We propose a photonic frequency-multiplied vector millimeter-wave(mmW)signal generation scheme based on constantenvelope delta-sigma modulation(CE-DSM).The CE characteristic of phase modulation can easily avoid intens...We propose a photonic frequency-multiplied vector millimeter-wave(mmW)signal generation scheme based on constantenvelope delta-sigma modulation(CE-DSM).The CE characteristic of phase modulation can easily avoid intensity-dependent nonlinear distortion caused by photonic frequency multiplication.Additionally,combined with one-bit DSM,the in-band signal-to-noise ratio can be dramatically improved,enabling high-order quadrature amplitude modulation(QAM)vector mmW signal generation with high spectral efficiency.Experimental results indicate that a 40 GHz four-fold frequency-multiplied 4096-QAM vector mmW signal generation system is successfully accomplished with 15-km standard single-mode fiber(SSMF)and 1-m wireless transmission,and the bit error ratio(BER)reaches the threshold of 3.8×10^(-3).展开更多
Numerically analyzed is the transmission performance of the optical millimeter (mm)-wave generated by frequency up-conversion via a phase modulator along the dispersive fiber. 60 GHz ram-wave subcarrier(SC) signal...Numerically analyzed is the transmission performance of the optical millimeter (mm)-wave generated by frequency up-conversion via a phase modulator along the dispersive fiber. 60 GHz ram-wave subcarrier(SC) signals can be obtained after fiber transmission, simultaneously, the phase-modulated signals can be converted to the intensity-modulated ones. The numerical results show that the optical ram-wave at fading loops has better performance, and the eye diagram still keeps open when optical mm-wave signal is transmitted over 98 km.展开更多
The fifth generation(5G)network communication systems operate in the millimeter waves and are expected to provide a much higher data rate in the multi-gigabit range,which is impossible to achieve using current wireles...The fifth generation(5G)network communication systems operate in the millimeter waves and are expected to provide a much higher data rate in the multi-gigabit range,which is impossible to achieve using current wireless services,including the sub-6 GHz band.In this work,we briefly review several existing designs of millimeter-wave phased arrays for 5G applications,beginning with the low-profile antenna array designs that either are fixed beam or scan the beam only in one plane.We then move on to array systems that offer two-dimensional(2D)scan capability,which is highly desirable for a majority of 5G applications.Next,in the main body of the paper,we discuss two different strategies for designing scanning arrays,both of which circumvent the use of conventional phase shifters to achieve beam scanning.We note that it is highly desirable to search for alternatives to conventional phase shifters in the millimeter-wave range because legacy phase shifters are both lossy and costly;furthermore,alternatives such as active phase shifters,which include radio frequency amplifiers,are both expensive and power-hungry.Given this backdrop,we propose two different antenna systems with potential for the desired 2D scan performance in the millimeter-wave range.The first of these is a Luneburg lens,which is excited either by a 2D waveguide array or by a microstrip patch antenna array to realize 2D scan capability.Next,for second design,we turn to phased-array designs in which the conventional phase shifter is replaced by switchable PIN diodes or varactor diodes,inserted between radiating slots in a waveguide to provide the desired phase shifts for scanning.Finally,we discuss several approaches to enhance the gain of the array by modifying the conventional array configurations.We describe novel techniques for realizing both one-dimensional(1D)and 2D scans by using a reconfigurable metasurface type of panels.展开更多
This paper presented a novel millimeterwave channel measurement platform for the 6G intelligent railway.This platform used phased array antenna with 64 elements and can support instant bandwidth up to 1 GHz.Combined w...This paper presented a novel millimeterwave channel measurement platform for the 6G intelligent railway.This platform used phased array antenna with 64 elements and can support instant bandwidth up to 1 GHz.Combined with improved multi-tone sounding signals,the platform can enhance dynamic measurement capability in high-speed railway scenarios.We performed calibration works about frequency flatness,frequency offset and proved platform reliability with channel emulator based closed-loop verification.We also carried out field trials in high-speed railway carriage scenarios.Based on measurement results,we extracted channel characteristic parameters of path loss,power delay profile and delay spread to further verify the field measurement performance of the platform.展开更多
A low phase noise millimeter-wave(MMW) signal generator is proposed and experimentally demonstrated with a C-band passively Fabry-Pérot(F-P) quantum dot mode-locked laser. A novel method is proposed to generate l...A low phase noise millimeter-wave(MMW) signal generator is proposed and experimentally demonstrated with a C-band passively Fabry-Pérot(F-P) quantum dot mode-locked laser. A novel method is proposed to generate low phase noise MMW signal, which is simply based on a commercial off-the-shelf dual-driven Li Nb O3 Mach-Zehnder modulator and a passively F-P quantum dot mode-locked laser. MMW signal with the frequency of 30 GHz, 45 GHz and 90 GHz respectively is obtained experimentally. Single-sideband phase noise of the 30 GHz and 45 GHz MMW signal is-112 d Bc/Hz and-106 d Bc/Hz at an offset of 1 k Hz, respectively. The linewidth of the 30 GHz and 45 GHz MMW signal is about from 225 Hz and 239 Hz. This is considered a very simple MMW generator with a quasi-tunable broadband and ultra-low phase noise.展开更多
An ultra-massive phased array can be deployed in high-throughput millimeter-wave(mmWave)communication systems to increase the transmission distance.However,when the signal bandwidth is large,the antenna array response...An ultra-massive phased array can be deployed in high-throughput millimeter-wave(mmWave)communication systems to increase the transmission distance.However,when the signal bandwidth is large,the antenna array response changes with the frequency,causing beam squint.In this paper,we investigate the beam squint effect on a high-throughput mmWave communication system with the single-carrier frequency-domain equalization transmission scheme.Specifically,we first view analog beamforming and the physical channel as a spatial equivalent channel.The characteristics of the spatial equivalent channel are analyzed which behaves like frequency-selective fading.To eliminate the deep fading points in the spatial equivalent channel,an advanced analog beamforming method is proposed based on the Zadoff-Chu(ZC)sequence.Then,the low-complexity linear zero-forcing and minimum mean squared error equalizers are considered at the receiver.Simulation results indicate that the proposed ZC-based analog beamforming method can effectively mitigate the performance loss by the beam squint.展开更多
基金supported by the National Key Research and Development Program of China(No.2021YFB2900800)the Science and Technology Commission of Shanghai Municipality(Nos.22511100902,22511100502,and 20ZR1420900)the 111 Project(No.D20031)。
文摘We propose a photonic frequency-multiplied vector millimeter-wave(mmW)signal generation scheme based on constantenvelope delta-sigma modulation(CE-DSM).The CE characteristic of phase modulation can easily avoid intensity-dependent nonlinear distortion caused by photonic frequency multiplication.Additionally,combined with one-bit DSM,the in-band signal-to-noise ratio can be dramatically improved,enabling high-order quadrature amplitude modulation(QAM)vector mmW signal generation with high spectral efficiency.Experimental results indicate that a 40 GHz four-fold frequency-multiplied 4096-QAM vector mmW signal generation system is successfully accomplished with 15-km standard single-mode fiber(SSMF)and 1-m wireless transmission,and the bit error ratio(BER)reaches the threshold of 3.8×10^(-3).
基金Dr Start-up Fund of Wuyi University,National Natural Science Foundation of China(60677004)
文摘Numerically analyzed is the transmission performance of the optical millimeter (mm)-wave generated by frequency up-conversion via a phase modulator along the dispersive fiber. 60 GHz ram-wave subcarrier(SC) signals can be obtained after fiber transmission, simultaneously, the phase-modulated signals can be converted to the intensity-modulated ones. The numerical results show that the optical ram-wave at fading loops has better performance, and the eye diagram still keeps open when optical mm-wave signal is transmitted over 98 km.
文摘The fifth generation(5G)network communication systems operate in the millimeter waves and are expected to provide a much higher data rate in the multi-gigabit range,which is impossible to achieve using current wireless services,including the sub-6 GHz band.In this work,we briefly review several existing designs of millimeter-wave phased arrays for 5G applications,beginning with the low-profile antenna array designs that either are fixed beam or scan the beam only in one plane.We then move on to array systems that offer two-dimensional(2D)scan capability,which is highly desirable for a majority of 5G applications.Next,in the main body of the paper,we discuss two different strategies for designing scanning arrays,both of which circumvent the use of conventional phase shifters to achieve beam scanning.We note that it is highly desirable to search for alternatives to conventional phase shifters in the millimeter-wave range because legacy phase shifters are both lossy and costly;furthermore,alternatives such as active phase shifters,which include radio frequency amplifiers,are both expensive and power-hungry.Given this backdrop,we propose two different antenna systems with potential for the desired 2D scan performance in the millimeter-wave range.The first of these is a Luneburg lens,which is excited either by a 2D waveguide array or by a microstrip patch antenna array to realize 2D scan capability.Next,for second design,we turn to phased-array designs in which the conventional phase shifter is replaced by switchable PIN diodes or varactor diodes,inserted between radiating slots in a waveguide to provide the desired phase shifts for scanning.Finally,we discuss several approaches to enhance the gain of the array by modifying the conventional array configurations.We describe novel techniques for realizing both one-dimensional(1D)and 2D scans by using a reconfigurable metasurface type of panels.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant 2022JBQY004,2022JBZY018 and 2022JBXT001in part by the Basic Research Project of Jiangsu Province Frontier Leading Technology under Grant BK20212002.
文摘This paper presented a novel millimeterwave channel measurement platform for the 6G intelligent railway.This platform used phased array antenna with 64 elements and can support instant bandwidth up to 1 GHz.Combined with improved multi-tone sounding signals,the platform can enhance dynamic measurement capability in high-speed railway scenarios.We performed calibration works about frequency flatness,frequency offset and proved platform reliability with channel emulator based closed-loop verification.We also carried out field trials in high-speed railway carriage scenarios.Based on measurement results,we extracted channel characteristic parameters of path loss,power delay profile and delay spread to further verify the field measurement performance of the platform.
基金supported by the Humanity and Social Science Foundation of Chinese Ministry of Education (No.19YJC880053)the Natural Science Foundation of Zhejiang Province (No.LQ18F010008)+3 种基金the Philosophy and Social Science Planning Project of Zhejiang Province (No.19NDJC0103YB)the Natural Science Foundation of Ningbo (No.2018A610092)the Research Fund Project of Ningbo Institute of Finance&Economics (No.1320171002)the Education and Teaching Reform Program of Ningbo Institute of Finance&Economics (No.20jyyb16)。
文摘A low phase noise millimeter-wave(MMW) signal generator is proposed and experimentally demonstrated with a C-band passively Fabry-Pérot(F-P) quantum dot mode-locked laser. A novel method is proposed to generate low phase noise MMW signal, which is simply based on a commercial off-the-shelf dual-driven Li Nb O3 Mach-Zehnder modulator and a passively F-P quantum dot mode-locked laser. MMW signal with the frequency of 30 GHz, 45 GHz and 90 GHz respectively is obtained experimentally. Single-sideband phase noise of the 30 GHz and 45 GHz MMW signal is-112 d Bc/Hz and-106 d Bc/Hz at an offset of 1 k Hz, respectively. The linewidth of the 30 GHz and 45 GHz MMW signal is about from 225 Hz and 239 Hz. This is considered a very simple MMW generator with a quasi-tunable broadband and ultra-low phase noise.
基金Project supported by the National Key R&D Program of China(No.2020YFB1805001)the National Natural Science Foundation of China(No.61831004)the Defense Industrial Technology Development Program,China(No.JCKY2016204A603)。
文摘An ultra-massive phased array can be deployed in high-throughput millimeter-wave(mmWave)communication systems to increase the transmission distance.However,when the signal bandwidth is large,the antenna array response changes with the frequency,causing beam squint.In this paper,we investigate the beam squint effect on a high-throughput mmWave communication system with the single-carrier frequency-domain equalization transmission scheme.Specifically,we first view analog beamforming and the physical channel as a spatial equivalent channel.The characteristics of the spatial equivalent channel are analyzed which behaves like frequency-selective fading.To eliminate the deep fading points in the spatial equivalent channel,an advanced analog beamforming method is proposed based on the Zadoff-Chu(ZC)sequence.Then,the low-complexity linear zero-forcing and minimum mean squared error equalizers are considered at the receiver.Simulation results indicate that the proposed ZC-based analog beamforming method can effectively mitigate the performance loss by the beam squint.