It is generally believed that the lithospheric mantle and the mantle transition zone are important carbon reservoirs.However,the location of carbon storage in Earth's interior and the reasons for carbon enrichment...It is generally believed that the lithospheric mantle and the mantle transition zone are important carbon reservoirs.However,the location of carbon storage in Earth's interior and the reasons for carbon enrichment remain unclear.In this study,we report CO_(2)-rich olivine-hosted melt inclusions in the mantle xenoliths of late Cenozoic basalts from the Penglai area,Hainan Province,which may shed some light on the carbon enrichment process in the lithospheric mantle.We also present a detailed petrological and geochemical investigation of the late Cenozoic basalts and mantle xenoliths from northern Hainan Island.The collected samples of late Cenozoic Hainan Island basalts belong to both alkaline and subalkaline series,showing fractionated REE patterns with high(La/Yb)_(N)values of 3.52–11.77,which are typical for OIB.Based on Al-in-olivine thermometry,the temperatures estimated for the mantle xenoliths can be divided into two groups.One group has temperatures of less than 1050℃,and the other group has temperature ranging from 1050℃to 1282℃.Clinopyroxene(La/Yb)_(N)–Ti/Eu and clinopyroxene Ca/Al–Mg^(#)diagrams indicate that the mantle peridotite experienced metasomatism from both silicate and carbonate melts.Melt inclusions in the olivine of mantle xenoliths include(1)CO_(2)bubble–rich melt inclusions;(2)multiphase melt inclusions(glass+CO_(2)bubble+daughter minerals);(3)pure glass melt inclusions.Magnesite is a daughter mineral in the olivine-hosted melt inclusions,which could be interpreted as a secondary mineral formed by the interactions of CO_(2)-rich fluids with an olivine host,due to post-entrapment effects.The glasses in olivine-hosted melt inclusions have high SiO_(2)contents(60.21–77.72 wt%).Our results suggest that a considerable amount of CO_(2)-rich melt inclusions are captured in the lithospheric mantle during metasomatism.The lithospheric mantle can therefore act as is a‘carbon trap',with much CO_(2)being absorbed by the lithospheric mantle in this way.展开更多
The homogenization of silicate melt inclusions (SMIs),small droplets of silicate melt trapped in magmatic minerals,is an important component of petrogenetic and magmatic research.Conventional homogenization experime...The homogenization of silicate melt inclusions (SMIs),small droplets of silicate melt trapped in magmatic minerals,is an important component of petrogenetic and magmatic research.Conventional homogenization experiments on SMIs use microscope-mounted heating stages capable of producing high temperatures at 1 atm and cold-seal high-pressure vessels.Heating stages are generally used for SMIs with low internal pressures and allow in situ observations of the homogenization processes.In contrast,cold-seal high-pressure vessels are generally used to heat SMIs that have high internal pressures,although the homogenized SMIs can only be observed after quenching in this approach.Here we outline an alternative approach that uses a hydrothermal diamond anvil cell (HDAC) apparatus to homogenize SMIs.This is the only current method wherein phase changes in high-internal-pressure SMIs can be observed in situ during homogenization experiments,which represents an advantage over other conventional methods.Using an HDAC apparatus prevents high-internal-pressure SMIs from decrepitating during heating by elevating their external pressure,in addition to allowing in situ observations of SMIs.The type-V HDAC that is currently being used has a shorter distance between the sample chamber and the observation window than earlier types,potentially enabling continuous observation of the processes involved in heating and SMI homogenization through an objective lens with a long working distance.Homogenization experiments using HDAC require that a number of steps,including HDAC preparation,sample preparation,sample loading,preheating,and formal heating,be carefully followed.Homogenization experiments on SMIs within granite samples from the Jiajika pegmatite deposit (Sichuan,China) are best performed using an HDAC-based approach,because the elevated proper external pressure of these SMIs,combined with a short heating duration,helps to suppress material leakage and any reactions within the SMIs,in addition to allowing in situ observations during homogenization experiments.Furthermore,using the HDAC approach has other benefits:heating rates can be precisely controlled,wafer oxidization can be prevented,and samples can be subjected to in situ microbeam analysis.In summary,homogenization using HDAC provides more reliable results than those obtained using conventional heating equipment.Future developments will include improvements to the quenching method and temperature controls for the HDAC apparatus,thereby improving the utility of this approach for SMI homogenization experiments.展开更多
The Okinawa Trough is an initial back-arc basin that is influenced by the subduction of the Philippine Sea Plate and develops on the continental crust.The Okinawa Trough is a natural laboratory for the study of basin ...The Okinawa Trough is an initial back-arc basin that is influenced by the subduction of the Philippine Sea Plate and develops on the continental crust.The Okinawa Trough is a natural laboratory for the study of basin evolution,magmatism,and crustmantle processes in the early stage of back-arc spreading.Melt inclusions are small droplets of magma that are captured during the mineral crystallization process and can record the geochemical composition changes during magma evolution.In this study,the geochemical compositions of melt inclusions in host plagioclases of two volcanic rock samples at Station nos.9-1 and 9-2 from the southern Okinawa Trough are systematically analyzed.Based on previous studies,the origin and evolution of magma and the introduction of subducting materials in the study area are discussed.Results show that melt inclusions are characterized by the relative enrichment of large-ion lithophile elements,depletion of high-field-strength elements,and slight enrichment of rare earth elements.Indeed,the subduction of the Philippine Sea Plate introduced sediment-derived melts and fluids into the magma source area of the southern Okinawa Trough.Subsequently,4%to 5%partial melting of the hydrated mantle produces basaltic magma.The melt inclusions of andesite and dacite investigated in this study were formed by fractional crystallization of basaltic magma.Finally,the crystallization of plagioclase,pyroxene,and magnetite occurred during the late stage of magma evolution.The temperature-pressure data show that the melt inclusions in plagioclase have two capture periods:one is at temperatures above 1250℃and the other is at temperatures between 1180℃and 1200℃.The capture pressure of the inclusions at temperatures between 1180℃and 1200℃is between 5.6 kPa and 6.1 kPa,corresponding to the depth of 15–17 km below the seafloor.The geochemical characteristics of major and trace elements in inclusions show that the samples from two stations(i.e.,9-1 and 9-2)have similar or identical magma source areas.However,the crystallization differentiation reflected by inclusions in sample 9-1 is more obvious than that in sample 9-2.The inclusions were captured during magma evolution and were not contaminated by crustal materials.展开更多
There occurred several eruptions from Changbaishan Tianchi volcano in Holocene, and at least three of them were believed to be true according to the formal studies. The products of three eruptions were yellow comendit...There occurred several eruptions from Changbaishan Tianchi volcano in Holocene, and at least three of them were believed to be true according to the formal studies. The products of three eruptions were yellow comenditic pumice of - 5000a B.P. (Eruption Ⅰ ), gray comenditic pumice and pyroclastic flow of - 1000a B.P. ( Eruption II, i.e. the millennium explosive eruption), black trachy pumice and welded tuff of - 300a B.P. ( Eruption Ⅲ ) respectively. There were a large number of melt inclusions found in phenocrysts, which differ in size and color. The Leitz 1350 heating stage experiments for melt inclusions in host feldspars from three Holocene eruptions of Changbaishan Tianchi volcano imply that there were little differences between the homogenization temperatures of melt inclusions from Eruptions Ⅰ and Ⅲ, whereas it was rather complicated for Eruption H, i.e. there might be two kinds of melt with different homogenization temperature periods, which gave the evidence for the assumption that the explosive millennium eruption of Tianchi volcano was triggered by injection and mixing of two different magmas. The experimental results also indicate that ( 1 ) small melt inclusion is easy to be homogenized, while the large one, especially the one with lots of daughter crystals, is rather difficult to be homogenized; (2) homogenization temperature closely correlates with the size of melt inclusion within host crystal, with the temperature point switching from high heating rate to low heating rate, and correlates with whether it is the first time to obtain homogenization as well; and (3) a melt inclusion can get different homogenization temperatures when it is repeatedly heated. Even more, the next homogenization temperature is usually higher than the former one, which testifies the phenomenon that hydrogen migration occurs during repeated heating.展开更多
It is of great importance to understand the origin of UG2 chromitite reefs and reasons why some chromitite reefs contain relatively high contents of platinum group elements(PGEs: Os, Ir, Ru, Rh,Pt, Pd) or highly si...It is of great importance to understand the origin of UG2 chromitite reefs and reasons why some chromitite reefs contain relatively high contents of platinum group elements(PGEs: Os, Ir, Ru, Rh,Pt, Pd) or highly siderophile elements(HSEs: Au, Re, PGE). This paper documents sulphide-silicate assemblages enclosed in chromite grains from the UG2 chromitite. These are formed as a result of crystallisation of sulphide and silicate melts that are trapped during chromite crystallisation. The inclusions display negative crystal shapes ranging from several micrometres to 100 μm in size.Interstitial sulphide assemblages lack pyrrhotite and consist of chalcopyrite, pentlandite and some pyrite. The electron microprobe data of these sulphides show that the pentlandite grains present in some of the sulphide inclusions have a significantly higher iron(Fe) and lower nickel(Ni) content than the pentlandite in the rock matrix. Pyrite and chalcopyrite show no difference. The contrast in composition between inter-cumulus plagioclase(An_(68)) and plagioclase enclosed in chromite(An_(13)), as well as the presence of quartz, is consistent with the existence of a felsic melt at the time of chromite saturation.Detailed studies of HSE distribution in the sulphides and chromite were conducted by LA-ICP-MS(laser ablation-inductively coupled plasma-mass spectrometry), which showed the following.(Ⅰ) Chromite contained no detectable HSE in solid solution.(Ⅱ) HSE distribution in sulphide assemblages interstitial to chromite was variable. In general, Pd, Rh, Ru and Ir occurred dominantly in pentlandite, whereas Os,Pt and Au were detected only in matrix sulphide grains and were clearly associated with Bi and Te.(Ⅲ)In the sulphide inclusions,(a) pyrrhotite did not contain any significant amount of HSE,(b) chalcopyrite contained only some Rh compared to the other sulphides,(c) pentlandite was the main host for Pd,(d)pyrite contained most of the Ru, Os, Ir and Re,(e) Pt and Rh were closely associated with Bi forming a continuous rim between pyrite and pentlandite and(f) no Au was detected. These results show that the use of ArF excimer laser to produce high-resolution trace element maps provides information that cannot be obtained by conventional(spot) LA-ICP-MS analysis or trace element maps that use relatively large beam diameters.展开更多
Wudalianchi(五大连池) volcanoes are famous Quaternary ones with fairly good volcanic landscape in Northeast China.The volcanic rocks are phonotephrite,tephri-phonolite,trachyandesite,and basaltic trachyandesite with...Wudalianchi(五大连池) volcanoes are famous Quaternary ones with fairly good volcanic landscape in Northeast China.The volcanic rocks are phonotephrite,tephri-phonolite,trachyandesite,and basaltic trachyandesite with SiO2 contents of 47.3 wt.%-54.2 wt.%.The characteristic of high K2O content in Wudalianchi volcanic rocks suggests that they probably share a common potassic magma source.The magma evolutions of Wudalianchi volcanic rocks are similar,while the new eruption prod-ucts of Laoheishan(老黑山) and Huoshaoshan(火烧山) volcanoes are slightly more evolved than the old eruption materials,i.e.,the magma of the new eruptions in 1719-1721 from the above two volcanoes is the evolved magma in underground chamber.The main phenocrysts of Wudalianchi volcanic rocks are olivines,clinopyroxenes,and some characteristic K-rich leucites.The various-shaped melt inclu-sions are found in olivine phenocrysts from new eruption products of Laoheishan and Huoshaoshan volcanoes.By electron microprobe(EMP) analyzing,the contents of SiO2 and total alkali show a wide range,suggesting that the pre-eruptive magma was probably more complicated,or the melt inclusions were rather unhomogeneous.On the basis of EMP results,it is believed that the sulfur degassing rate from this new eruption was much higher than that of the millennium eruption of Tianchi(天池) volcano,while the chlorine degassing rate was a magnitude lower than that of Tianchi volcano.展开更多
To characterize the magma that gave rise to explosive eruptions of Merapi volcano in October-November 2010, melt inclusions and juvenile components fiom the eruption deposits have been analyzed. Major-element composit...To characterize the magma that gave rise to explosive eruptions of Merapi volcano in October-November 2010, melt inclusions and juvenile components fiom the eruption deposits have been analyzed. Major-element compositions of whole-rocks were analyzed by X-ray fluorescence and trace elements, including the Rare Earth Elements by inductively coupled plasma mass spectrometry. Melt inclusions and the host minerals were analyzed using energy-dispersive X-ray spectroscopy and CO2 and H20 in melt inclusions, and their associated bubbles, were analyzed using laser Raman spectrometry. The compositions of the whole-rock eruption products are basaltic and esite that slightly sifting of SiO2 and K20 composition to previous eruption products, whereas the melt inclusions in pyroxene, plagioclase and hornblende are dacite to rhyolite, likely trapped mainly during late stages of crystallization of the magma. The most high volatile content in the melt inclusion are CO2 and H2O which appear strong Raman peaks for CO2 in the gas bubbles indicate abundances on high levels of CO2. Interpretation of result from a long-term flux of CO2 into the reservoir, either derived from more mafic magmas at depth or from reaction of magma in the reservoir with limestone and it may indicate that volcanic outgassing rates far exceed the amounts that can be supplied magmas.展开更多
This article presents the evidence in support of the direct magma degassing as the principal mechanism of volatiles releasing into the hydrothermal fluids in the Okinawa Trough, as contrasted to the argument for the h...This article presents the evidence in support of the direct magma degassing as the principal mechanism of volatiles releasing into the hydrothermal fluids in the Okinawa Trough, as contrasted to the argument for the hydrothermal stripping of volatiles from the volcanic rocks.\ Laser Raman microprobe and stepped-heating techniques are employed to determine the compositions and contents of the volatiles in pumices in the middle Okinawa Trough. The results show that the volatiles are similar to the gases in the hydrothermal fluids and hydrothermal minerals in composition, the mean percent content of each component and variation trend. This indicates the direct influence of magma degassing on the hydrothermal fluids. In addition, the contents of volatiles in pumices are rather low and do not support the hydrothermal stripping as the main mechanism to enrich the fluids with gases. The results are consistent with the idea that the direct magma degassing is more important than hydrothermal stripping in supplying gases to the hydrothermal fluids in the Okinawa Trough.展开更多
Charnockites sensu lato (charnockite-enderbite series) are lower crustal felsic rocks typically characterised by the presence of anhydrous minerals including orthopyroxene and garnet. They either represent dry (H2O...Charnockites sensu lato (charnockite-enderbite series) are lower crustal felsic rocks typically characterised by the presence of anhydrous minerals including orthopyroxene and garnet. They either represent dry (H2O-poor) felsic magmas that are emplaced in the lower crust or granitic intrusions that have been dehydrated during a subsequent granulite facies metamorphic event. In the first case, post- magmatic high-temperature recrystallisation may result in widespread metamorphic granulite microstruc- tures, superimposed or replacing the magmatic microstructures. Despite recrystallisation, magmatic remnants may still be found, notably in the form of melt-related microstructures such as melt inclusions. For both magmatic charnockites and dehydrated granites, subsequent fluid-mineral interaction at inter- grain boundaries during retrogradation are documented by microstructures including K-feldspar micro- veins and myrmekites. They indicate that a large quantity of low-H2O activity salt-rich brines, were present (together with CO2 under immiscible conditions) in the lower crust.展开更多
The contents of major element composition of the phenocrysts and the matrix glass as well as the spinel inclusions and the melt inclusion in the phenocrysts of the basalt dredged from Station 133 of the Okinawa Trough...The contents of major element composition of the phenocrysts and the matrix glass as well as the spinel inclusions and the melt inclusion in the phenocrysts of the basalt dredged from Station 133 of the Okinawa Trough are determined by electron microprobe. The results show that the basalt is a dor- galite consisting of phenocrysts of bytownite, chrysolite, clinopyroxene and magnetite as well as labradorite microcrystal, matrix glass and a few bits of broken vein quartz. Glassy melt inclusion and chromohercynite or chrompleonaste exist in bytownite and chrysolite. The formation of the spinels is re- lated to partial melting of mantle. The melt inclusions stand for a primary alkali dorgalitic magma, whose composition corresponds to olivine gabbro. The basaltic magma was generated from partial melting of spinel-lherzolite of the upper mantle and evolved in a process of 'alkali dorgalitic magma-trachy- basaltic magma-basdaltic trachytic magma-trachytic magma'. Assimilation and hybridization of crustal material may exist during magma upwelling in every evolutionary stage.展开更多
The Early Permian mafic-ultramafic concentrically zoned Gaositai intrusion at Chengde, on the northern margin of the North China Craton(NCC), is a cumulative complex emplaced along a giant fracture that penetrates dee...The Early Permian mafic-ultramafic concentrically zoned Gaositai intrusion at Chengde, on the northern margin of the North China Craton(NCC), is a cumulative complex emplaced along a giant fracture that penetrates deeply into the continental lithosphere. Melt inclusions are present in chromite crystals from the inner dunite and chromitite zones of the Gaositai complex. The melt inclusions have experienced post-trap crystallization and resulted in multiple mineral phases, including melilite, garnet, phlogopite, magnesite and apatite, which can indicate the liquidus minerals of the primitive magma. The characteristics of the melilite+melanite+clinopyxene assemblage indicate that the primary parental magma was highly undersaturated and derived from an alkali-rich mantle source. The crystallization of phlogopite, magnesite and apatite suggests a primary magma rich in K, H_2O and CO_2. When compared with experimental data, the primary magma of the Gaositai intrusion is concordant with a kamafugite magma originating from partial melting of enriched mantle with H_2O and CO_2 at pressures greater than 2.7 GPa. This magmatic process would have been related to extensional thinning of the continental lithosphere. The Gaositai primary magmas have high Nb/La ratios, which are similar to those of ocean island basalts, but different from arc-related magmas. This suggests that the northern margin of the NCC was not an active continental margin of the Paleo-Asian Ocean subduction zone during the Early Permian: an extensional tectonic setting during the emplacement of the Gaositai intrusion is more likely.展开更多
This paper aims at generally studying on the inclusions of ZGG06Cr13Ni4Mo ultra-low carbon stainless steel used for large scale hydraulic turbine sets. On the basis of analysis the industrial test samples, thermodynam...This paper aims at generally studying on the inclusions of ZGG06Cr13Ni4Mo ultra-low carbon stainless steel used for large scale hydraulic turbine sets. On the basis of analysis the industrial test samples, thermodynamic software FactSage is used to study inclusions transformation process in CaO-SiO2-Al2O3-MgO system while stainless steel is been smelting. The results illustrate the inclusions melting points and plasticity variation law. The reasonable inclusions plasticity controlling area is found out in low melting point. The melting point is up to 1280℃ While MgO weight concentration is 10% in CaO-SiO2-Al2O3-MgO system, SiO2, Al2O3 and CaO in inclusions are in weight concentration range of 50-70%, 10-20% and 10-40%, respectively. For purpose of gaining low melting point inclusions, silicon alumina radio in deoxidant should be controlled between 2-5 for ultra-low carbon stainless steel refining in industry.展开更多
基金supported by the National Key Research and Development Project(Grant.No.2019YFA0708503)。
文摘It is generally believed that the lithospheric mantle and the mantle transition zone are important carbon reservoirs.However,the location of carbon storage in Earth's interior and the reasons for carbon enrichment remain unclear.In this study,we report CO_(2)-rich olivine-hosted melt inclusions in the mantle xenoliths of late Cenozoic basalts from the Penglai area,Hainan Province,which may shed some light on the carbon enrichment process in the lithospheric mantle.We also present a detailed petrological and geochemical investigation of the late Cenozoic basalts and mantle xenoliths from northern Hainan Island.The collected samples of late Cenozoic Hainan Island basalts belong to both alkaline and subalkaline series,showing fractionated REE patterns with high(La/Yb)_(N)values of 3.52–11.77,which are typical for OIB.Based on Al-in-olivine thermometry,the temperatures estimated for the mantle xenoliths can be divided into two groups.One group has temperatures of less than 1050℃,and the other group has temperature ranging from 1050℃to 1282℃.Clinopyroxene(La/Yb)_(N)–Ti/Eu and clinopyroxene Ca/Al–Mg^(#)diagrams indicate that the mantle peridotite experienced metasomatism from both silicate and carbonate melts.Melt inclusions in the olivine of mantle xenoliths include(1)CO_(2)bubble–rich melt inclusions;(2)multiphase melt inclusions(glass+CO_(2)bubble+daughter minerals);(3)pure glass melt inclusions.Magnesite is a daughter mineral in the olivine-hosted melt inclusions,which could be interpreted as a secondary mineral formed by the interactions of CO_(2)-rich fluids with an olivine host,due to post-entrapment effects.The glasses in olivine-hosted melt inclusions have high SiO_(2)contents(60.21–77.72 wt%).Our results suggest that a considerable amount of CO_(2)-rich melt inclusions are captured in the lithospheric mantle during metasomatism.The lithospheric mantle can therefore act as is a‘carbon trap',with much CO_(2)being absorbed by the lithospheric mantle in this way.
基金supported by the Chinese SinoProbe Project (SinoProbe-03-01)the National Natural Science Foundation of China (41372088)the China Geological Survey Program (1212011220805)
文摘The homogenization of silicate melt inclusions (SMIs),small droplets of silicate melt trapped in magmatic minerals,is an important component of petrogenetic and magmatic research.Conventional homogenization experiments on SMIs use microscope-mounted heating stages capable of producing high temperatures at 1 atm and cold-seal high-pressure vessels.Heating stages are generally used for SMIs with low internal pressures and allow in situ observations of the homogenization processes.In contrast,cold-seal high-pressure vessels are generally used to heat SMIs that have high internal pressures,although the homogenized SMIs can only be observed after quenching in this approach.Here we outline an alternative approach that uses a hydrothermal diamond anvil cell (HDAC) apparatus to homogenize SMIs.This is the only current method wherein phase changes in high-internal-pressure SMIs can be observed in situ during homogenization experiments,which represents an advantage over other conventional methods.Using an HDAC apparatus prevents high-internal-pressure SMIs from decrepitating during heating by elevating their external pressure,in addition to allowing in situ observations of SMIs.The type-V HDAC that is currently being used has a shorter distance between the sample chamber and the observation window than earlier types,potentially enabling continuous observation of the processes involved in heating and SMI homogenization through an objective lens with a long working distance.Homogenization experiments using HDAC require that a number of steps,including HDAC preparation,sample preparation,sample loading,preheating,and formal heating,be carefully followed.Homogenization experiments on SMIs within granite samples from the Jiajika pegmatite deposit (Sichuan,China) are best performed using an HDAC-based approach,because the elevated proper external pressure of these SMIs,combined with a short heating duration,helps to suppress material leakage and any reactions within the SMIs,in addition to allowing in situ observations during homogenization experiments.Furthermore,using the HDAC approach has other benefits:heating rates can be precisely controlled,wafer oxidization can be prevented,and samples can be subjected to in situ microbeam analysis.In summary,homogenization using HDAC provides more reliable results than those obtained using conventional heating equipment.Future developments will include improvements to the quenching method and temperature controls for the HDAC apparatus,thereby improving the utility of this approach for SMI homogenization experiments.
基金the Na-tional Program on Key Basic Research of China(973 Program)(No.2013CB429702).
文摘The Okinawa Trough is an initial back-arc basin that is influenced by the subduction of the Philippine Sea Plate and develops on the continental crust.The Okinawa Trough is a natural laboratory for the study of basin evolution,magmatism,and crustmantle processes in the early stage of back-arc spreading.Melt inclusions are small droplets of magma that are captured during the mineral crystallization process and can record the geochemical composition changes during magma evolution.In this study,the geochemical compositions of melt inclusions in host plagioclases of two volcanic rock samples at Station nos.9-1 and 9-2 from the southern Okinawa Trough are systematically analyzed.Based on previous studies,the origin and evolution of magma and the introduction of subducting materials in the study area are discussed.Results show that melt inclusions are characterized by the relative enrichment of large-ion lithophile elements,depletion of high-field-strength elements,and slight enrichment of rare earth elements.Indeed,the subduction of the Philippine Sea Plate introduced sediment-derived melts and fluids into the magma source area of the southern Okinawa Trough.Subsequently,4%to 5%partial melting of the hydrated mantle produces basaltic magma.The melt inclusions of andesite and dacite investigated in this study were formed by fractional crystallization of basaltic magma.Finally,the crystallization of plagioclase,pyroxene,and magnetite occurred during the late stage of magma evolution.The temperature-pressure data show that the melt inclusions in plagioclase have two capture periods:one is at temperatures above 1250℃and the other is at temperatures between 1180℃and 1200℃.The capture pressure of the inclusions at temperatures between 1180℃and 1200℃is between 5.6 kPa and 6.1 kPa,corresponding to the depth of 15–17 km below the seafloor.The geochemical characteristics of major and trace elements in inclusions show that the samples from two stations(i.e.,9-1 and 9-2)have similar or identical magma source areas.However,the crystallization differentiation reflected by inclusions in sample 9-1 is more obvious than that in sample 9-2.The inclusions were captured during magma evolution and were not contaminated by crustal materials.
基金This research was jointly supported by basic scientific research project of Institute of Geology, CEA (DF-IGCEA-060719)National Natural Science Foundation of China(40672043)+1 种基金Science and Technology Tackling Project of CEA (2006BAC01B040104)China Scholarship Council,Ministry of Education
文摘There occurred several eruptions from Changbaishan Tianchi volcano in Holocene, and at least three of them were believed to be true according to the formal studies. The products of three eruptions were yellow comenditic pumice of - 5000a B.P. (Eruption Ⅰ ), gray comenditic pumice and pyroclastic flow of - 1000a B.P. ( Eruption II, i.e. the millennium explosive eruption), black trachy pumice and welded tuff of - 300a B.P. ( Eruption Ⅲ ) respectively. There were a large number of melt inclusions found in phenocrysts, which differ in size and color. The Leitz 1350 heating stage experiments for melt inclusions in host feldspars from three Holocene eruptions of Changbaishan Tianchi volcano imply that there were little differences between the homogenization temperatures of melt inclusions from Eruptions Ⅰ and Ⅲ, whereas it was rather complicated for Eruption H, i.e. there might be two kinds of melt with different homogenization temperature periods, which gave the evidence for the assumption that the explosive millennium eruption of Tianchi volcano was triggered by injection and mixing of two different magmas. The experimental results also indicate that ( 1 ) small melt inclusion is easy to be homogenized, while the large one, especially the one with lots of daughter crystals, is rather difficult to be homogenized; (2) homogenization temperature closely correlates with the size of melt inclusion within host crystal, with the temperature point switching from high heating rate to low heating rate, and correlates with whether it is the first time to obtain homogenization as well; and (3) a melt inclusion can get different homogenization temperatures when it is repeatedly heated. Even more, the next homogenization temperature is usually higher than the former one, which testifies the phenomenon that hydrogen migration occurs during repeated heating.
基金granted by Laurentian UniversityNational Key R&D Program of China(Grant No.2016YFC0600207)
文摘It is of great importance to understand the origin of UG2 chromitite reefs and reasons why some chromitite reefs contain relatively high contents of platinum group elements(PGEs: Os, Ir, Ru, Rh,Pt, Pd) or highly siderophile elements(HSEs: Au, Re, PGE). This paper documents sulphide-silicate assemblages enclosed in chromite grains from the UG2 chromitite. These are formed as a result of crystallisation of sulphide and silicate melts that are trapped during chromite crystallisation. The inclusions display negative crystal shapes ranging from several micrometres to 100 μm in size.Interstitial sulphide assemblages lack pyrrhotite and consist of chalcopyrite, pentlandite and some pyrite. The electron microprobe data of these sulphides show that the pentlandite grains present in some of the sulphide inclusions have a significantly higher iron(Fe) and lower nickel(Ni) content than the pentlandite in the rock matrix. Pyrite and chalcopyrite show no difference. The contrast in composition between inter-cumulus plagioclase(An_(68)) and plagioclase enclosed in chromite(An_(13)), as well as the presence of quartz, is consistent with the existence of a felsic melt at the time of chromite saturation.Detailed studies of HSE distribution in the sulphides and chromite were conducted by LA-ICP-MS(laser ablation-inductively coupled plasma-mass spectrometry), which showed the following.(Ⅰ) Chromite contained no detectable HSE in solid solution.(Ⅱ) HSE distribution in sulphide assemblages interstitial to chromite was variable. In general, Pd, Rh, Ru and Ir occurred dominantly in pentlandite, whereas Os,Pt and Au were detected only in matrix sulphide grains and were clearly associated with Bi and Te.(Ⅲ)In the sulphide inclusions,(a) pyrrhotite did not contain any significant amount of HSE,(b) chalcopyrite contained only some Rh compared to the other sulphides,(c) pentlandite was the main host for Pd,(d)pyrite contained most of the Ru, Os, Ir and Re,(e) Pt and Rh were closely associated with Bi forming a continuous rim between pyrite and pentlandite and(f) no Au was detected. These results show that the use of ArF excimer laser to produce high-resolution trace element maps provides information that cannot be obtained by conventional(spot) LA-ICP-MS analysis or trace element maps that use relatively large beam diameters.
基金supported by the National Eleventh Five-Year Plan, Short Term Prediction of Strong Earthquake and a Study on Hazard Relief (No. 2006BAC01B040104), of Chinathe Joint Earthquake Science Foundation of China Earthquake Administration (No. 106052)the State Key Laboratory for Mineral Deposits Research, Nanjing University (No. 12-06-05)
文摘Wudalianchi(五大连池) volcanoes are famous Quaternary ones with fairly good volcanic landscape in Northeast China.The volcanic rocks are phonotephrite,tephri-phonolite,trachyandesite,and basaltic trachyandesite with SiO2 contents of 47.3 wt.%-54.2 wt.%.The characteristic of high K2O content in Wudalianchi volcanic rocks suggests that they probably share a common potassic magma source.The magma evolutions of Wudalianchi volcanic rocks are similar,while the new eruption prod-ucts of Laoheishan(老黑山) and Huoshaoshan(火烧山) volcanoes are slightly more evolved than the old eruption materials,i.e.,the magma of the new eruptions in 1719-1721 from the above two volcanoes is the evolved magma in underground chamber.The main phenocrysts of Wudalianchi volcanic rocks are olivines,clinopyroxenes,and some characteristic K-rich leucites.The various-shaped melt inclu-sions are found in olivine phenocrysts from new eruption products of Laoheishan and Huoshaoshan volcanoes.By electron microprobe(EMP) analyzing,the contents of SiO2 and total alkali show a wide range,suggesting that the pre-eruptive magma was probably more complicated,or the melt inclusions were rather unhomogeneous.On the basis of EMP results,it is believed that the sulfur degassing rate from this new eruption was much higher than that of the millennium eruption of Tianchi(天池) volcano,while the chlorine degassing rate was a magnitude lower than that of Tianchi volcano.
文摘To characterize the magma that gave rise to explosive eruptions of Merapi volcano in October-November 2010, melt inclusions and juvenile components fiom the eruption deposits have been analyzed. Major-element compositions of whole-rocks were analyzed by X-ray fluorescence and trace elements, including the Rare Earth Elements by inductively coupled plasma mass spectrometry. Melt inclusions and the host minerals were analyzed using energy-dispersive X-ray spectroscopy and CO2 and H20 in melt inclusions, and their associated bubbles, were analyzed using laser Raman spectrometry. The compositions of the whole-rock eruption products are basaltic and esite that slightly sifting of SiO2 and K20 composition to previous eruption products, whereas the melt inclusions in pyroxene, plagioclase and hornblende are dacite to rhyolite, likely trapped mainly during late stages of crystallization of the magma. The most high volatile content in the melt inclusion are CO2 and H2O which appear strong Raman peaks for CO2 in the gas bubbles indicate abundances on high levels of CO2. Interpretation of result from a long-term flux of CO2 into the reservoir, either derived from more mafic magmas at depth or from reaction of magma in the reservoir with limestone and it may indicate that volcanic outgassing rates far exceed the amounts that can be supplied magmas.
基金This work was supported by the Major State Basic Research Program(No.G2000078503)Shandong Natural Science Foundation(No.Y2000E06).
文摘This article presents the evidence in support of the direct magma degassing as the principal mechanism of volatiles releasing into the hydrothermal fluids in the Okinawa Trough, as contrasted to the argument for the hydrothermal stripping of volatiles from the volcanic rocks.\ Laser Raman microprobe and stepped-heating techniques are employed to determine the compositions and contents of the volatiles in pumices in the middle Okinawa Trough. The results show that the volatiles are similar to the gases in the hydrothermal fluids and hydrothermal minerals in composition, the mean percent content of each component and variation trend. This indicates the direct influence of magma degassing on the hydrothermal fluids. In addition, the contents of volatiles in pumices are rather low and do not support the hydrothermal stripping as the main mechanism to enrich the fluids with gases. The results are consistent with the idea that the direct magma degassing is more important than hydrothermal stripping in supplying gases to the hydrothermal fluids in the Okinawa Trough.
文摘Charnockites sensu lato (charnockite-enderbite series) are lower crustal felsic rocks typically characterised by the presence of anhydrous minerals including orthopyroxene and garnet. They either represent dry (H2O-poor) felsic magmas that are emplaced in the lower crust or granitic intrusions that have been dehydrated during a subsequent granulite facies metamorphic event. In the first case, post- magmatic high-temperature recrystallisation may result in widespread metamorphic granulite microstruc- tures, superimposed or replacing the magmatic microstructures. Despite recrystallisation, magmatic remnants may still be found, notably in the form of melt-related microstructures such as melt inclusions. For both magmatic charnockites and dehydrated granites, subsequent fluid-mineral interaction at inter- grain boundaries during retrogradation are documented by microstructures including K-feldspar micro- veins and myrmekites. They indicate that a large quantity of low-H2O activity salt-rich brines, were present (together with CO2 under immiscible conditions) in the lower crust.
基金This work was supported by the Youth Oceanic Science Foundation of State Oceanic Administration of China under contract!No. 94-2
文摘The contents of major element composition of the phenocrysts and the matrix glass as well as the spinel inclusions and the melt inclusion in the phenocrysts of the basalt dredged from Station 133 of the Okinawa Trough are determined by electron microprobe. The results show that the basalt is a dor- galite consisting of phenocrysts of bytownite, chrysolite, clinopyroxene and magnetite as well as labradorite microcrystal, matrix glass and a few bits of broken vein quartz. Glassy melt inclusion and chromohercynite or chrompleonaste exist in bytownite and chrysolite. The formation of the spinels is re- lated to partial melting of mantle. The melt inclusions stand for a primary alkali dorgalitic magma, whose composition corresponds to olivine gabbro. The basaltic magma was generated from partial melting of spinel-lherzolite of the upper mantle and evolved in a process of 'alkali dorgalitic magma-trachy- basaltic magma-basdaltic trachytic magma-trachytic magma'. Assimilation and hybridization of crustal material may exist during magma upwelling in every evolutionary stage.
基金the National Basic Research Program of China (Grant No. 2013CB429801)National Natural Science Foundation of China (Grant No. 41172196)
文摘The Early Permian mafic-ultramafic concentrically zoned Gaositai intrusion at Chengde, on the northern margin of the North China Craton(NCC), is a cumulative complex emplaced along a giant fracture that penetrates deeply into the continental lithosphere. Melt inclusions are present in chromite crystals from the inner dunite and chromitite zones of the Gaositai complex. The melt inclusions have experienced post-trap crystallization and resulted in multiple mineral phases, including melilite, garnet, phlogopite, magnesite and apatite, which can indicate the liquidus minerals of the primitive magma. The characteristics of the melilite+melanite+clinopyxene assemblage indicate that the primary parental magma was highly undersaturated and derived from an alkali-rich mantle source. The crystallization of phlogopite, magnesite and apatite suggests a primary magma rich in K, H_2O and CO_2. When compared with experimental data, the primary magma of the Gaositai intrusion is concordant with a kamafugite magma originating from partial melting of enriched mantle with H_2O and CO_2 at pressures greater than 2.7 GPa. This magmatic process would have been related to extensional thinning of the continental lithosphere. The Gaositai primary magmas have high Nb/La ratios, which are similar to those of ocean island basalts, but different from arc-related magmas. This suggests that the northern margin of the NCC was not an active continental margin of the Paleo-Asian Ocean subduction zone during the Early Permian: an extensional tectonic setting during the emplacement of the Gaositai intrusion is more likely.
文摘This paper aims at generally studying on the inclusions of ZGG06Cr13Ni4Mo ultra-low carbon stainless steel used for large scale hydraulic turbine sets. On the basis of analysis the industrial test samples, thermodynamic software FactSage is used to study inclusions transformation process in CaO-SiO2-Al2O3-MgO system while stainless steel is been smelting. The results illustrate the inclusions melting points and plasticity variation law. The reasonable inclusions plasticity controlling area is found out in low melting point. The melting point is up to 1280℃ While MgO weight concentration is 10% in CaO-SiO2-Al2O3-MgO system, SiO2, Al2O3 and CaO in inclusions are in weight concentration range of 50-70%, 10-20% and 10-40%, respectively. For purpose of gaining low melting point inclusions, silicon alumina radio in deoxidant should be controlled between 2-5 for ultra-low carbon stainless steel refining in industry.