In the process of numerical control machining simulation,the workpiece surface is usually described with the uniform triangular mesh model.To alleviate the contradiction between the simulation speed and accuracy in th...In the process of numerical control machining simulation,the workpiece surface is usually described with the uniform triangular mesh model.To alleviate the contradiction between the simulation speed and accuracy in this model,two improved methods,i.e.,the local refinement triangular mesh modeling method and the adaptive triangular mesh modeling method were presented.The simulation results show that when the final shape of the workpiece is known and its mathematic representation is simple,the local refinement triangular mesh modeling method is preferred;when the final shape of the workpiece is unknown and its mathematic description is complicated,the adaptive triangular mesh modeling method is more suitable.The experimental results show that both methods are more targeted and practical and can meet the requirements of real-time and precision in simulation.展开更多
A bogus typhoon scheme,designed for the initialization of a typhoon track prediction model,is developed in thispaper.This scheme includes both effects of axisymmetric wind and asymmetric wind.Experimental forecasts us...A bogus typhoon scheme,designed for the initialization of a typhoon track prediction model,is developed in thispaper.This scheme includes both effects of axisymmetric wind and asymmetric wind.Experimental forecasts using atwo-way interactive movable nested mesh model show that the forecast skill of typhoon tracks has clearly improvedafter introducing the bogus typhoon into the initial fields.展开更多
Three-dimensional(3-D)Markov cubic random mesh models are presented andproved in the form of two theorems in details.Its applications to the modeling and description of3-D images are described.The model presented here...Three-dimensional(3-D)Markov cubic random mesh models are presented andproved in the form of two theorems in details.Its applications to the modeling and description of3-D images are described.The model presented here is a appropriate mathematical tool for thesegmentation,modeling,classification and other processing.Finally,an example is given.展开更多
Migration and accumulation simulation of oil and gas in carrier systems has always been a difficult subject in the quantitative study of petroleum geology. In view of the fact that the traditional geological modeling ...Migration and accumulation simulation of oil and gas in carrier systems has always been a difficult subject in the quantitative study of petroleum geology. In view of the fact that the traditional geological modeling technology can not establish the interrelation of carriers in three dimensional space, we have proposed a hybrid-dimensional mesh modeling technology consisting of body(stratum), surfaces(faults and unconformities), lines and points, which provides an important research method for the description of geometry of sand bodies, faults and unconformities, the 3 D geological modeling of complex tectonic areas, and the simulation of hydrocarbon migration and accumulation. Furthermore, we have advanced a 3 D hydrocarbon migration pathway tracking method based on the hybrid-dimensional mesh of the carrier system. The application of this technology in western Luliang Uplift of Junggar Basin shows that the technology can effectively characterize the transport effect of fault planes, unconformities and sand bodies, indicate the hydrocarbon migration pathways, simulate the process of oil accumulation, reservoir adjustment and secondary reservoir formation, predict the hydrocarbon distribution. It is found through the simulation that the areas around the paleo-oil reservoir and covered by migration pathways are favorable sites for oil and gas distribution.展开更多
We propose a robust blind watermarking algorithm for three-dimensional(3D)mesh models based on vertex curvature to maintain good robustness and improve visual masking in 3D mesh models.In the embedding process,by usin...We propose a robust blind watermarking algorithm for three-dimensional(3D)mesh models based on vertex curvature to maintain good robustness and improve visual masking in 3D mesh models.In the embedding process,by using the local window of vertex,the root mean square curvature is calculated for every vertex of the 3D mesh model and an ordered set of fluctuation values is obtained.According to the ordered fluctuation values,the vertices are separated into bins.In each bin the fluctuation values are normalized.Finally,the mean of the root mean square curvature fluctuation values of the vertices in each bin is modulated to embed watermark information.In watermark detection,the algorithm uses a blind watermark extraction technique to extract the watermark information.The experimental results show that the algorithm has a very good performance for visual masking of the embedded model and that it can resist a variety of common attacks such as vertex rearrangement,rotation,translating,uniform scaling,noise,smoothing,quantization,and simplification.展开更多
Due to the shortages of current methods for the recovery of sharp features of mesh models with holes,this paper presents two novel algorithms for the recovery of features(especially sharp features)in mesh models.One a...Due to the shortages of current methods for the recovery of sharp features of mesh models with holes,this paper presents two novel algorithms for the recovery of features(especially sharp features)in mesh models.One algorithm defines an energy that is regarded as the difference between the initial features and the ideal features.The optimal solution of the energy optimization problem modifies the initial features.The algorithm has good performance on sharp features.The other method establishes a plane cluster for each initial feature point to obtain a corresponding modified feature point.If necessary,we can obtain the modified feature line by fitting these modified points.Both methods depend little on the result of fillingmodel holes and result in better features,which maintain the sharp geometric characteristic and the smoothness of the model.The experimental results of the two algorithms demonstrate their superiority and rationality compared with the existing methods.展开更多
Purpose – In the process of robot shell design, it is necessary to match the shape of the input 3D originalcharacter mesh model and robot endoskeleton, in order to make the input model fit for robot and avoidcollisio...Purpose – In the process of robot shell design, it is necessary to match the shape of the input 3D originalcharacter mesh model and robot endoskeleton, in order to make the input model fit for robot and avoidcollision. So, the purpose of this paper is to find an object of reference, which can be used for the process ofshape matching.Design/methodology/approach – In this work, the authors propose an interior bounded box (IBB)approach that derives from oriented bounding box (OBB). This kind of box is inside the closed mesh model.At the same time, it has maximum volume which is aligned with the object axis but is enclosed by all the meshvertices. Based on the IBB of input mesh model and the OBB of robot endoskeleton, the authors can completethe process of shape matching. In this paper, the authors use an evolutionary algorithm, covariance matrixadaptation evolution strategy (CMA-ES), to approximate the IBB based on skeleton and symmetry of inputcharacter mesh model.Findings – Based on the evolutionary algorithm CMA-ES, the optimal position and scale informationof IBB can be found. The authors can obtain satisfactory IBB result after this optimization process.The output IBB has maximum volume and is enveloped by the input character mesh model as well.Originality/value – To the best knowledge of the authors, the IBB is first proposed and used in the field ofrobot shell design. Taking advantage of the IBB, people can quickly obtain a shell model that fit for robot.At the same time, it can avoid collision between shell model and the robot endoskeleton.展开更多
Many biological settings involve complex fluids that have non-Newtonian mechanical responses that arise from suspended microstructures.In contrast,Newtonian fluids are liquids or mixtures of a simple molecular structu...Many biological settings involve complex fluids that have non-Newtonian mechanical responses that arise from suspended microstructures.In contrast,Newtonian fluids are liquids or mixtures of a simple molecular structure that exhibit a linear relationship between the shear stress and the rate of deformation.In modeling complex fluids,the extra stress from the non-Newtonian contribution must be included in the governing equations.In this study we compare Lagrangian mesh and Oldroyd-B formulations of fluidstructure interaction in an immersed boundary framework.The start-up phase of planar Poiseuille flow between two parallel plates is used as a test case for the fluid models.For Newtonian and Oldroyd-B fluids there exist analytical solutions which are used in the comparison of simulation and theoretical results.The Lagrangian mesh results are compared with Oldroyd-B using comparable parameters.A regridding algorithm is introduced for the Lagrangian mesh model.We show that the Lagrangian mesh model simulations with regridding produce results in close agreement with the Oldfoyd-B model.展开更多
Displacement is a critical indicator for mechanical systems and civil structures.Conventional vision-based displacement recognition methods mainly focus on the sparse identification of limited measurement points,and t...Displacement is a critical indicator for mechanical systems and civil structures.Conventional vision-based displacement recognition methods mainly focus on the sparse identification of limited measurement points,and the motion representation of an entire structure is very challenging.This study proposes a novel Nodes2STRNet for structural dense displacement recognition using a handful of structural control nodes based on a deformable structural three-dimensional mesh model,which consists of control node estimation subnetwork(NodesEstimate)and pose parameter recognition subnetwork(Nodes2PoseNet).NodesEstimate calculates the dense optical flow field based on FlowNet 2.0 and generates structural control node coordinates.Nodes2PoseNet uses structural control node coordinates as input and regresses structural pose parameters by a multilayer perceptron.A self-supervised learning strategy is designed with a mean square error loss and L2 regularization to train Nodes2PoseNet.The effectiveness and accuracy of dense displacement recognition and robustness to light condition variations are validated by seismic shaking table tests of a four-story-building model.Comparative studies with image-segmentation-based Structure-PoseNet show that the proposed Nodes2STRNet can achieve higher accuracy and better robustness against light condition variations.In addition,NodesEstimate does not require retraining when faced with new scenarios,and Nodes2PoseNet has high self-supervised training efficiency with only a few control nodes instead of fully supervised pixel-level segmentation.展开更多
A compound oscillatory roller reducer(CORR)with a first-stage gear transmission and a second-stage oscillatory roller transmission is presented.The transmission principle of oscillatory roller transmission is introduc...A compound oscillatory roller reducer(CORR)with a first-stage gear transmission and a second-stage oscillatory roller transmission is presented.The transmission principle of oscillatory roller transmission is introduced,and the tooth profile equation of the inner gear is derived.The analytical model of mesh force considering the installation errors and manufacturing errors is proposed.Then,parametric studies considering different errors on the mesh force are conducted.Results show that the design parameters are significant factors for mesh force.The mesh force is reduced by 17%as the eccentricity of disk cam increases from 2.5 mm to 4 mm.When the radius of the movable roller increases from 7 mm to 20 mm,the mesh force decreases by 8%.As the radius of disk cam increases from 125 mm to 170 mm,the mesh force is decreased by 26.5%.For the impacts of errors,the mesh force has a noticeable fluctuation when these errors exist including the manufacturing error of disk cam,the installation error of disk cam and the manufacturing error of movable roller change.The prototype of the reducer is manufactured and preliminary run-in test proved the feasibility of the transmission principle.展开更多
In order to study the constitutive behavior of concrete in mesoscopic level, a new method is proposed in this paper. This method uses random polygon particles to simulate full grading broken aggregates of concrete. Ba...In order to study the constitutive behavior of concrete in mesoscopic level, a new method is proposed in this paper. This method uses random polygon particles to simulate full grading broken aggregates of concrete. Based on computational geometry, we carry out the automatic generation of the triangle finite element mesh for the model of random polygon particles of concrete. The finite element mesh generated in this paper is also applicable to many other numerical methods.展开更多
We investigated how density and quality of mesh around interest domain affect electromagnetic (EM) responses of 3D Earth layered media using finite element method (FEM). Effect of different mesh shapes was also in...We investigated how density and quality of mesh around interest domain affect electromagnetic (EM) responses of 3D Earth layered media using finite element method (FEM). Effect of different mesh shapes was also investigated using a method of mixing structured and unstructured mesh. As a case study, we estimated the effects of meshing on selectivity phenomenon of seismic electric signal (SES). Our results suggest that the relative errors resulting from mesh effects may not be negligible, which may lead to some unconvincing explanation of the SES selectivity based on the numerical modeling results.展开更多
This paper presents an approach which enables surface modelling, mesh generation and the Finite Element (FE) analysis to be integrated together to simulate superplastic forming process for complex shaped components. T...This paper presents an approach which enables surface modelling, mesh generation and the Finite Element (FE) analysis to be integrated together to simulate superplastic forming process for complex shaped components. Techniques have been developed to generate an FE mesh over non-four-sided surface areas, the boundaries of which are Bezier curves of arbitrary degree, using a consistent expression. Theoretical evidence is given to determine the number of Bezier triangular patches required for accurately re-constructing die surfaces within a commercial FE solver. The developed techniques have been successfully used in determining the process parameters for forming a 3D rectangular box.展开更多
Emulating massively parallel computer architectures represents a very important tool for the parallel programmers. It allows them to implement and validate their algorithms. Due to the high cost of the massively paral...Emulating massively parallel computer architectures represents a very important tool for the parallel programmers. It allows them to implement and validate their algorithms. Due to the high cost of the massively parallel real machines, they remain unavailable and not popular in the parallel computing community. The goal of this paper is to present an elaborated emulator of a 2-D massively parallel re-configurable mesh computer of size n x n processing elements (PE). Basing on the object modeling method, we develop a hard kernel of a parallel virtual machine in which we translate all the physical properties of its different components. A parallel programming language and its compiler are also devel-oped to edit, compile and run programs. The developed emulator is a multi platform system. It can be installed in any sequential computer whatever may be its operating system and its processing unit technology (CPU). The size n x n of this virtual re-configurable mesh is not limited;it depends just on the performance of the sequential machine supporting the emulator.展开更多
As the mesh models usually contain noise data,it is necessary to eliminate the noises and smooth the mesh.But existed methods always lose geometric features during the smoothing process.Hence,the noise is considered a...As the mesh models usually contain noise data,it is necessary to eliminate the noises and smooth the mesh.But existed methods always lose geometric features during the smoothing process.Hence,the noise is considered as a kind of random signal with high frequency,and then the mesh model smoothing is operated with signal processing theory.Local wave analysis is used to deal with geometric signal,and then a novel mesh smoothing method based on the local wave is proposed.The proposed method includes following steps:Firstly,analyze the principle of local wave decomposition for 1D signal,and expand it to 2D signal and 3D spherical surface signal processing;Secondly,map the mesh to the spherical surface with parameterization,resample the spherical mesh and decompose the spherical signals by local wave analysis;Thirdly,propose the coordinate smoothing and radical radius smoothing methods,the former filters the mesh points' coordinates by local wave,and the latter filters the radical radius from their geometric center to mesh points by local wave;Finally,remove the high-frequency component of spherical signal,and obtain the smooth mesh model with inversely mapping from the spherical signal.Several mesh models with Gaussian noise are processed by local wave based method and other compared methods.The results show that local wave based method can obtain better smoothing performance,and reserve more original geometric features at the same time.展开更多
基金Project(60772089) supported by the National Natural Science Foundation of ChinaProject(20080440939) supported by the China Postdoctoral Science Foundation
文摘In the process of numerical control machining simulation,the workpiece surface is usually described with the uniform triangular mesh model.To alleviate the contradiction between the simulation speed and accuracy in this model,two improved methods,i.e.,the local refinement triangular mesh modeling method and the adaptive triangular mesh modeling method were presented.The simulation results show that when the final shape of the workpiece is known and its mathematic representation is simple,the local refinement triangular mesh modeling method is preferred;when the final shape of the workpiece is unknown and its mathematic description is complicated,the adaptive triangular mesh modeling method is more suitable.The experimental results show that both methods are more targeted and practical and can meet the requirements of real-time and precision in simulation.
文摘A bogus typhoon scheme,designed for the initialization of a typhoon track prediction model,is developed in thispaper.This scheme includes both effects of axisymmetric wind and asymmetric wind.Experimental forecasts using atwo-way interactive movable nested mesh model show that the forecast skill of typhoon tracks has clearly improvedafter introducing the bogus typhoon into the initial fields.
文摘Three-dimensional(3-D)Markov cubic random mesh models are presented andproved in the form of two theorems in details.Its applications to the modeling and description of3-D images are described.The model presented here is a appropriate mathematical tool for thesegmentation,modeling,classification and other processing.Finally,an example is given.
基金Supported by the China National Science and Technology Major Project(2017ZX05008-006)
文摘Migration and accumulation simulation of oil and gas in carrier systems has always been a difficult subject in the quantitative study of petroleum geology. In view of the fact that the traditional geological modeling technology can not establish the interrelation of carriers in three dimensional space, we have proposed a hybrid-dimensional mesh modeling technology consisting of body(stratum), surfaces(faults and unconformities), lines and points, which provides an important research method for the description of geometry of sand bodies, faults and unconformities, the 3 D geological modeling of complex tectonic areas, and the simulation of hydrocarbon migration and accumulation. Furthermore, we have advanced a 3 D hydrocarbon migration pathway tracking method based on the hybrid-dimensional mesh of the carrier system. The application of this technology in western Luliang Uplift of Junggar Basin shows that the technology can effectively characterize the transport effect of fault planes, unconformities and sand bodies, indicate the hydrocarbon migration pathways, simulate the process of oil accumulation, reservoir adjustment and secondary reservoir formation, predict the hydrocarbon distribution. It is found through the simulation that the areas around the paleo-oil reservoir and covered by migration pathways are favorable sites for oil and gas distribution.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20113227110021)
文摘We propose a robust blind watermarking algorithm for three-dimensional(3D)mesh models based on vertex curvature to maintain good robustness and improve visual masking in 3D mesh models.In the embedding process,by using the local window of vertex,the root mean square curvature is calculated for every vertex of the 3D mesh model and an ordered set of fluctuation values is obtained.According to the ordered fluctuation values,the vertices are separated into bins.In each bin the fluctuation values are normalized.Finally,the mean of the root mean square curvature fluctuation values of the vertices in each bin is modulated to embed watermark information.In watermark detection,the algorithm uses a blind watermark extraction technique to extract the watermark information.The experimental results show that the algorithm has a very good performance for visual masking of the embedded model and that it can resist a variety of common attacks such as vertex rearrangement,rotation,translating,uniform scaling,noise,smoothing,quantization,and simplification.
基金The authors are supported by a NKBRPC(2011CB302400)the National Natural Science Foundation of China(11171322 and 11371341)the 111 Project(No.b07033).
文摘Due to the shortages of current methods for the recovery of sharp features of mesh models with holes,this paper presents two novel algorithms for the recovery of features(especially sharp features)in mesh models.One algorithm defines an energy that is regarded as the difference between the initial features and the ideal features.The optimal solution of the energy optimization problem modifies the initial features.The algorithm has good performance on sharp features.The other method establishes a plane cluster for each initial feature point to obtain a corresponding modified feature point.If necessary,we can obtain the modified feature line by fitting these modified points.Both methods depend little on the result of fillingmodel holes and result in better features,which maintain the sharp geometric characteristic and the smoothness of the model.The experimental results of the two algorithms demonstrate their superiority and rationality compared with the existing methods.
基金This research,which is carried out at BeingThere Centre,collaboration among IMI of Nanyang Technological University(NTU)Singapore,ETH Zurich and UNC Chapel Hill,is supported by the Singapore National Research Foundation(NRF)under its International Research Centre@Singapore Funding Initiative and administered by the Interactive Digital Media Programme Office(IDMPO).The author Shihui Guo is supported by Chinese Post-doctoral Science Foundation 2016M600506.
文摘Purpose – In the process of robot shell design, it is necessary to match the shape of the input 3D originalcharacter mesh model and robot endoskeleton, in order to make the input model fit for robot and avoidcollision. So, the purpose of this paper is to find an object of reference, which can be used for the process ofshape matching.Design/methodology/approach – In this work, the authors propose an interior bounded box (IBB)approach that derives from oriented bounding box (OBB). This kind of box is inside the closed mesh model.At the same time, it has maximum volume which is aligned with the object axis but is enclosed by all the meshvertices. Based on the IBB of input mesh model and the OBB of robot endoskeleton, the authors can completethe process of shape matching. In this paper, the authors use an evolutionary algorithm, covariance matrixadaptation evolution strategy (CMA-ES), to approximate the IBB based on skeleton and symmetry of inputcharacter mesh model.Findings – Based on the evolutionary algorithm CMA-ES, the optimal position and scale informationof IBB can be found. The authors can obtain satisfactory IBB result after this optimization process.The output IBB has maximum volume and is enveloped by the input character mesh model as well.Originality/value – To the best knowledge of the authors, the IBB is first proposed and used in the field ofrobot shell design. Taking advantage of the IBB, people can quickly obtain a shell model that fit for robot.At the same time, it can avoid collision between shell model and the robot endoskeleton.
基金We would like to thank Isaac Klapper for many helpful discussions about Lagrangian mesh rheometry.Z.Zhuo was supported in part by NSF grant DMS-0652535R.Dillon was supported in part by NSF grants DMS-0652535 and DMS-1317671.
文摘Many biological settings involve complex fluids that have non-Newtonian mechanical responses that arise from suspended microstructures.In contrast,Newtonian fluids are liquids or mixtures of a simple molecular structure that exhibit a linear relationship between the shear stress and the rate of deformation.In modeling complex fluids,the extra stress from the non-Newtonian contribution must be included in the governing equations.In this study we compare Lagrangian mesh and Oldroyd-B formulations of fluidstructure interaction in an immersed boundary framework.The start-up phase of planar Poiseuille flow between two parallel plates is used as a test case for the fluid models.For Newtonian and Oldroyd-B fluids there exist analytical solutions which are used in the comparison of simulation and theoretical results.The Lagrangian mesh results are compared with Oldroyd-B using comparable parameters.A regridding algorithm is introduced for the Lagrangian mesh model.We show that the Lagrangian mesh model simulations with regridding produce results in close agreement with the Oldfoyd-B model.
文摘Displacement is a critical indicator for mechanical systems and civil structures.Conventional vision-based displacement recognition methods mainly focus on the sparse identification of limited measurement points,and the motion representation of an entire structure is very challenging.This study proposes a novel Nodes2STRNet for structural dense displacement recognition using a handful of structural control nodes based on a deformable structural three-dimensional mesh model,which consists of control node estimation subnetwork(NodesEstimate)and pose parameter recognition subnetwork(Nodes2PoseNet).NodesEstimate calculates the dense optical flow field based on FlowNet 2.0 and generates structural control node coordinates.Nodes2PoseNet uses structural control node coordinates as input and regresses structural pose parameters by a multilayer perceptron.A self-supervised learning strategy is designed with a mean square error loss and L2 regularization to train Nodes2PoseNet.The effectiveness and accuracy of dense displacement recognition and robustness to light condition variations are validated by seismic shaking table tests of a four-story-building model.Comparative studies with image-segmentation-based Structure-PoseNet show that the proposed Nodes2STRNet can achieve higher accuracy and better robustness against light condition variations.In addition,NodesEstimate does not require retraining when faced with new scenarios,and Nodes2PoseNet has high self-supervised training efficiency with only a few control nodes instead of fully supervised pixel-level segmentation.
基金Supported by Research and Development Plans in Key Areas of Guangdong(Grant No.2019B090917002)Key Research and Development Project of Chongqing Science and Technology Program(Grant No.cstc2018jszx-cyztzxX0038).
文摘A compound oscillatory roller reducer(CORR)with a first-stage gear transmission and a second-stage oscillatory roller transmission is presented.The transmission principle of oscillatory roller transmission is introduced,and the tooth profile equation of the inner gear is derived.The analytical model of mesh force considering the installation errors and manufacturing errors is proposed.Then,parametric studies considering different errors on the mesh force are conducted.Results show that the design parameters are significant factors for mesh force.The mesh force is reduced by 17%as the eccentricity of disk cam increases from 2.5 mm to 4 mm.When the radius of the movable roller increases from 7 mm to 20 mm,the mesh force decreases by 8%.As the radius of disk cam increases from 125 mm to 170 mm,the mesh force is decreased by 26.5%.For the impacts of errors,the mesh force has a noticeable fluctuation when these errors exist including the manufacturing error of disk cam,the installation error of disk cam and the manufacturing error of movable roller change.The prototype of the reducer is manufactured and preliminary run-in test proved the feasibility of the transmission principle.
文摘In order to study the constitutive behavior of concrete in mesoscopic level, a new method is proposed in this paper. This method uses random polygon particles to simulate full grading broken aggregates of concrete. Based on computational geometry, we carry out the automatic generation of the triangle finite element mesh for the model of random polygon particles of concrete. The finite element mesh generated in this paper is also applicable to many other numerical methods.
基金partially supported by the National R & D Special Fund of Public Welfare Industry(No.200808069)National Natural Science Foundation of China(Nos.40974038 and 41025014)the Joint Research Collaboration Program by the Ministry of Science and Technology of China(No.2010DFA21570)
文摘We investigated how density and quality of mesh around interest domain affect electromagnetic (EM) responses of 3D Earth layered media using finite element method (FEM). Effect of different mesh shapes was also investigated using a method of mixing structured and unstructured mesh. As a case study, we estimated the effects of meshing on selectivity phenomenon of seismic electric signal (SES). Our results suggest that the relative errors resulting from mesh effects may not be negligible, which may lead to some unconvincing explanation of the SES selectivity based on the numerical modeling results.
基金The work is supported by Shanxi Foundation for scholars returned from abroad
文摘This paper presents an approach which enables surface modelling, mesh generation and the Finite Element (FE) analysis to be integrated together to simulate superplastic forming process for complex shaped components. Techniques have been developed to generate an FE mesh over non-four-sided surface areas, the boundaries of which are Bezier curves of arbitrary degree, using a consistent expression. Theoretical evidence is given to determine the number of Bezier triangular patches required for accurately re-constructing die surfaces within a commercial FE solver. The developed techniques have been successfully used in determining the process parameters for forming a 3D rectangular box.
文摘Emulating massively parallel computer architectures represents a very important tool for the parallel programmers. It allows them to implement and validate their algorithms. Due to the high cost of the massively parallel real machines, they remain unavailable and not popular in the parallel computing community. The goal of this paper is to present an elaborated emulator of a 2-D massively parallel re-configurable mesh computer of size n x n processing elements (PE). Basing on the object modeling method, we develop a hard kernel of a parallel virtual machine in which we translate all the physical properties of its different components. A parallel programming language and its compiler are also devel-oped to edit, compile and run programs. The developed emulator is a multi platform system. It can be installed in any sequential computer whatever may be its operating system and its processing unit technology (CPU). The size n x n of this virtual re-configurable mesh is not limited;it depends just on the performance of the sequential machine supporting the emulator.
基金supported by National Natural Science Foundation of China (Grant No. 61075118,Grant No. 61005056,Grant No. 60975016)National Key Technology Support Program of China (Grant No. 2007BAH11B02)+1 种基金Zhejiang Provincial Natural Science Foundation of China (Grant No. Y1100880)Open Project Program of State Key Laboratory of CAD&CG of China (Grant No. A0906)
文摘As the mesh models usually contain noise data,it is necessary to eliminate the noises and smooth the mesh.But existed methods always lose geometric features during the smoothing process.Hence,the noise is considered as a kind of random signal with high frequency,and then the mesh model smoothing is operated with signal processing theory.Local wave analysis is used to deal with geometric signal,and then a novel mesh smoothing method based on the local wave is proposed.The proposed method includes following steps:Firstly,analyze the principle of local wave decomposition for 1D signal,and expand it to 2D signal and 3D spherical surface signal processing;Secondly,map the mesh to the spherical surface with parameterization,resample the spherical mesh and decompose the spherical signals by local wave analysis;Thirdly,propose the coordinate smoothing and radical radius smoothing methods,the former filters the mesh points' coordinates by local wave,and the latter filters the radical radius from their geometric center to mesh points by local wave;Finally,remove the high-frequency component of spherical signal,and obtain the smooth mesh model with inversely mapping from the spherical signal.Several mesh models with Gaussian noise are processed by local wave based method and other compared methods.The results show that local wave based method can obtain better smoothing performance,and reserve more original geometric features at the same time.