific and Technological Development(Grant No.302380/2013-2)。
文摘Axial structural damping behavior induced by internal friction and viscoelastic properties of polymeric layers may have an inevitable influence on the global analysis of flexible pipes.In order to characterize this phenomenon and axial mechanical responses,a full-scale axial tensile experiment on a complex flexible pipe is conducted at room temperature,in which oscillation forces at different frequencies are applied on the sample.The parameters to be identified are axial strains which are measured by three kinds of instrumentations:linear variable differential transformer,strain gauge and camera united particle-tracking technology.The corresponding plots of axial force versus axial elongation exhibit obvious nonlinear hysteretic relationship.Consequently,the loss factor related to the axial structural damping behavior is found,which increases as the oscillation loading frequency grows.The axial strains from the three measurement systems in the mechanical experiment indicate good agreement,as well as the values of the equivalent axial stiffness.The damping generated by polymeric layers is relatively smaller than that caused by friction forces.Therefore,it can be concluded that friction forces maybe dominate the axial structural damping,especially on the conditions of high frequency.
基金Supported by Undergraduate Teaching Research and Reform Project of University of Shanghai for Science and Technology in 2024(JGXM24281&JGXM24263)First-class Undergraduate Course Construction Project of University of Shanghai for Science and Technology in 2024(YLKC202424394).
文摘With the reform of experimental teaching in colleges and universities,the teaching mode of"experimental students as the main body,experimental teachers as the guide"needs to constantly explore new experimental teaching methods.In this paper,knowledge graph is integrated into the experiment of mechanical principle to guide undergraduates to use knowledge graph to analyze and summarize independently in experimental teaching activities,aiming at cultivating undergraduates interest in learning and innovative thinking,so as to improve the quality of experimental teaching.This study has a certain reference significance for experimental teaching in colleges and universities.
基金supported by the NSFC (Nos10972113,10572071 and 10732080)the National Basic Research Program of China (Nos2007CB936803 and 2010CB631005)the SRFDP (No20070003053) and the Central Laboratory of Strength and Vibration of Tsinghua University
文摘Two kinds of clamping in micro/nano scale experiments are investigated in this paper, one based on electron-beam-induced deposition, and the other on the van der Waals interaction. The clamping strength and mechanism are analyzed both theoretically and experimentally. The influence of relative humidity on the micro/nano clamping and the method of electrostatic clamping are discussed. The clamping strength and performance of different clamping methods are compared considering the size and material of the clamped objects, and the application environments.
文摘Hydraulic structures such as groin, longitudinal dike and seawall are common in water conservancy and water transportation engineering projects at home and abroad, which have long been dominated by solid mass structural form. With brush and stone as building materials, this kind of structure has an obvious engineering effect. However, it not only requires huge capital investments, but also has negative impacts on the ecological environment. The suspended flexible dam is an innovative engineering measure, and few theoretical and experimental researches of this type dam can be found at present. This paper studies the mechanism and shape characteristics of this dam and obtains the dynamic equilibrium equation of flexible dam, the float buoyancy expression, and the condition for transformation among three forms of the underwater shape of the dam. The results are valuable in engineering application and can be used as the reference for the future work due to the distinctive design philosophy, the small negative effects on environment and the consistency for sustainable development.
基金Chinese Joint Earthquake Sciences Foundation (9507435).
文摘Two rock samples with different structures and materials were deformed under a biaxial loading system, and multi-point strain measurements were performed for each sample. The distribution of strain anomalies during the deformation and the instability process were analyzed by using Cv value put forward by WANG Xiao-qing and CHEN Xue-zhong, et al, a parameter to describe the heterogeneous distribution of earthquake precursors, so as to examine the method of Cv value and to explore its physical meaning experimentally. The result shows that the change of Cv value is correlated to the change of deformation characteristics and is an effective parameter to describe the heterogeneity of precursor distribution. Cv value increases firstly and then decreases before the instability, and the instability occurs when Cv value decreases to the level before increasing. This indicates that Cv value may be a useful parameter for earthquake prediction.
基金Found by the National Natural Science Foundation of China(Nos.51279109 and 51474050)the Liaoning Education Department Funds(No.201364088)
文摘In order to improve the comprehensive utilization of solid waste such as iron tailings and waste glass and so on,mechanical property test of cement tailings mortar mixed waste glass and curing mechanism research were conducted in the key materials mechanics lab of Liaoning province.The experimental results show that adding waste glass particles can improve the grain size distribution of tailings.The effect is proportional to the content.The compressive strength of tailings mortar has increased significantly.The fineness modulus of tailings mortar mixture adding waste glass powder was gradually reducing with the increase of the dosage of waste glass powder,but the compressive strength of the mixture has gradually enhanced with the increase of the dosage.Microscopic analysis shows that the waste glass particles in the mortar mainly play a role of coarse aggregate and glass powder after grinding fine below a certain size shows strong volcanic activity,which can act hydration with tailings,at the same time glass powder also,plays a role in fine aggregate filling.Therefore,all of glass particles and glass powder can be used as the additive material for improving and optimizing the mechanical property of tailings mortar.
文摘Shape memory effect is capability of certain materials to recover its original shape after an apparently permanent deformation. The NiTi alloy of the composition is approximately equiatomic and it is the materials that exhibit the best characteristics for application of these properties, especially in the biomedical area, because of their excellent biocompatibility as: in the manufacture of medical and dental instruments, orthodontic wires, orthopedic materials, guide wires, stents, filters and components to realize the less invasive surgeries. In other areas, they are used for confections of electronic keys, spectacle frames, application in controllers, junction of pipes and electronic connectors among others. New research topics involving the application of these alloys super-elasticity are also known as pseudo elasticity. This event has an isothermal nature and involves the storage of potential energy in the shape memory effect and super-elasticity. In this context, this work falls within the scope of use of the technologies being an example of the work undertaken, in the course Graduate of Federal University of Pernambuco in skills in these technologies. It will present the results of a heat engine which engine element is a helical spring made of a NiTi alloy equiatomic with memory effect reversibly. The spring is triggered by a hot source (- 373.15 K) and a cold source (273.15 K). The machine is capable of producing a reciprocating oscillating between the two sources. Heat equations and the equations that describe the dynamic behavior of the spring were developed. Through the development of dynamic equations, it can determine the minimum mass for the motion of the machine, as well as the instantaneous and average power and overall efficiency. You can check the functionality of the machine by way of the inclination angle of the propeller and the coefficient of static friction. Among the main results, it was observed that the overall performance of the machine compared to the machines of this category showed the feasibility of the project.
文摘Background: The Tiêu equation has a ground roots approach to the process of Quantum Biology and goes deeper through the incorporation of Quantum Mechanics. The process can be measured in plant, animal, and human usage through a variety of experimental or testing forms. Animal studies were conducted for which, in the first day of the study all the animals consistently gained dramatic weight, even as a toxic substance was introduced as described in the introduction of the paper to harm animal subjects which induced weight loss through toxicity. Tests can be made by incorporating blood report results. Human patients were also observed to show improvement to their health as administration of the substance was introduced to the biological mechanism and plants were initially exposed to the substance to observe results. This is consistent with the Tiêu equation which provides that wave function is created as the introduction of the substance to the biological mechanism which supports Quantum Mechanics. The Tiêu equation demonstrates that Quantum Mechanics moves a particle by temperature producing energy thru the blood-brain barrier for example. Methods: The methods for the Tiêu equation incorporate animal studies to include the substance administered through laboratory standards using Good Laboratory Practices under Title 40 C.F.R. § 158. Human patients were treated with the substance by medical professionals who are experts in their field and have knowledge to the response of patients. Plant applications were acquired for observation and guidance of ongoing experiments of animals’ representative for the biologics mechanism. Results: The animal studies along with patient blood testing results have been an impressive line that has followed the Tiêu equation to consistently show improvement in the introduction of the innovation to biologic mechanisms. The mechanism responds to the substance by producing energy to the mechanism with efficient effect. For plant observations, plant organisms responded, and were seen as showing improvement thru visual observation.
文摘According to National Science Foundation (NSF) Director A. Bement, ‘Transformative research is... research driven by ideas that stand a reasonable chance of radically changing our understanding of an important existing scientific concept or leading to the creation of a new paradigm or field of science is also characterized by its challenge to current understanding or its pathway to new frontiers.' Nanotechnology is one of such frontiers. It is the creation of new materials, devices and systems at the molecular level--phenomena associated with atomic and molecular interactions strongly influence macroscopic material properties with significantly improved mechanical, optical, chemical, electrical... properties. Former NSF Director Rita Colwell in 2002 declared, ‘nanoscale technology will have an impact equal to the Industrial Revolution'. The transcendent technologies include nanotechnology, microelectronics, information technology and biotechnology as well as the enabling and supporting mechanical and civil infrastructure systems and materials. These technologies are the primary drivers of the twenty first century and the new economy. Mechanics is an essential eleraent in all of the transcendent technologies. Research opportunities, education and challenges in mechanics, including experimental, numerical and analytical methods in nanomechanics, carbon nano-tubes, bio-inspired materials, fuel cells, as well as improved engineering and design of materials are presented and discussed in this paper.
基金The paper is one Part of a project supported by National Education Commitce Funds for Doctoral Faculty
文摘Underground lifeline engineering (ULE for short) in modern city demands the appreciation of an active fault in buried bedrock . Generally speaking , a large number of urban geological textures of a basement may all be simplified into a dual geological texture model , i. e., the upper part of the basement consists of loose covering layer and the lower part consists of bedrock . The study of an active fault should include three parts of contents , i . e ., to determine the lower time limit of activity of the fault , and the time limit must be recognized by both of designing engineers and geologists ; on the basis of the studies of repetition periods of earthquake occurrence to deter mine whether the fault moves or not during the allowed time of efficacy of buildings and constructions ; for the sake of engineering practice , the active rate of the fault must be given . The fault with different active mechanism has different effects on the ULE . The authors studied the effect of lateral non-uniform overburden site on the ULE by means of the supersonic earthquake modelling . Owing to the lateral non - uniformity of the covering sediments , there occurs an obvious jump of amplitude of the seismic wave propagation near the contact surface between two different sedi ments . In addition , from the modelling experiment curves it may be seen that the different focus mechanisms and different medium characters may also exert an effect in different degrees .
文摘Stresses, particularly those at geometric discontinuities, can influence structural integrity of engineering components. Motivated by the prevalence of cutouts in components, the objective of this paper is to demonstrate ability to stress analyze finite, circularly-perforated orthotropic composites whose external loading may be unknown. Recognizing difficulties in obtaining purely theoretical or numerical solutions, the paper presents a hybrid means of stress analyzing such structures. Individual stresses, including those on the edge of the hole, are obtained in a loaded finite graphite/epoxy composite tensile plate containing a round hole by processing measured values of a single displacement field with an Airy stress function in complex variables. Displacements are recorded by digital image correlation. Traction-free conditions are satisfied analytically at the edge of the hole using conformal mapping and analytic continuation. Stresses satisfy equilibrium and strains satisfy compatibility. Significant features of the technique include its wide applicability, it smooths the measured information, does not require knowing the applied loading, and the rigorous mechanics foundation by which strains are determined from measured displacements.
文摘The development of personalized healthcare is rapidly growing thanks to the support of low-power electronics,advanced fabrication processes and secured data transmission protocols.Long-acting drug delivery systems able to sustain the release of therapeutics in a controllable manner can provide several advantages in the treatment of chronic diseases.Various systems under development control drug release from an implantable reservoir via concentration driven diffusion through nanofluidic membranes.Given the high drug concentration in the reservoir,an inward osmotic fluid transport occurs across the membrane,which counters the outward diffusion of drugs.The resulting osmotic pressure buildup may be sufficient to cause the failure of implants with associated risks to patients.Confidently assessing the osmotic pressure buildup requires testing in vivo.Here,using metal and polymer AM(additive manufacturing)processes,we designed and developed implantable drug reservoirs with embedded strain sensors to directly measure the osmotic pressure in drug delivery implants in vitro and in vivo.
基金Supported by the National Science Foundation of China(E041003)the Fundamental Research Funds for the Central Universities(FRF-TP-15-105 A1)the Postdoctoral Science Foundation of China(2015M580049)
文摘In order to investigate detonation propagation and distribution problems of premixed CH_4 + 2O_2 mixture around a concrete structure such as a refuge chamber,detonation experiments in one small size tube were conducted. A simulation method was developed to obtain the flow field load distribution in the coal mine lane and pressure load of each part for the refuge chamber. Firstly,a physical model of a full-size explosiontest lane was established,which included the refuge chamber. With the calculations of the exact initial detonation pressure,the propagation characteristics of CH_4 + 2O_2 premixed mixture detonation in the lane was simulated. Simulation results of various parts from AUTODYN are recorded,and the shock wave arrival time and the pressure peak can be observed from the detonation pressure-time curve over the changing propagation distance. So curve differences in different locations cannot be ignored. Then by detonation experiments in the small size tube,detonation pressure-time curves and velocity were obtained. Finally the simulation waveform of variation curve agreed well with the experimental results,which validated the detonation simulation method. The difference between shockwaves of the two sensors confirmed that detonation wave changed along with distance and time. These results should be taken into serious consideration for the detonation progration and distribution problem in future researches.
文摘The present work is intended to simulate, in a rotating annulus of stratified liquid, the me-chanical effect of the Xizang (Tibetan) Plateau on the zonal circulation. The main featuresof three flow patterns around the plateau for different Rossby number R and rotating Eulernumber E are analysed. and a division diagram of the flow pattern in (R, E) plane is given.It has been found that under the condition that similarity criterions R and E of the experimentalfluid are the same as those existing in the atmosphere for monthly mean states in spring, au-tumn and winter months, the experimental results are satisfied for the following weathersystems over the plateau and its vicinities: the low vortex, trough and shear line over thesoutheast part of the plateau, the tilted ridge over the northwest part of the plateau, the troughpatterns over the upstream and dewnstream of the plateau, the vertical circulation structure, thejets on both north and southeast sides of the plateau, and so on. This shows that the mechanicaleffect of the Tibetan Plateau on the general circulation over East Asia deserves close atten-tion.
文摘Amyotrophic lateral sclerosis(ALS) is the most common degenerative disease of the motor neuron system. Over the last years, a growing interest was aimed to discovery new innovative and safer therapeutic approaches in the ALS treatment. In this context, the bioactive compounds of Cannabis sativa have shown antioxidant, anti-inflammatory and neuroprotective effects in preclinical models of central nervous system disease. However, most of the studies proving the ability of cannabinoids in delay disease progression and prolong survival in ALS were performed in animal model, whereas the few clinical trials that investigated cannabinoids-based medicines were focused only on the alleviation of ALS-related symptoms, not on the control of disease progression. The aim of this report was to provide a short but important overview of evidences that are useful to better characterize the efficacy as well as the molecular pathways modulated by cannabinoids.
文摘CFD (computational fluid dynamics) is following the trend of CAD and FEA (finite element analysis) to undergraduate education especially with recent advances in commercial codes. It will soon take its place as an expected skill for new engineering graduates. CFD was added as a component to an experiment in a junior level fluid mechanics course. The objectives were to introduce CFD, as an analysis tool, to the students and to support the theoretical concepts of the course. The students were asked to complete an experimental two-dimensional study for a wing in a wind tunnel, to use CFD to simulate the flow, and to predict the aerodynamic lift using CFD as well as the experimentally obtained pressure distribution. In addition, they had to compare their results to published data for the studied wing. Details of the course, the wind tunnel test and the CFD simulations are presented. Samples from the students' work are used in the discussion. The lab activities were successfully completed by the students and the learning objectives were well addressed. One of the valuable outcomes from this lab was the opportunity for the students to integrate multiple fluid mechanics analysis tools and learn about the limits for each tool. CFD also enhanced the learning in the lab activities and increased students' interest in the subject.
文摘Research into the fundamental properties of microcapsules and use of the results to develop a wide variety of products in industries such as printing, fast-moving consumer goods, construction, pharmaceuticals, and agrochemicals is a dynamic and ever-progressing field of study. For microcapsules to be effective in providing protection from harsh environments or delivering large payloads, it is essential to have a good understanding of their properties to enable quality control during formulation, storage, and applications. This review aims to outline the commonly used techniques for determining the physicochemical, struc- tural, and mechanical properties of microcapsules, and highlights the interlinked nature of these three areas with respect to the end-use industrial application. This review provides information on techniques that are well supported in the literature, and also examines microcapsule analytical techniques that will become more prevalent as a result of new technological developments or extensions from other areas of study.