期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Comparison of a Spectral Bin and Two Multi-Moment Bulk Microphysics Schemes for Supercell Simulation:Investigation into Key Processes Responsible for Hydrometeor Distributions and Precipitation
1
作者 Marcus JOHNSON Ming XUE Youngsun JUNG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期784-800,共17页
There are more uncertainties with ice hydrometeor representations and related processes than liquid hydrometeors within microphysics parameterization(MP)schemes because of their complicated geometries and physical pro... There are more uncertainties with ice hydrometeor representations and related processes than liquid hydrometeors within microphysics parameterization(MP)schemes because of their complicated geometries and physical properties.Idealized supercell simulations are produced using the WRF model coupled with“full”Hebrew University spectral bin MP(HU-SBM),and NSSL and Thompson bulk MP(BMP)schemes.HU-SBM downdrafts are typically weaker than those of the NSSL and Thompson simulations,accompanied by less rain evaporation.HU-SBM produces more cloud ice(plates),graupel,and hail than the BMPs,yet precipitates less at the surface.The limiting mass bins(and subsequently,particle size)of rimed ice in HU-SBM and slower rimed ice fall speeds lead to smaller melting-level net rimed ice fluxes than those of the BMPs.Aggregation from plates in HU-SBM,together with snow–graupel collisions,leads to a greater snow contribution to rain than those of the BMPs.Replacing HU-SBM’s fall speeds using the formulations of the BMPs after aggregating the discrete bin values to mass mixing ratios and total number concentrations increases net rain and rimed ice fluxes.Still,they are smaller in magnitude than bulk rain,NSSL hail,and Thompson graupel net fluxes near the surface.Conversely,the melting-layer net rimed ice fluxes are reduced when the fall speeds for the NSSL and Thompson simulations are calculated using HU-SBM fall speed formulations after discretizing the bulk particle size distributions(PSDs)into spectral bins.The results highlight precipitation sensitivity to storm dynamics,fall speed,hydrometeor evolution governed by process rates,and MP PSD design. 展开更多
关键词 PRECIPITATION spectral bin microphysics bulk microphysics parameterization microphysics processes WRF model supercell storm
下载PDF
Dominant Cloud Microphysical Processes of a Torrential Rainfall Event in Sichuan, China 被引量:11
2
作者 HUANG Yongjie CUI Xiaopeng 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第3期389-400,共12页
High-resolution numerical simulation data of a rainstorm triggering debris flow in Sichuan Province of China simulated by the Weather Research and Forecasting (WRF) Model were used to study the dominant cloud microp... High-resolution numerical simulation data of a rainstorm triggering debris flow in Sichuan Province of China simulated by the Weather Research and Forecasting (WRF) Model were used to study the dominant cloud microphysical processes of the torrential rainfall.The results showed that:(1) In the strong precipitation period,particle sizes of all hydrometeors increased,and mean-mass diameters of graupel increased the most significantly,as compared with those in the weak precipitation period; (2) The terminal velocity of raindrops was the strongest among all hydrometeors,followed by graupel's,which was much smaller than that of raindrops.Differences between various hydrometeors' terminal velocities in the strong precipitation period were larger than those in the weak precipitation period,which favored relative motion,collection interaction and transformation between the particles.Absolute terminal velocity values of raindrops and graupel were significantly greater than those of air upward velocity,and the stronger the precipitation was,the greater the differences between them were; (3) The orders of magnitudes of the various hydrometeors' sources and sinks in the strong precipitation period were larger than those in the weak precipitation period,causing a difference in the intensity of precipitation.Water vapor,cloud water,raindrops,graupel and their exchange processes played a major role in the production of the torrential rainfall,and there were two main processes via which raindrops were generated:abundant water vapor condensed into cloud water and,on the one hand,accretion of cloud water by rain water formed rain water,while on the other hand,accretion of cloud water by graupel formed graupel,and then the melting of graupel formed rain water. 展开更多
关键词 torrential rainfall SICHUAN cloud microphysical processes numerical simulation
下载PDF
Microphysical Processes of a Stratiform Precipitation Event over Eastern China:Analysis Using Micro Rain Radar data 被引量:15
3
作者 Hong WANG Hengchi LEI Jiefan YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第12期1472-1482,共11页
Data collected using the micro rain radar(MRR) situated in Jinan city, eastern China, were used to explore the altitudinal and temporal evolution of rainfall microphysical characteristics, and to analyze the bright ba... Data collected using the micro rain radar(MRR) situated in Jinan city, eastern China, were used to explore the altitudinal and temporal evolution of rainfall microphysical characteristics, and to analyze the bright band(BB) characteristics and hydrometeor classification. Specifically, a low-intensity and stable stratiform precipitation event that occurred from 0000 to0550 UTC 15 February 2015 and featured a BB was studied. During this event, the rainfall intensity was less than 2 mm h-1 at a height of 300 m, which was above the radar site level, so the errors caused by the vertical air motion could be ignored.The freezing height from the radiosonde matched well with the top of the BB observed by the MRR. It was also found that the number of 0.5–1 mm diameter drops showed no noticeable variation below the BB. The maximum fall velocity and the maximum gradient fall velocity(GFV) of the raindrops appeared at the bottom of the BB. Meanwhile, a method that uses the GFV and reflectivity to identify the altitude and the thickness of the BB was established, with which the MRR can provide a reliable and real-time estimation of the 0?C isotherm. The droplet fall velocity was used to classify the types of snow crystals above the BB. In the first 20 min of the selected precipitation event, graupel prevailed above the BB; and at an altitude of2000 m, graupel also dominated in the first 250 min. After 150 min, the existence of graupel and dendritic crystals with water droplets above the BB was inferred. 展开更多
关键词 drop size distribution micro rain radar bright band microphysical processes
下载PDF
A Modified Double-Moment Bulk Microphysics Scheme Geared toward the East Asian Monsoon Region 被引量:1
4
作者 Jinfang YIN Donghai WANG +3 位作者 Guoqing ZHAI Hong WANG Huanbin XU Chongjian LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第9期1451-1471,共21页
Representation of cloud microphysical processes is one of the key aspects of numerical models.An improved double-moment bulk cloud microphysics scheme(named IMY)was created based on the standard Milbrandt-Yau(MY)schem... Representation of cloud microphysical processes is one of the key aspects of numerical models.An improved double-moment bulk cloud microphysics scheme(named IMY)was created based on the standard Milbrandt-Yau(MY)scheme in the Weather Research and Forecasting(WRF)model for the East Asian monsoon region(EAMR).In the IMY scheme,the shape parameters of raindrops,snow particles,and cloud droplet size distributions are variables instead of fixed constants.Specifically,the shape parameters of raindrop and snow size distributions are diagnosed from their respective shape-slope relationships.The shape parameter for the cloud droplet size distribution depends on the total cloud droplet number concentration.In addition,a series of minor improvements involving detailed cloud processes have also been incorporated.The improved scheme was coupled into the WRF model and tested on two heavy rainfall cases over the EAMR.The IMY scheme is shown to reproduce the overall spatial distribution of rainfall and its temporal evolution,evidenced by comparing the modeled results with surface gauge observations.The simulations also successfully capture the cloud features by using satellite and ground-based radar observations as a reference.The IMY has yielded simulation results on the case studies that were comparable,and in ways superior to MY,indicating that the improved scheme shows promise.Although the simulations demonstrated a positive performance evaluation for the IMY scheme,continued experiments are required to further validate the scheme with different weather events. 展开更多
关键词 cloud and precipitation cloud microphysical processes double-moment microphysics scheme East Asia monsoon region(EAMR)
下载PDF
Satellite Retrieval of a Strong Hailstorm Process 被引量:1
5
作者 LIU Guihua YU Xing DAI Jin 《Atmospheric and Oceanic Science Letters》 2009年第2期103-107,共5页
A case of hailstorm process occurring on 24 June 2006 in northwestern China was studied using satellite retrieval methodology. The particle effective radius (re) in the cloud tops was calculated by the reflectance in ... A case of hailstorm process occurring on 24 June 2006 in northwestern China was studied using satellite retrieval methodology. The particle effective radius (re) in the cloud tops was calculated by the reflectance in the 3.7 μm channel, and cloud-top microphysical properties were vividly represented using the RGB visual multispectral classification scheme. The microphysical zones of clouds and the processes of hail formation and develop-ment are inferred using the relations of cloud-top temperature (T) versus re for the tops of convective clouds. The results show that particle effective radius was smaller near the cloud base of hailstorm. There was a deep zone of diffusional droplet growth at the low level where the particles grew slowly with height, and there existed an evident area of small ice particles in the cloud top, suggesting the existence of a strong updraft in the clouds. The low glaciated temperature indicated a great depth from the cloud base to the glaciation height, which provided a deep layer of supercooled water for hail growth. 展开更多
关键词 satellite retrieval hail cloud microphysical process T-re relation
下载PDF
Simulation of the evolution of the latent heat processes in a mesoscale convective system accompanied by heavy rainfall over the Guangzhou region of South China
6
作者 LI Jiang-Nan WU Kai-Lu +4 位作者 DING Cheng-Hui YANG Chao-Feng LI Fang-Zhou WANG Dong-Hai FENG Ye-Rong 《Atmospheric and Oceanic Science Letters》 CSCD 2017年第1期58-64,共7页
A cloud-scale WRF simulation was used to investigate the cloud microphysical processes and threedimensional structure of latent heat budgets in different stages of a mesoscale convective system(MCS) accompanied by h... A cloud-scale WRF simulation was used to investigate the cloud microphysical processes and threedimensional structure of latent heat budgets in different stages of a mesoscale convective system(MCS) accompanied by heavy rain that occurred in the Guangzhou region of South China.The results enable us to draw the following conclusions:(1) During the development and mature stages,the main heating processes were condensation below 400 hPa and deposition above 400 hPa.The main cooling processes were evaporation and melting.During the dissipation stage,all the microphysical processes were weak.(2) Water vapor condensed into cloud water,and rainwater significantly contributed to all stages of the MCS.(3) During every stage of the MCS,the primary cooling microphysical process was the evaporation of rainwater,which was maximum during the mature stage. 展开更多
关键词 Mesoscale convective system microphysical process latent heat budget
下载PDF
Simulation of the Microphysical Processes and Effect of Latent Heat on a Heavy Rainfall Event in Beijing
7
作者 GUO Chun-Wei XIAO Hui +1 位作者 YANG Hui-Ling TANG Qi 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第6期521-526,共6页
An extraordinary rainstorm that occurred in Beijing on 21 July 2012 was simulated using the Weather Research and Forecasting model. The results showed that:(1) The two precipitation phases were based on a combination ... An extraordinary rainstorm that occurred in Beijing on 21 July 2012 was simulated using the Weather Research and Forecasting model. The results showed that:(1) The two precipitation phases were based on a combination of cold cloud processes and warm cloud processes. The accumulated conversion amount and conversion rate of microphysical processes in the warm-area phase were all much larger than those in the cold front phase.(2) 72.6% of rainwater was from the warm-area phase. Rainwater mainly came from the melting of graupel and the melting of snow, while the accretion of cloud water by rain ranked second.(3) The net heating rate with height appeared as an overall warming with two strong heating centers in the lower and middle layers of the troposphere and a minimum heating center around the melting layer. The net heating effect in the warm-area phase was stronger than that in the cold front phase.(4) Warm cloud processes contributed most to latent heat release, and the thermal effect of cold cloud processes on the storm in the cold front phase was enhanced compared to that in the warm-area phase.(5) The melting of graupel and snow contributed most to latent heat absorption, and the effect of the evaporation of rainwater was significantly reduced in the cold front phase. 展开更多
关键词 extraordinary rainstorm warm-area precipitation cold front precipitation microphysical processes latent heat effect
下载PDF
Improving Radar Rainfall Estimation by Accounting for Microphysical Processes Using a Micro Rain Radar in West Africa
8
作者 Ghislain Kouadio Eric-Pascal Zahiri +3 位作者 Modeste Kacou Augustin Kadjo Koffi Abé Delfin Ochou Paul Assamoi 《Atmospheric and Climate Sciences》 2021年第4期658-688,共31页
This study evaluates the improvement of the radar Quantitative Precipitation Estimation (QPE) by involving microphysical processes in the determination of </span><i><span style="font-family:Verdana... This study evaluates the improvement of the radar Quantitative Precipitation Estimation (QPE) by involving microphysical processes in the determination of </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> algorithms. Within the framework of the AMMA campaign, measurements of an X-band radar (Xport), a vertical pointing Micro Rain Radar (MRR) to investigate microphysical processes and a dense network of rain </span><span style="font-family:Verdana;">gauges deployed in Northern Benin (West Africa) in 2006 and 2007 were</span><span style="font-family:Verdana;"> used as support to establish such estimators and evaluate their performance compared to other estimators in the literature. By carefully considering and correcting MRR attenuation and calibration issues, the </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> estimator developed </span><span style="font-family:Verdana;">with the contribution of microphysical processes and non-linear least</span></span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">squares adjustment proves to be more efficient for quantitative rainfall estimation and produces the best statistic scores than other optimal </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> algorithms in the literature. We also find that it gives results comparable to some polarimetric algorithms including microphysical information through DSD integrated parameter retrievals. 展开更多
关键词 Drop Distribution Micro Rain Radar Calibration Microphysical processes Z-R Relationships Rainfall Estimation
下载PDF
Numerical Simulations of a Heavy Rainfall Case in South China 被引量:6
9
作者 楼小凤 胡志晋 +2 位作者 史月琴 王鹏云 周秀骥 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第1期128-138,共11页
Using a double-parameter non-hydrostatic elastic three-dimensional model with detailed microphysical processes, the authors simulate the heavy rainfall event in South China which occurred on 9 June 1998 and lasted Tor... Using a double-parameter non-hydrostatic elastic three-dimensional model with detailed microphysical processes, the authors simulate the heavy rainfall event in South China which occurred on 9 June 1998 and lasted Tor more than 3 hours. This case is a supercell, and the upward and downward drafts interact with each other, which transfers rich water vapor at the converging position to upper levels, and the two drafts together maintain the convective course. The vertical heating profiles and contributions to water matter of five kinds of micro-phase processes are revealed quantitatively in the results. Condensation releases the most heat, which is more than that of the absorption by evaporation and melting. The rain particles first come from the autoconversion of cloud particles, the warm-rain process; later from the cold-rain process, the melting of grauple particles. The precipitation intensity reaches 75 mm h?1 while its efficiency remains high. The total amount of rain is 32 mm, a value close to the observations of nearby stations. 展开更多
关键词 non-hydrostatic atmospheric model microphysics processes rain mechanism
下载PDF
Comparison of the Bright Band Characteristics Measured by Micro Rain Radar (MRR) at a Mountain and a Coastal Site in South Korea 被引量:8
10
作者 Joo-Wan CHA Ki-Ho CHANG +1 位作者 Seong Soo YUM Young-Jean CHOI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第2期211-221,共11页
Data from a long term measurement of Micro Rain Radar (MRR) at a mountain site (Daegwallyeong, DG, one year period of 2005) and a coastal site (Haenam, HN, three years 2004-2006) in South Korea were analyzed to ... Data from a long term measurement of Micro Rain Radar (MRR) at a mountain site (Daegwallyeong, DG, one year period of 2005) and a coastal site (Haenam, HN, three years 2004-2006) in South Korea were analyzed to compare the MRR measured bright band characteristics of stratiform precipitation at the two sites. On average, the bright band was somewhat thicker and the sharpness (average gradient of reflectivity above and below the reflectivity peak) was slightly weaker at DG, compared to those values at HN. The peak reflectivity itself was twice as strong and the relative location of the peak reflectivity within the bright band was higher at HN than at DG. Importantly, the variability of these values was much larger at HN than at DG. The key parameter to cause these differences is suggested to be the difference of the snow particle densities at the two sites, which is related to the degree of riming. Therefore, it is speculated that the cloud microphysical processes at HN may have varied significantly from un-rimed snow growth, producing low density snow particles, to the riming of higher density particles, while snow particle growth at DG was more consistently affected by the riming process, and therefore high density snow particles. Forced uplifting of cloudy air over the mountain area around DG might have resulted in an orographic supercooling effect that led to the enhanced riming of supercooled cloud drops. 展开更多
关键词 Micro Rain Radar bright band thickness and sharpness cloud microphysical processes local characteristics
下载PDF
Cloud microphysical differences with precipitation intensity in a torrential rainfall event in Sichuan, China 被引量:5
11
作者 HUANG Yong-Jie CUI Xiao-Peng WANG Ya-Ping 《Atmospheric and Oceanic Science Letters》 CSCD 2016年第2期90-98,共9页
High-resolution data of a torrential rainfall event in Sichuan, China, simulated by the WRF model, were used to analyze the cloud microphysical differences with precipitation intensity. Sixhourly accumulated rainfall ... High-resolution data of a torrential rainfall event in Sichuan, China, simulated by the WRF model, were used to analyze the cloud microphysical differences with precipitation intensity. Sixhourly accumulated rainfall was classified into five bins based on rainfall intensity, and the cloud microphysical characteristics and processes in different bins were studied. The results show that:(1) Hydrometeor content differed distinctly among different bins. Mixing ratios of cloud water, rain water, and graupel enhanced significantly and monotonously with increasing rainfall intensity. With increasing precipitation intensity, the monotonous increase in cloud water number concentration was significant. Meanwhile, number concentrations of rain water and graupel increased at first and then decreased or increased slowly in larger rainfall bins.(2) With precipitation intensity increasing, cloud microphysical conversion processes closely related to the production of rainwater, directly(accretion of cloud water by rain(QCLcr) and melting of graupel(QMLgr)) or indirectly(water vapor condensation and accretion of cloud water by graupel), increased significantly.(3) As the two main sources of rainwater, QCLcrincreased monotonously with increasing precipitation intensity, while QMLgr increased slowly, even tending to cease increasing in larger rainfall bins. 展开更多
关键词 cloud microphysics cloud microphysical processes torrential rainfall numerical simulation
下载PDF
Microphysical characteristics of precipitating cumulus cloud based on airborne Ka-band cloud radar and droplet measurements 被引量:1
12
作者 Lei Wei Mengyu Huang +6 位作者 Rong Zhang Yuhuan Lü Tuanjie Hou Hengchi Lei Delong Zhao Wei Zhou Yuan Fu 《Atmospheric and Oceanic Science Letters》 CSCD 2022年第2期65-70,共6页
Based on cloud-probe data and airborne Ka-band cloud radar data collected in Baoding on 5 August 2018,the microphysical structural characteristics of cumulus(Cu)cloud at the precipitation stage were investigated.The c... Based on cloud-probe data and airborne Ka-band cloud radar data collected in Baoding on 5 August 2018,the microphysical structural characteristics of cumulus(Cu)cloud at the precipitation stage were investigated.The cloud droplets in the Cu cloud were found to be significantly larger than those in stratiform(STF)cloud.In the Cu cloud,most cloud particles were between 7 and 10μm in diameter,while in the STF cloud the majority of cloud particles grew no larger than 2μm.The sensitivity of cloud properties to aerosols varied with height.The cloud droplet effective radius showed a negative relationship with the aerosol number concentration(Na)in the cloud planetary boundary layer(PBL)and upper layer above the PBL.However,the cloud droplet concentration(Nc)varied little with decreased Na in the high liquid water content region above 1500 m.High Na values of between 300 and 1853 cm-3 were found in the PBL,and the maximum Na was sampled near the surface in August in the Hebei region,which was lower than that in autumn and winter.High radar reflectivity corresponded to large FCDP(fast cloud droplet probe)particle concentrations and small aerosol particle concentrations,and vice versa for low radar reflectivity.Strong updrafts in the Cu cloud increased the peak radius and Nc,and broadened cloud droplet spectrum;lower air temperature was favorable for particle condensational growth and produced larger droplets. 展开更多
关键词 Airplane observation Microphysical processes Ka-band cloud radar CUMULUS
下载PDF
A NUMERICAL STUDY OF TROPICAL DEEP CONVECTION USING WRF MODEL
13
作者 李嘉鹏 银燕 +1 位作者 金莲姬 张成竹 《Journal of Tropical Meteorology》 SCIE 2010年第3期247-254,共8页
The Weather Research Forecast model (WRF) configured with high resolution and NCEP 1°×1° reanalysis data were used to simulate the development of a tropical deep convection over the Tiwi Islands,norther... The Weather Research Forecast model (WRF) configured with high resolution and NCEP 1°×1° reanalysis data were used to simulate the development of a tropical deep convection over the Tiwi Islands,northern Australia,and to investigate the sensitivity of model results to model configuration and parameterization schemes of microphysical processes.The simulation results were compared with available measurements.The results show that the model can reproduce most of the important characteristics of the observed diurnal evolution of the convection,including the initiation of convection along the sea-breeze front,which is then reinforced by downdraft outflows,merging of cells and the formation of a deep convective system.However,further improvement is needed to simulate more accurately the location and the time for initiation of the deep convective system.Sensitivity tests show that double-nesting schemes are more accurate than the non-nesting schemes in predicting the distribution and intensity of precipitation as far as this particular case is concerned.Additionally,microphysical schemes also have an effect on the simulated amount of precipitation.It is shown that the best agreement is reached between the simulation results and observations when the Purdue Lin scheme is used. 展开更多
关键词 tropical deep convection WRF model parameterization of microphysical processes NESTING sensitivity experiment
下载PDF
NUMERICAL SIMULATION OF MICROBURST
14
作者 蒋道玲 金长江 孙庆民 《Chinese Journal of Aeronautics》 SCIE EI CSCD 1998年第3期18-25,共8页
Based on the atmospheric dynamics, a two dimensional, slab symmetric numerical microburst model is developed. The model subdivides water substance into five types, including water vapor, cloud droplets, rainwater, i... Based on the atmospheric dynamics, a two dimensional, slab symmetric numerical microburst model is developed. The model subdivides water substance into five types, including water vapor, cloud droplets, rainwater, ice crystals and graupels (hails), considering the detailed microphysical processes of warm cloud and ice phase as well. By the model the wet microburst is numerically simulated with an agreeable result. In addition, ten experiments are conducted in order to examine the microburst sensitivity to environmental conditions. 展开更多
关键词 microbursts water substance microphysical process microburst sensitivity
下载PDF
Impact of Cloud Microphysical Processes on the Simulation of Typhoon Rananim near Shore. Part I: Cloud Structure and Precipitation Features 被引量:7
15
作者 CHENG Rui YU Rucong +1 位作者 FU Yunfei XU Youping 《Acta meteorologica Sinica》 SCIE 2011年第4期441-455,共15页
By using the Advanced Regional Eta-coordinate Model (AREM), the basic structure and cloud features of Typhoon Rananim are simulated and verified against observations. Five sets of experiments are designed to investi... By using the Advanced Regional Eta-coordinate Model (AREM), the basic structure and cloud features of Typhoon Rananim are simulated and verified against observations. Five sets of experiments are designed to investigate the effects of the cloud microphysical processes on the model cloud structure and precipitation features. The importance of the ice-phase microphysics, the cooling effect related to microphysical characteristics change, and the influence of terminal velocity of graupel are examined. The results indicate that the cloud microphysical processes impact more on the cloud development and precipitation features of the typhoon than on its intensity and track. Big differences in the distribution pattern and content of hydro-meteors, and types and amount of rainfall occur in the five experiments, resulting in different heating and cooling effects. The largest difference of 24-h rain rate reaches 52.5 mm h-1 . The results are summarized as follows: 1) when the cooling effect due to the evaporation of rain water is excluded, updrafts in the typhoon's inner core are the strongest with the maximum vertical velocity of -19 Pa s-1 and rain water and graupel grow most dominantly with their mixing ratios increased by 1.8 and 2.5 g kg-1, respectively, compared with the control experiment; 2) the melting of snow and graupel affects the growth of rain water mainly in the spiral rainbands, but much less significantly in the eyewall area; 3) the warm cloud microphysical process produces the smallest rainfall area and the largest percentage of convective precipitation (63.19%), while the largest rainfall area and the smallest percentage of convective precipitation (48.85%) are generated when the terminal velocity of graupel is weakened by half. 展开更多
关键词 typhoon structure PRECIPITATION cloud microphysical processes AREM model
原文传递
Impact of Cloud Microphysical Processes on the Simulation of Typhoon Rananim near Shore. Part II: Typhoon Intensity and Track 被引量:4
16
作者 CHENG Rui YU Rucong +1 位作者 XU Youping FU Yunfei 《Acta meteorologica Sinica》 SCIE 2011年第4期456-466,共11页
The impact of cloud microphysical processes on the simulated intensity and track of Typhoon Rananim is discussed and analyzed in the second part of this study. The results indicate that when the cooling effect due to ... The impact of cloud microphysical processes on the simulated intensity and track of Typhoon Rananim is discussed and analyzed in the second part of this study. The results indicate that when the cooling effect due to evaporation of rain water is excluded, the simulated 36-h maximum surface wind speed of Typhoon Rananim is about 7 m s-1 greater than that from all other experiments; however, the typhoon landfall location has the biggest bias of about 150 km against the control experiment. The simulated strong outer rainbands and the vertical shear of the environmental flow are unfavorable for the deepening and maintenance of the typhoon and result in its intensity loss near the landfall. It is the cloud microphysical processes that strengthen and create the outer spiral rainbands, which then increase the local convergence away from the typhoon center and prevent more moisture and energy transport to the inner core of the typhoon. The developed outer rainbands are supposed to bring dry and cold air mass from the middle troposphere to the planetary boundary layer (PBL). The other branch of the cold airflow comes from the evaporation of rain water itself in the PBL while the droplets are falling. Thus, the cut-off of the warm and moist air to the inner core and the invasion of cold and dry air to the eyewall region are expected to bring about the intensity reduction of the modeled typhoon. Therefore, the deepening and maintenance of Typhoon Rananim during its landing are better simulated through the reduction of these two kinds of model errors. 展开更多
关键词 typhoon intensity cloud microphysical processes spiral rainband environmental wind shear
原文传递
NUMERICAL SIMULATION OF MICROPHYSICAL PROCESSES IN CUMULONIMBUS——PART Ⅱ CASE STUDIES OF SHOWER,HAILSTORM AND TORRENTIAL RAIN 被引量:4
17
作者 胡志晋 何观芳 《Acta meteorologica Sinica》 SCIE 1989年第2期185-199,共15页
A shower cloud observed in Jiangxi,a hailstorm observed in Hebei and“75.8”torrential rain in Henan are simulated with our microphysical model in a one-dimensional framework.The model,using the radio- sonde data as i... A shower cloud observed in Jiangxi,a hailstorm observed in Hebei and“75.8”torrential rain in Henan are simulated with our microphysical model in a one-dimensional framework.The model,using the radio- sonde data as input,gets its output which shows agreement in many aspects as compared with observations in each case.The glaciation of small cumulus cloud,low precipitation efficiency of hailstorm and the per- sistence of torrential rain are demonstrated.It is also shown that the Bergeron process has little influence, but the warm-rain process plays an important role in the formation of precipitation in cumulonimbus with a warm cloud base. 展开更多
关键词 PART CASE STUDIES OF SHOWER HAILSTORM AND TORRENTIAL RAIN NUMERICAL SIMULATION OF MICROPHYSICAL processES IN CUMULONIMBUS
原文传递
Cloud Microphysical Processes and Atmospheric Water Budget during the 20 July 2021 Extreme Precipitation Event in Zhengzhou,China 被引量:2
18
作者 Weixi SHU Danhong FU +6 位作者 Hui XIAO Huiling YANG Yue SUN Xueliang GUO Yang ZHAO Jianfang DING Shujing SHEN 《Journal of Meteorological Research》 SCIE CSCD 2023年第5期722-742,共21页
This study investigated the cloud microphysical processes and atmospheric water budget during the extreme precipitation event on 20 July 2021 in Zhengzhou of Henan Province,China,based on observations,reanalysis data,... This study investigated the cloud microphysical processes and atmospheric water budget during the extreme precipitation event on 20 July 2021 in Zhengzhou of Henan Province,China,based on observations,reanalysis data,and the results from the high-resolution large-eddy simulation nested in the Weather Research and Forecasting(WRF)model with assimilation of satellite and radar observations.The results show that the abundant and persistent southeasterly supply of water vapor,induced by Typhoons In-Fa and Cempaka,under a particular synoptic pattern featured with abnormal northwestward displacement of the western Pacific subtropical high,was conducive to warm rain processes through a high vapor condensation rate of cloud water and an efficient collision–coalescence process of cloud water to rainwater.Such conditions were favorable for the formation and maintenance of the quasi-stationary warmsector heavy rainfall.Precipitation formation through the collision–coalescence process of cloud water to rainwater accounted for approximately 70%of the total,while the melting of snow and graupel accounted for only approximately 30%,indicating that warm cloud processes played a dominant role in this extreme rainfall event.However,enhancement of cold cloud processes promoted by latent heat release also exerted positive effect on rainfall during the period of most intense hourly rainfall.It was also found that rainwater advection from outside of Zhengzhou City played an important role in maintaining the extreme precipitation event. 展开更多
关键词 extreme precipitation event microphysical processes atmospheric water budget large-eddy simulation
原文传递
A Simulation Study on the Characteristics of Cloud Microphysics of Heavy Rainfall in the Meiyu Front 被引量:1
19
作者 鞠永茂 王汉杰 +1 位作者 钟中 宋帅 《Acta meteorologica Sinica》 SCIE 2009年第2期206-222,共17页
A heavy rainfall in the Meiyu front during 4-5 July 2003 is simulated by use of the non-hydrostatic mesoscale model MM5 (V3-6) with different explicit cloud microphysical parameterization schemes. The characteristic... A heavy rainfall in the Meiyu front during 4-5 July 2003 is simulated by use of the non-hydrostatic mesoscale model MM5 (V3-6) with different explicit cloud microphysical parameterization schemes. The characteristics of microphysical process of convective cloud are studied by the model outputs. The simulation study reveals that: (1) The mesoscale model MM5 with explicit cloud microphysical process is capable of simulating the instant heavy rainfall in the Meiyu front, the rainfall simulation could be improved signifi- cantly as the model resolution is increased, and the Goddard scheme is better than the Reisner or Schultz scheme. (2) The convective cloud in the Meiyu front has a comprehensive structure composed of solid, liquid and vapor phases of water, the mass density of water vapor is the largest one in the cloud; the next one is graupel, while those of ice, snow, rain water and the cloud water are almost same. The height at which mass density peaks for different hydrometeors is almost unchangeable during the heavy rainfall period. The mass density variation of rain water, ice, and graupel are consistent with that of ground precipitation, while that of water vapor in the low levels is 1-2 h earlier than the precipitation. (3) The main contribution to the water vapor budget in the atmosphere is the convergence of vapor flux through advection and convection, which provides the main vapor source of the rainfall. Besides the basic process of the auto-conversion of cloud water to rain water, there is an additional cloud microphysical process that is essential to the formation of instant heavy rainfall, the ice-phase crystals are transformed into graupels first and then the increased graupels mix with cloud water and accelerates the conversion of cloud water to rain water. The positive feedback mechanism between latent heat release and convection is the main cause to maintain and develop the heavy precipitation. 展开更多
关键词 MM5 Meiyu front torrential rain Goddard cloud microphysical process TRMM
原文传递
Numerical Study on Microphysical Processes of Two Different Snowfall Cases in Northern China
20
作者 孙晶 王鹏云 +1 位作者 李想 逯莹 《Acta meteorologica Sinica》 SCIE 2007年第4期420-437,共18页
In this paper, two snowfall cases under different weather conditions in northern China are simulated by using the meso scale model MM5. Two-way nesting structure of domains is designed for each case. Among the explici... In this paper, two snowfall cases under different weather conditions in northern China are simulated by using the meso scale model MM5. Two-way nesting structure of domains is designed for each case. Among the explicit schemes of MM5, the Reisner graupel scheme is selected to describe the microphysical process. The simulated snow-bands of two cases are basically consistent with observations. The simulated results of microphysical processes are mainly discussed. The hydrometeors and their sources and sinks under different weather backgrounds are described. The feedback effects of microphysical processes on the thermal and dynamic processes are also discussed. Method that outputs the accumulative sources and sinks per hour is used to analyze the distribution characteristics of hydrometeors during the strongest snowfall period. Two sensitivity tests (called heat test and drag test) are conducted to examine the effects of microphysical processes on cloud produced by the latent heat and drag force. Results have shown that the distribution of particles has a close relation with temperature. The temperature of Beijing snowfall is under 0℃ and there exist vapor and solid phase particles, while Liaoning snowfall has vapor, liquid, and solid phase particles due to the warm temperature. The distribution of these particles is not the same at different development stages. From the analyses of the characteristics of sources and sinks, it is found that snow is mainly produced by the deposition and accretion with ice. Cloud water is crucial to graupel. The melting of ice-phase particles enhances the rain production. The results of heat tests and drag tests reveal that the microphysical processes have interacted with the dynamic and thermal processes. Latent heat release of hydrometeors feeds back positively on snowfall while the drag force not. At last, comparisons of simulated results have been done between the two different kinds of snowfall cases. The microphysical processes of Liaoning snowfall case is more complicated than those of Beijing snowfall case. The values of the cloud variables are larger and the interactions between the microphysical processes and the thermal and dynamic processes of Liaoning snowfall case are stronger than those of Beijing snowfall case. 展开更多
关键词 SNOWFALL mesoscale model MM5 microphysical process sources and sinks
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部