A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems....A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.展开更多
Production scheduling has a major impact on the productivity of the manufacturing process. Recently, scheduling problems with deteriorating jobs have attracted increasing attentions from researchers. In many practical...Production scheduling has a major impact on the productivity of the manufacturing process. Recently, scheduling problems with deteriorating jobs have attracted increasing attentions from researchers. In many practical situations,it is found that some jobs fail to be processed prior to the pre-specified thresholds,and they often consume extra deteriorating time for successful accomplishment. Their processing times can be characterized by a step-wise function. Such kinds of jobs are called step-deteriorating jobs. In this paper,parallel machine scheduling problem with stepdeteriorating jobs( PMSD) is considered. Due to its intractability,four different mixed integer programming( MIP) models are formulated for solving the problem under consideration. The study aims to investigate the performance of these models and find promising optimization formulation to solve the largest possible problem instances. The proposed four models are solved by commercial software CPLEX. Moreover,the near-optimal solutions can be obtained by black-box local-search solver LocalS olver with the fourth one. The computational results show that the efficiencies of different MIP models depend on the distribution intervals of deteriorating thresholds, and the performance of LocalS olver is clearly better than that of CPLEX in terms of the quality of the solutions and the computational time.展开更多
A mathematical model based on mixed integer programming is presented in this paper for the passive shimming of magnet in magnetic resonance imaging(MRI) scanner.In this model,the magnetic field inhomogeneity tolerance...A mathematical model based on mixed integer programming is presented in this paper for the passive shimming of magnet in magnetic resonance imaging(MRI) scanner.In this model,the magnetic field inhomogeneity tolerance and the central value of the magnetic field after shimming are programmed together with the volume of each shim piece as the variables,which increases the degree of freedom and guarantees a better solution.The magnetic field inhomogeneity tolerance after shimming with a weighting coefficient and the total volume of shim pieces are both contained in the objective function of the model.By assigning different values to the weighting coefficient in the objective function,different shimming plans with different emphases can be obtained.A simulation test has been carried out on a small permanent magnet with frame structure.Several solutions are given and compared in this paper,which indicates that a practical shimming plan can be obtained quickly by solving this model.展开更多
In robust regression we often have to decide how many are the unusualobservations, which should be removed from the sample in order to obtain better fitting for the restof the observations. Generally, we use the basic...In robust regression we often have to decide how many are the unusualobservations, which should be removed from the sample in order to obtain better fitting for the restof the observations. Generally, we use the basic principle of LTS, which is to fit the majority ofthe data, identifying as outliers those points that cause the biggest damage to the robust fit.However, in the LTS regression method the choice of default values for high break down-point affectsseriously the efficiency of the estimator. In the proposed approach we introduce penalty cost fordiscarding an outlier, consequently, the best fit for the majority of the data is obtained bydiscarding only catastrophic observations. This penalty cost is based on robust design weights andhigh break down-point residual scale taken from the LTS estimator. The robust estimation is obtainedby solving a convex quadratic mixed integer programming problem, where in the objective functionthe sum of the squared residuals and penalties for discarding observations is minimized. Theproposed mathematical programming formula is suitable for small-sample data. Moreover, we conduct asimulation study to compare other robust estimators with our approach in terms of their efficiencyand robustness.展开更多
Finding the accurate solution for N-vehicle exploration problem is NP-hard in strong sense.In this paper,authors build a linear mixed integer programming model for N-vehicle exploration problem based on its properties...Finding the accurate solution for N-vehicle exploration problem is NP-hard in strong sense.In this paper,authors build a linear mixed integer programming model for N-vehicle exploration problem based on its properties.The model is then proved equivalent to the original problem.Given the model,one can apply the already existed methods and algorithms for mixed integer linear programming on N-vehicle exploration problem,which helps to enrich methods for solving N-vehicle exploration problem.展开更多
In this study, we aimed to assess the solution quality for location-allocation problems from facilities generated by the software TransCAD®?, a Geographic Information System for Transportation (GIS-T). Such fa...In this study, we aimed to assess the solution quality for location-allocation problems from facilities generated by the software TransCAD®?, a Geographic Information System for Transportation (GIS-T). Such facilities were obtained after using two routines together: Facility Location and Transportation Problem, when compared with optimal solutions from exact mathematical models, based on Mixed Integer Linear Programming (MILP), developed externally for the GIS. The models were applied to three simulations: the first one proposes opening factories and customer allocation in the state of Sao Paulo, Brazil;the second involves a wholesaler and a study of location and allocation of distribution centres for retail customers;and the third one involves the location of day-care centers and allocation of demand (0 - 3 years old children). The results showed that when considering facility capacity, the MILP optimising model presents results up to 37% better than the GIS and proposes different locations to open new facilities.展开更多
A novel mixed integer linear programming (NMILP) model for detection of gross errors is presented in this paper. Yamamura et al.(1988) designed a model for detection of gross errors and data reconciliation based on Ak...A novel mixed integer linear programming (NMILP) model for detection of gross errors is presented in this paper. Yamamura et al.(1988) designed a model for detection of gross errors and data reconciliation based on Akaike information cri- terion (AIC). But much computational cost is needed due to its combinational nature. A mixed integer linear programming (MILP) approach was performed to reduce the computational cost and enhance the robustness. But it loses the super performance of maximum likelihood estimation. To reduce the computational cost and have the merit of maximum likelihood estimation, the simultaneous data reconciliation method in an MILP framework is decomposed and replaced by an NMILP subproblem and a quadratic programming (QP) or a least squares estimation (LSE) subproblem. Simulation result of an industrial case shows the high efficiency of the method.展开更多
The mixed-integer quadratically constrained quadratic fractional programming(MIQCQFP)problem often appears in various fields such as engineering practice,management science and network communication.However,most of th...The mixed-integer quadratically constrained quadratic fractional programming(MIQCQFP)problem often appears in various fields such as engineering practice,management science and network communication.However,most of the solutions to such problems are often designed for their unique circumstances.This paper puts forward a new global optimization algorithm for solving the problem MIQCQFP.We first convert the MIQCQFP into an equivalent generalized bilinear fractional programming(EIGBFP)problem with integer variables.Secondly,we linearly underestimate and linearly overestimate the quadratic functions in the numerator and the denominator respectively,and then give a linear fractional relaxation technique for EIGBFP on the basis of non-negative numerator.After that,combining rectangular adjustment-segmentation technique and midpointsampling strategy with the branch-and-bound procedure,an efficient algorithm for solving MIQCQFP globally is proposed.Finally,a series of test problems are given to illustrate the effectiveness,feasibility and other performance of this algorithm.展开更多
Stochastic demand is an important factor that heavily affects production planning.It influences activities such as purchasing,manufacturing,and selling,and quick adaption is required.In production planning,for reasons...Stochastic demand is an important factor that heavily affects production planning.It influences activities such as purchasing,manufacturing,and selling,and quick adaption is required.In production planning,for reasons such as reducing costs and obtaining supplier discounts,many decisions must be made in the initial stage when demand has not been realized.The effects of non-optimal decisions will propagate to later stages,which can lead to losses due to overstocks or out-of-stocks.To find the optimal solutions for the initial and later stage regarding demand realization,this study proposes a stochastic two-stage linear program-ming model for a multi-supplier,multi-material,and multi-product purchasing and production planning process.The objective function is the expected total cost after two stages,and the results include detailed plans for purchasing and production in each demand scenario.Small-scale problems are solved through a deterministic equivalent transformation technique.To solve the problems in the large scale,an algorithm combining metaheuristic and sample average approximation is suggested.This algorithm can be implemented in parallel to utilize the power of the solver.The algorithm based on the observation that if the remaining quantity of materials and number of units of products at the end of the initial stage are given,then the problems of the first and second stages can be decomposed.展开更多
In this contribution we present an online scheduling algorithm for a real world multiproduct batch plant. The overall mixed integer nonlinear programming (MINLP) problem is hierarchically structured into a mixed integ...In this contribution we present an online scheduling algorithm for a real world multiproduct batch plant. The overall mixed integer nonlinear programming (MINLP) problem is hierarchically structured into a mixed integer linear programming (MILP) problem first and then a reduced dimensional MINLP problem, which are optimized by mathematical programming (MP) and genetic algorithm (GA) respectively. The basis idea relies on combining MP with GA to exploit their complementary capacity. The key features of the hierarchical model are explained and illustrated with some real world cases from the multiproduct batch plants.展开更多
Elementary siphons are useful in the development of a deadlock prevention policy for a discrete event system modeled with Petri nets. This paper proposes an algorithm to iteratively extract a set of elementary siphons...Elementary siphons are useful in the development of a deadlock prevention policy for a discrete event system modeled with Petri nets. This paper proposes an algorithm to iteratively extract a set of elementary siphons in a class of Petri nets, called system of simple sequential processes with resources (S3pR). At each iteration, by a mixed-integer programming (MIP) method, the proposed algorithm finds a maximal unmarked siphon, classifies the places in it, extracts an elementary siphon from the classified places, and adds a new constraint in order to extract the next elementary siphon. This algorithm iteratively executes until no new unmarked siphons can be found. It finally obtains a unique set of elementary siphons and avoids a complete siphon enumeration. A theoretical analysis and examples are given to demonstrate its efficiency and practical potentials.展开更多
The double row layout problem(DRLP)is to assign facilities on two rows in parallel so that the total cost of material handling among facilities is minimized.Since it is vital to save cost and enhance productivity,the ...The double row layout problem(DRLP)is to assign facilities on two rows in parallel so that the total cost of material handling among facilities is minimized.Since it is vital to save cost and enhance productivity,the DRLP plays an important role in many application fields.Nevertheless,it is very hard to handle the DRLP because of its complex model.In this paper,we consider a new simplified model for the DRLP(SM-DRLP)and provide a mixed integer programming(MIP)formulation for it.The continuous decision variables of the DRLP are divided into two parts:start points of double rows and adjustable clearances between adjacent facilities.The former one is considered in the new simplified model for the DRLP with the purpose of maintaining solution quality,while the latter one is not taken into account with the purpose of reducing computational time.To evaluate its performance,our SM-DRLP is compared with the model of a general DRLP and the model of another simplified DRLP.The experimental results show the efficiency of our proposed model.展开更多
Byproduct gas is an important secondary energy in iron and steel industry, and its optimization is vital to cost reduction. With the development of iron and steel industry to be more eco-friendly, it is necessary to c...Byproduct gas is an important secondary energy in iron and steel industry, and its optimization is vital to cost reduction. With the development of iron and steel industry to be more eco-friendly, it is necessary to construct an integrated optimized system, taking economics, energy consumption and environment into consideration. Therefore, the environmental cost caused by pollutants discharge should be factored in total cost when optimizing byproduct gas distribution. A green mixed integer linear programming (MILP) model for the optimization of byproduct gases was established to reduce total cost, including both operation cost and environmental cost. The operation cost included penalty for gas deviation, costs of fuel and water consumption, holder booster trip penalty, and so forth; while the environmental cost consisted of penalties for both direct and indirect pollutants discharge. Case study showed that the proposed model brought an optimum solution and 2.2% of the total cost could be reduced compared with previous one.展开更多
In this paper,a mixed integer linear programming(MILP)formulation for robust state estimation(RSE)is proposed.By using the exactly linearized measurement equations instead of the original nonlinear ones,the existingmi...In this paper,a mixed integer linear programming(MILP)formulation for robust state estimation(RSE)is proposed.By using the exactly linearized measurement equations instead of the original nonlinear ones,the existingmixed integer nonlinear programming formulation for RSE is converted to a MILP problem.The proposed approach not only guarantees to find the global optimum,but also does not have convergence problems.Simulation results on a rudimentary 3-bus system and several IEEE standard test systems fully illustrate that the proposed methodology is effective with high efficiency.展开更多
This paper proposes a deterministic two-stage mixed integer linear programming(TSMILP)approach to solve the reserve constrained dynamic economic dispatch(DED)problem considering valve-point effect(VPE).In stage one,th...This paper proposes a deterministic two-stage mixed integer linear programming(TSMILP)approach to solve the reserve constrained dynamic economic dispatch(DED)problem considering valve-point effect(VPE).In stage one,the nonsmooth cost function and the transmission loss are piecewise linearized and consequently the DED problem is formulated as a mixed integer linear programming(MILP)problem,which can be solved by commercial solvers.In stage two,based on the solution obtained in stage one,a range compression technique is proposed to make a further exploitation in the subspace of the whole solution domain.Due to the linear approximation of the transmission loss,the solution obtained in stage two dose not strictly satisfies the power balance constraint.Hence,a forward procedure is employed to eliminate the error.The simulation results on four test systems show that TSMILP makes satisfactory performances,in comparison with the existing methods.展开更多
In this paper,we consider a class of mixed integer weakly concave programming problems(MIWCPP)consisting of minimizing a difference of a quadratic function and a convex function.A new necessary global optimality condi...In this paper,we consider a class of mixed integer weakly concave programming problems(MIWCPP)consisting of minimizing a difference of a quadratic function and a convex function.A new necessary global optimality conditions for MIWCPP is presented in this paper.A new local optimization method for MIWCPP is designed based on the necessary global optimality conditions,which is different from the traditional local optimization method.A global optimization method is proposed by combining some auxiliary functions and the new local optimization method.Furthermore,numerical examples are also presented to show that the proposed global optimization method for MIWCPP is efficient.展开更多
To maximize the maintenance willingness of the owner of transmission lines,this study presents a transmission maintenance scheduling model that considers the energy constraints of the power system and the security con...To maximize the maintenance willingness of the owner of transmission lines,this study presents a transmission maintenance scheduling model that considers the energy constraints of the power system and the security constraints of on-site maintenance operations.Considering the computational complexity of the mixed integer programming(MIP)problem,a machine learning(ML)approach is presented to solve the transmission maintenance scheduling model efficiently.The value of the branching score factor value is optimized by Bayesian optimization(BO)in the proposed algorithm,which plays an important role in the size of the branch-and-bound search tree in the solution process.The test case in a modified version of the IEEE 30-bus system shows that the proposed algorithm can not only reach the optimal solution but also improve the computational efficiency.展开更多
Open pit mining operations utilize large scale and expensive equipment. For the mines implementing shovel and truck operation system, trucks constitute a large portion of these equipment and are used for hauling the m...Open pit mining operations utilize large scale and expensive equipment. For the mines implementing shovel and truck operation system, trucks constitute a large portion of these equipment and are used for hauling the mined materials. In order to have sustainable and viable operation, these equipment need to be utilized efficiently with minimum operating cost. Maintenance cost is a significant proportion of the overall operating costs. The maintenance cost of a truck changes non-linearly depending on the type, age and truck types. A new approach based on stochastic integer programming (SIP) techniques is used for annually scheduling a fixed fleet of mining trucks in a given operation, over the life of mine (multi-year time horizon) to minimize maintenance cost. The maintenance cost data in mining usually has uncertainty caused from the variability of the operational conditions at mines. To estimate the cost, usually historic data from different operations for new mines, and/or the historic data at the operating mines are used. However, maintenance cost varies depending on road conditions, age of equipment and many other local conditions at an operation. Traditional models aim to estimate the maintenance cost as a deterministic single value and financial evaluations are based on the estimated value. However, it does not provide a confidence on the estimate. The proposed model in this study assumes the truck maintenance cost is a stochastic parameter due to the significant level of uncertainty in the data and schedules the available fleet to meet the annual production targets. The scheduling has been performed by applying both the proposed stochastic and deterministic approaches. The approach provides a distribution for the maintenance cost of the optimized equipment schedule minimizing the cost.展开更多
基金Projects(50275150,61173052) supported by the National Natural Science Foundation of ChinaProject(14FJ3112) supported by the Planned Science and Technology of Hunan Province,ChinaProject(14B033) supported by Scientific Research Fund Education Department of Hunan Province,China
文摘A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.
基金National Natural Science Foundation of China(No.51405403)the Fundamental Research Funds for the Central Universities,China(No.2682014BR019)the Scientific Research Program of Education Bureau of Sichuan Province,China(No.12ZB322)
文摘Production scheduling has a major impact on the productivity of the manufacturing process. Recently, scheduling problems with deteriorating jobs have attracted increasing attentions from researchers. In many practical situations,it is found that some jobs fail to be processed prior to the pre-specified thresholds,and they often consume extra deteriorating time for successful accomplishment. Their processing times can be characterized by a step-wise function. Such kinds of jobs are called step-deteriorating jobs. In this paper,parallel machine scheduling problem with stepdeteriorating jobs( PMSD) is considered. Due to its intractability,four different mixed integer programming( MIP) models are formulated for solving the problem under consideration. The study aims to investigate the performance of these models and find promising optimization formulation to solve the largest possible problem instances. The proposed four models are solved by commercial software CPLEX. Moreover,the near-optimal solutions can be obtained by black-box local-search solver LocalS olver with the fourth one. The computational results show that the efficiencies of different MIP models depend on the distribution intervals of deteriorating thresholds, and the performance of LocalS olver is clearly better than that of CPLEX in terms of the quality of the solutions and the computational time.
基金supported by the National Natural Science Foundation of China(Grant No.50807050)
文摘A mathematical model based on mixed integer programming is presented in this paper for the passive shimming of magnet in magnetic resonance imaging(MRI) scanner.In this model,the magnetic field inhomogeneity tolerance and the central value of the magnetic field after shimming are programmed together with the volume of each shim piece as the variables,which increases the degree of freedom and guarantees a better solution.The magnetic field inhomogeneity tolerance after shimming with a weighting coefficient and the total volume of shim pieces are both contained in the objective function of the model.By assigning different values to the weighting coefficient in the objective function,different shimming plans with different emphases can be obtained.A simulation test has been carried out on a small permanent magnet with frame structure.Several solutions are given and compared in this paper,which indicates that a practical shimming plan can be obtained quickly by solving this model.
文摘In robust regression we often have to decide how many are the unusualobservations, which should be removed from the sample in order to obtain better fitting for the restof the observations. Generally, we use the basic principle of LTS, which is to fit the majority ofthe data, identifying as outliers those points that cause the biggest damage to the robust fit.However, in the LTS regression method the choice of default values for high break down-point affectsseriously the efficiency of the estimator. In the proposed approach we introduce penalty cost fordiscarding an outlier, consequently, the best fit for the majority of the data is obtained bydiscarding only catastrophic observations. This penalty cost is based on robust design weights andhigh break down-point residual scale taken from the LTS estimator. The robust estimation is obtainedby solving a convex quadratic mixed integer programming problem, where in the objective functionthe sum of the squared residuals and penalties for discarding observations is minimized. Theproposed mathematical programming formula is suitable for small-sample data. Moreover, we conduct asimulation study to compare other robust estimators with our approach in terms of their efficiencyand robustness.
文摘Finding the accurate solution for N-vehicle exploration problem is NP-hard in strong sense.In this paper,authors build a linear mixed integer programming model for N-vehicle exploration problem based on its properties.The model is then proved equivalent to the original problem.Given the model,one can apply the already existed methods and algorithms for mixed integer linear programming on N-vehicle exploration problem,which helps to enrich methods for solving N-vehicle exploration problem.
文摘In this study, we aimed to assess the solution quality for location-allocation problems from facilities generated by the software TransCAD®?, a Geographic Information System for Transportation (GIS-T). Such facilities were obtained after using two routines together: Facility Location and Transportation Problem, when compared with optimal solutions from exact mathematical models, based on Mixed Integer Linear Programming (MILP), developed externally for the GIS. The models were applied to three simulations: the first one proposes opening factories and customer allocation in the state of Sao Paulo, Brazil;the second involves a wholesaler and a study of location and allocation of distribution centres for retail customers;and the third one involves the location of day-care centers and allocation of demand (0 - 3 years old children). The results showed that when considering facility capacity, the MILP optimising model presents results up to 37% better than the GIS and proposes different locations to open new facilities.
基金Project supported by the National Creative Research Groups Science Foundation of China (No. 60421002)the National "Tenth Five-Year" Science and Technology Research Program of China (No.2004BA204B08)
文摘A novel mixed integer linear programming (NMILP) model for detection of gross errors is presented in this paper. Yamamura et al.(1988) designed a model for detection of gross errors and data reconciliation based on Akaike information cri- terion (AIC). But much computational cost is needed due to its combinational nature. A mixed integer linear programming (MILP) approach was performed to reduce the computational cost and enhance the robustness. But it loses the super performance of maximum likelihood estimation. To reduce the computational cost and have the merit of maximum likelihood estimation, the simultaneous data reconciliation method in an MILP framework is decomposed and replaced by an NMILP subproblem and a quadratic programming (QP) or a least squares estimation (LSE) subproblem. Simulation result of an industrial case shows the high efficiency of the method.
基金supported by the National Natural Science Foundation of China(Grant 11961001)the construction project of first-class subjects in Ningxia Higher Education(Grant NXYLXK2017B09)by the major proprietary funded project of North Minzu University(Grant ZDZX201901).
文摘The mixed-integer quadratically constrained quadratic fractional programming(MIQCQFP)problem often appears in various fields such as engineering practice,management science and network communication.However,most of the solutions to such problems are often designed for their unique circumstances.This paper puts forward a new global optimization algorithm for solving the problem MIQCQFP.We first convert the MIQCQFP into an equivalent generalized bilinear fractional programming(EIGBFP)problem with integer variables.Secondly,we linearly underestimate and linearly overestimate the quadratic functions in the numerator and the denominator respectively,and then give a linear fractional relaxation technique for EIGBFP on the basis of non-negative numerator.After that,combining rectangular adjustment-segmentation technique and midpointsampling strategy with the branch-and-bound procedure,an efficient algorithm for solving MIQCQFP globally is proposed.Finally,a series of test problems are given to illustrate the effectiveness,feasibility and other performance of this algorithm.
基金This research is funded by Vietnam National University Ho Chi Minh City(VNU-HCM)under Grant No.C2020-28-10.
文摘Stochastic demand is an important factor that heavily affects production planning.It influences activities such as purchasing,manufacturing,and selling,and quick adaption is required.In production planning,for reasons such as reducing costs and obtaining supplier discounts,many decisions must be made in the initial stage when demand has not been realized.The effects of non-optimal decisions will propagate to later stages,which can lead to losses due to overstocks or out-of-stocks.To find the optimal solutions for the initial and later stage regarding demand realization,this study proposes a stochastic two-stage linear program-ming model for a multi-supplier,multi-material,and multi-product purchasing and production planning process.The objective function is the expected total cost after two stages,and the results include detailed plans for purchasing and production in each demand scenario.Small-scale problems are solved through a deterministic equivalent transformation technique.To solve the problems in the large scale,an algorithm combining metaheuristic and sample average approximation is suggested.This algorithm can be implemented in parallel to utilize the power of the solver.The algorithm based on the observation that if the remaining quantity of materials and number of units of products at the end of the initial stage are given,then the problems of the first and second stages can be decomposed.
基金Supported by the National 973 Program of China (No. G2000263).
文摘In this contribution we present an online scheduling algorithm for a real world multiproduct batch plant. The overall mixed integer nonlinear programming (MINLP) problem is hierarchically structured into a mixed integer linear programming (MILP) problem first and then a reduced dimensional MINLP problem, which are optimized by mathematical programming (MP) and genetic algorithm (GA) respectively. The basis idea relies on combining MP with GA to exploit their complementary capacity. The key features of the hierarchical model are explained and illustrated with some real world cases from the multiproduct batch plants.
基金supported by the Natural Science Foundation of China under Grant No.60773001,61074035, 61064003,and 50978129the Fundamental Research Funds for the Central Universities under Grant No. JY 10000904001+2 种基金the National Research Foundation for the Doctoral Program of Higher Education,the Ministry of Education,P.R.China,under Grant No.20090203110009the"863"High-tech Research and Development Program of China under Grant No.2008AA04Z 109the Alexander von Humboldt Foundation
文摘Elementary siphons are useful in the development of a deadlock prevention policy for a discrete event system modeled with Petri nets. This paper proposes an algorithm to iteratively extract a set of elementary siphons in a class of Petri nets, called system of simple sequential processes with resources (S3pR). At each iteration, by a mixed-integer programming (MIP) method, the proposed algorithm finds a maximal unmarked siphon, classifies the places in it, extracts an elementary siphon from the classified places, and adds a new constraint in order to extract the next elementary siphon. This algorithm iteratively executes until no new unmarked siphons can be found. It finally obtains a unique set of elementary siphons and avoids a complete siphon enumeration. A theoretical analysis and examples are given to demonstrate its efficiency and practical potentials.
基金Supported by the National Natural Science Foundation of China(61871204,62174033)the Natural Science Foundation of Fujian Province(2017J01767,2020J01843)+1 种基金the Program for New Century Excellent Talents in Fujian Province Universitythe Science and Technology Project of Minjiang University(MYK19017)。
文摘The double row layout problem(DRLP)is to assign facilities on two rows in parallel so that the total cost of material handling among facilities is minimized.Since it is vital to save cost and enhance productivity,the DRLP plays an important role in many application fields.Nevertheless,it is very hard to handle the DRLP because of its complex model.In this paper,we consider a new simplified model for the DRLP(SM-DRLP)and provide a mixed integer programming(MIP)formulation for it.The continuous decision variables of the DRLP are divided into two parts:start points of double rows and adjustable clearances between adjacent facilities.The former one is considered in the new simplified model for the DRLP with the purpose of maintaining solution quality,while the latter one is not taken into account with the purpose of reducing computational time.To evaluate its performance,our SM-DRLP is compared with the model of a general DRLP and the model of another simplified DRLP.The experimental results show the efficiency of our proposed model.
基金Sponsored by Beijing Social Science Foundation of China(14JGC110)Social Science Research Common Program of Beijing Municipal Commission of Education of China(SM201510038011)CUEB Foundation of China(2014XJG005)
文摘Byproduct gas is an important secondary energy in iron and steel industry, and its optimization is vital to cost reduction. With the development of iron and steel industry to be more eco-friendly, it is necessary to construct an integrated optimized system, taking economics, energy consumption and environment into consideration. Therefore, the environmental cost caused by pollutants discharge should be factored in total cost when optimizing byproduct gas distribution. A green mixed integer linear programming (MILP) model for the optimization of byproduct gases was established to reduce total cost, including both operation cost and environmental cost. The operation cost included penalty for gas deviation, costs of fuel and water consumption, holder booster trip penalty, and so forth; while the environmental cost consisted of penalties for both direct and indirect pollutants discharge. Case study showed that the proposed model brought an optimum solution and 2.2% of the total cost could be reduced compared with previous one.
基金This work was supported in part by the National High Technology Research and Development Program(2012AA 050208)in part by the National Natural Science Foundation of China(51407069)in part by the Fundamental Research Funds for the Central Universities(2014QN02).
文摘In this paper,a mixed integer linear programming(MILP)formulation for robust state estimation(RSE)is proposed.By using the exactly linearized measurement equations instead of the original nonlinear ones,the existingmixed integer nonlinear programming formulation for RSE is converted to a MILP problem.The proposed approach not only guarantees to find the global optimum,but also does not have convergence problems.Simulation results on a rudimentary 3-bus system and several IEEE standard test systems fully illustrate that the proposed methodology is effective with high efficiency.
基金supported by Guangdong Yudean Group Co.LTD,Guangzhou 510630,China.
文摘This paper proposes a deterministic two-stage mixed integer linear programming(TSMILP)approach to solve the reserve constrained dynamic economic dispatch(DED)problem considering valve-point effect(VPE).In stage one,the nonsmooth cost function and the transmission loss are piecewise linearized and consequently the DED problem is formulated as a mixed integer linear programming(MILP)problem,which can be solved by commercial solvers.In stage two,based on the solution obtained in stage one,a range compression technique is proposed to make a further exploitation in the subspace of the whole solution domain.Due to the linear approximation of the transmission loss,the solution obtained in stage two dose not strictly satisfies the power balance constraint.Hence,a forward procedure is employed to eliminate the error.The simulation results on four test systems show that TSMILP makes satisfactory performances,in comparison with the existing methods.
基金supported by Natural Science Foundation of Chongqing(Nos.cstc2013jjB00001 and cstc2011jjA00010).
文摘In this paper,we consider a class of mixed integer weakly concave programming problems(MIWCPP)consisting of minimizing a difference of a quadratic function and a convex function.A new necessary global optimality conditions for MIWCPP is presented in this paper.A new local optimization method for MIWCPP is designed based on the necessary global optimality conditions,which is different from the traditional local optimization method.A global optimization method is proposed by combining some auxiliary functions and the new local optimization method.Furthermore,numerical examples are also presented to show that the proposed global optimization method for MIWCPP is efficient.
基金supported by the National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201).
文摘To maximize the maintenance willingness of the owner of transmission lines,this study presents a transmission maintenance scheduling model that considers the energy constraints of the power system and the security constraints of on-site maintenance operations.Considering the computational complexity of the mixed integer programming(MIP)problem,a machine learning(ML)approach is presented to solve the transmission maintenance scheduling model efficiently.The value of the branching score factor value is optimized by Bayesian optimization(BO)in the proposed algorithm,which plays an important role in the size of the branch-and-bound search tree in the solution process.The test case in a modified version of the IEEE 30-bus system shows that the proposed algorithm can not only reach the optimal solution but also improve the computational efficiency.
文摘Open pit mining operations utilize large scale and expensive equipment. For the mines implementing shovel and truck operation system, trucks constitute a large portion of these equipment and are used for hauling the mined materials. In order to have sustainable and viable operation, these equipment need to be utilized efficiently with minimum operating cost. Maintenance cost is a significant proportion of the overall operating costs. The maintenance cost of a truck changes non-linearly depending on the type, age and truck types. A new approach based on stochastic integer programming (SIP) techniques is used for annually scheduling a fixed fleet of mining trucks in a given operation, over the life of mine (multi-year time horizon) to minimize maintenance cost. The maintenance cost data in mining usually has uncertainty caused from the variability of the operational conditions at mines. To estimate the cost, usually historic data from different operations for new mines, and/or the historic data at the operating mines are used. However, maintenance cost varies depending on road conditions, age of equipment and many other local conditions at an operation. Traditional models aim to estimate the maintenance cost as a deterministic single value and financial evaluations are based on the estimated value. However, it does not provide a confidence on the estimate. The proposed model in this study assumes the truck maintenance cost is a stochastic parameter due to the significant level of uncertainty in the data and schedules the available fleet to meet the annual production targets. The scheduling has been performed by applying both the proposed stochastic and deterministic approaches. The approach provides a distribution for the maintenance cost of the optimized equipment schedule minimizing the cost.