To address the issues of reduced performance and shortened lifespan during the low-carbonizating process of Al_(2)O_(3)-C refractories,nano-crystalline ZrC modified graphite was prepared using Zr powder and flake grap...To address the issues of reduced performance and shortened lifespan during the low-carbonizating process of Al_(2)O_(3)-C refractories,nano-crystalline ZrC modified graphite was prepared using Zr powder and flake graphite as raw materials,with NaCl and NaF mixed salt serving as the medium.The flake graphite was gradually replaced by ZrC modified graphite in the preparation of Al_(2)O_(3)-C refractories,and its impact on the material’s structure and properties was investigated.The results indicate that,compared to samples with only flake graphite,the introduction of 1 mass%to 5 mass%nano-crystalline ZrC modified graphite can significantly enhance the mechanical performance of low-carbon Al_(2)O_(3)-C refractories.When 5 mass%ZrC modified graphite is added,the mechanical properties of the samples are optimal,with the cold modulus of rupture and elastic modulus reaching 22.5 MPa and 65.0 GPa,respectively.展开更多
We prepared and characterized a form-stable composite phase change material (PCM) with higher thermal conductivity. Capric acid(CA)-myristic acid(MA) eutectic as core, poly-methyl methacrylate (PMMA) as suppor...We prepared and characterized a form-stable composite phase change material (PCM) with higher thermal conductivity. Capric acid(CA)-myristic acid(MA) eutectic as core, poly-methyl methacrylate (PMMA) as supportive matrix and modified graphite (MG) powders serving as the thermal conductance improver were blended by bulk- polymerization method. The composite PCMs with different MG mass fraction (2%, 5%, 7%, 10% and 15%) were characterized by FT-IR, SEM, DSC technique and mechanical tests. Thermal conductivities of the composites were measured by transient hot-wire method. The results indicate that MG powders have been successfully inserted into the CA-MA/PMMA matrix without any chemical reaction with each other. The MG/CA-MA/PMMA composites maintain good thermal storage performance while the thermal conductivity has been enhanced significantly. The composite PCM added with 15 wt% MG powders increases approximately as 195.9% in thermal conductivity. Moreover, the thermal conductivity improvement of the composite PCMs is also verified by the melting-freezing experiment, which is profitable for the heat transfer efficiency in latent heat thermal energy storage system.展开更多
Natural minerals-based energy materials have attracted enormous attention because of the advantages of good materials consistency,high production,environmental friendliness,and low cost.The uniform distribution of gra...Natural minerals-based energy materials have attracted enormous attention because of the advantages of good materials consistency,high production,environmental friendliness,and low cost.The uniform distribution of grains can effectively inhibit the aggregation of active materials,improving lithium storage performance.In this work,natural graphite is modified by polyvinylpyrrolidone to obtain modified graphite with reduced size and better dispersion.Natural pyrite composite polyvinylpyrrolidone-modified graphite(pyrite/PG)material with uniform particle distribution is obtained by the ball milling process.The subsequent calcination process converts pyrite/PG into Fe_(1-x)Scompounded with polyvinylpyrrolidone-modified graphite(Fe_(1-x)S/PG).The homogeneous grain distributions of active material can facilitate the faster transfer of electrons and promote the efficient utilization of active materials.The as-prepared Fe_(1-x)S/PG electrode exhibits a remarkably reversible specific capacity of 613.0 mAh·g^(-1)at 0.2 A·g^(-1)after 80 cycles and an excellent rate capability of 523.0 mAh·g^(-1)at 5 A·g^(-1).Even at a higher current density of 10 A·g^(-1),it can deliver a specific capacity of 348.0 mAh·g^(-1).Moreover,the dominant pseudocapacitance in redox reactions accounts for the impressive rate and cycling stability.This work provides a low-cost and facile method to fabricate natural mineral-based anode materials and apprise readers about the impact of uniform particle distribution on lithium storage performance.展开更多
Nickel Graphite modified electrode (Ni/GME) was prepared by electrochemical method and degradation of Indigocarmine (IC) dye was carried out. An investigation between the efficiency of degradation by graphite electrod...Nickel Graphite modified electrode (Ni/GME) was prepared by electrochemical method and degradation of Indigocarmine (IC) dye was carried out. An investigation between the efficiency of degradation by graphite electrode and the Ni/graphite modified electrode has been carried out. The different effects of concentration, current density and temperature on the rate of degradation were studied. This study shows that the rate of the degradation is more for Ni doped modified graphite electrode. UV-Visible spectra before and after degradation of the dye solution were observed. The thin film formation of Ni or encapsulated in graphite rod is observed by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM & EDAX). The instantaneous current effectiveness values of different experimental conditions are evaluated. The anodic oxidation by Ni/ graphite modified electrode showed the complete degradation of aqueous solution indigocarmine, which is confirmed by UV-Visible and chemical oxygen demand (COD) measurements. The dye is converted into CO2, H2O and simpler inorganic salts. The results observed for reuse of modified electrodes indicate that the Ni/graphite modified electrode would be a promising anode for electrochemical degradation of indigocarmine. This method can be applied for the remediation of waste water containing organics, cost-effective and simple.展开更多
In order to establish a simple,sensitive,and fast reliable detection method to determine the magnolol,FeWO4 nanoflower was synthesised through a solvothermal technique and FeWO4 nanoflower modified carbon paste electr...In order to establish a simple,sensitive,and fast reliable detection method to determine the magnolol,FeWO4 nanoflower was synthesised through a solvothermal technique and FeWO4 nanoflower modified carbon paste electrode(CPE) was developed.The voltammetric behavior of magnolol on the modified electrodes was studied using cyclic voltammetry(CV),linear sweep voltammetry(LSV),and differential pulse voltammetry(DPV).The experimental results showed that the modified electrode remarkably enhanced the electrochemical response of the magnolol and exhibited a wide linear range for determination of the magnolol from 1.0×10-7 to 1.0×10-4 mol/L with a low detection limit of 5.0×10-8 mol/L.展开更多
Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and ...Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect.展开更多
Graphene oxide was synthesized from graphite flakes using modified Hummers’method.The interlayer spacings of graphite,graphite oxide and graphene oxide were measured using X-ray diffraction technique.The C/O atomic r...Graphene oxide was synthesized from graphite flakes using modified Hummers’method.The interlayer spacings of graphite,graphite oxide and graphene oxide were measured using X-ray diffraction technique.The C/O atomic ratios of graphite oxide and graphene oxide were calculated from XPS measurements.The transformation of graphite to graphite oxide and finally to graphene oxide was clearly observed from the micro-Raman spectroscopy data and was confirmed from the FESEM micrographs.UV-VIS-NIR spectrophotometer was used to study the absorbance of graphene oxide and reduced graphene oxide samples.Finally,the chemically reduced graphene oxide was heat-treated in air to obtain chemically modified graphene.展开更多
In this study,experimental and numerical investigations were conducted on a tube-fin heat-exchanger latent-heat cold energy storage unit.The fin side of the heat exchanger was filled with water as the energy storage m...In this study,experimental and numerical investigations were conducted on a tube-fin heat-exchanger latent-heat cold energy storage unit.The fin side of the heat exchanger was filled with water as the energy storage medium,and modified expanded graphite(MEG)was employed to improve the thermal characteristics of water.The water contact angle of the expanded graphite decreased from 106.31°to 0°,and the hydrophilicity and the absorption rate of water significantly improved after the modification.Moreover,the experimental analyses of the charge/discharge process showed that the cooling capacity of the system filled with 90 wt.%water/MEG was 80.8%of that of pure water,whereas its cooling time was only 69.7%of that of pure water.The average power increased by 15.9%compared with that of water.The system filled with 90 wt.%water/MEG completed two energy charging and discharging cycles,whereas the system filled with water completed only 1.5 cycles within 15000 s.Furthermore,the effects of the flow rate and inlet temperature of the heat transfer fluid on the charging process were explored.Finally,a numerical model was built and validated to investigate the phase change behavior and the effect of the structure size on the performance of the system.The heat-exchanger fin spacing had no significant effect on the cold energy storage unit,whereas the vertical spacing of the tube pass had the highest effect.It can be concluded that the heat exchanger combined with high-thermal-conductivity water/MEG exhibits better energy storage capacity and working power,showing a wide application prospect in the field of cold energy storage.展开更多
The development of low-carbon refractories is of great significance,but it is limited by the deteriorated properties that resulted from the decreased graphite content.Incorporating composite powders has proved to be e...The development of low-carbon refractories is of great significance,but it is limited by the deteriorated properties that resulted from the decreased graphite content.Incorporating composite powders has proved to be effective in improving the properties of low-carbon refractories.The recent progress in the synthesis of composite powders including modified graphite,nanocarbon-containing composite powders,oxide/non-oxide and non-oxide composite powders and their applications in low-carbon refractories were reviewed,and the future development of composite powder technology was prospected.展开更多
文摘To address the issues of reduced performance and shortened lifespan during the low-carbonizating process of Al_(2)O_(3)-C refractories,nano-crystalline ZrC modified graphite was prepared using Zr powder and flake graphite as raw materials,with NaCl and NaF mixed salt serving as the medium.The flake graphite was gradually replaced by ZrC modified graphite in the preparation of Al_(2)O_(3)-C refractories,and its impact on the material’s structure and properties was investigated.The results indicate that,compared to samples with only flake graphite,the introduction of 1 mass%to 5 mass%nano-crystalline ZrC modified graphite can significantly enhance the mechanical performance of low-carbon Al_(2)O_(3)-C refractories.When 5 mass%ZrC modified graphite is added,the mechanical properties of the samples are optimal,with the cold modulus of rupture and elastic modulus reaching 22.5 MPa and 65.0 GPa,respectively.
基金Founded by the National Mega-Project of Scientific&Technical Supporting Programs during the 11th Five-year Period(No.2006BAJ04A04)the Foundation of Liaoning EducationalCommittee(No.L2012225)
文摘We prepared and characterized a form-stable composite phase change material (PCM) with higher thermal conductivity. Capric acid(CA)-myristic acid(MA) eutectic as core, poly-methyl methacrylate (PMMA) as supportive matrix and modified graphite (MG) powders serving as the thermal conductance improver were blended by bulk- polymerization method. The composite PCMs with different MG mass fraction (2%, 5%, 7%, 10% and 15%) were characterized by FT-IR, SEM, DSC technique and mechanical tests. Thermal conductivities of the composites were measured by transient hot-wire method. The results indicate that MG powders have been successfully inserted into the CA-MA/PMMA matrix without any chemical reaction with each other. The MG/CA-MA/PMMA composites maintain good thermal storage performance while the thermal conductivity has been enhanced significantly. The composite PCM added with 15 wt% MG powders increases approximately as 195.9% in thermal conductivity. Moreover, the thermal conductivity improvement of the composite PCMs is also verified by the melting-freezing experiment, which is profitable for the heat transfer efficiency in latent heat thermal energy storage system.
基金financially supported by the National Natural Science Foundation of China (Nos.51974222 and 52034011)。
文摘Natural minerals-based energy materials have attracted enormous attention because of the advantages of good materials consistency,high production,environmental friendliness,and low cost.The uniform distribution of grains can effectively inhibit the aggregation of active materials,improving lithium storage performance.In this work,natural graphite is modified by polyvinylpyrrolidone to obtain modified graphite with reduced size and better dispersion.Natural pyrite composite polyvinylpyrrolidone-modified graphite(pyrite/PG)material with uniform particle distribution is obtained by the ball milling process.The subsequent calcination process converts pyrite/PG into Fe_(1-x)Scompounded with polyvinylpyrrolidone-modified graphite(Fe_(1-x)S/PG).The homogeneous grain distributions of active material can facilitate the faster transfer of electrons and promote the efficient utilization of active materials.The as-prepared Fe_(1-x)S/PG electrode exhibits a remarkably reversible specific capacity of 613.0 mAh·g^(-1)at 0.2 A·g^(-1)after 80 cycles and an excellent rate capability of 523.0 mAh·g^(-1)at 5 A·g^(-1).Even at a higher current density of 10 A·g^(-1),it can deliver a specific capacity of 348.0 mAh·g^(-1).Moreover,the dominant pseudocapacitance in redox reactions accounts for the impressive rate and cycling stability.This work provides a low-cost and facile method to fabricate natural mineral-based anode materials and apprise readers about the impact of uniform particle distribution on lithium storage performance.
文摘Nickel Graphite modified electrode (Ni/GME) was prepared by electrochemical method and degradation of Indigocarmine (IC) dye was carried out. An investigation between the efficiency of degradation by graphite electrode and the Ni/graphite modified electrode has been carried out. The different effects of concentration, current density and temperature on the rate of degradation were studied. This study shows that the rate of the degradation is more for Ni doped modified graphite electrode. UV-Visible spectra before and after degradation of the dye solution were observed. The thin film formation of Ni or encapsulated in graphite rod is observed by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM & EDAX). The instantaneous current effectiveness values of different experimental conditions are evaluated. The anodic oxidation by Ni/ graphite modified electrode showed the complete degradation of aqueous solution indigocarmine, which is confirmed by UV-Visible and chemical oxygen demand (COD) measurements. The dye is converted into CO2, H2O and simpler inorganic salts. The results observed for reuse of modified electrodes indicate that the Ni/graphite modified electrode would be a promising anode for electrochemical degradation of indigocarmine. This method can be applied for the remediation of waste water containing organics, cost-effective and simple.
基金Funded by the National Natural Science Foundation of China(Nos.21461008 and 21465009)the Open Foundation of Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province,Forestry Key Discipline(No.PKLHB1303)the Hubei University for Nationalities(No.MY2009B007)
文摘In order to establish a simple,sensitive,and fast reliable detection method to determine the magnolol,FeWO4 nanoflower was synthesised through a solvothermal technique and FeWO4 nanoflower modified carbon paste electrode(CPE) was developed.The voltammetric behavior of magnolol on the modified electrodes was studied using cyclic voltammetry(CV),linear sweep voltammetry(LSV),and differential pulse voltammetry(DPV).The experimental results showed that the modified electrode remarkably enhanced the electrochemical response of the magnolol and exhibited a wide linear range for determination of the magnolol from 1.0×10-7 to 1.0×10-4 mol/L with a low detection limit of 5.0×10-8 mol/L.
基金Funded by the National Natural Science Foundation of China(No.51078372)the Doctoral Program of Higher Specialized Research Foundation(No.20105522110002)
文摘Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect.
文摘Graphene oxide was synthesized from graphite flakes using modified Hummers’method.The interlayer spacings of graphite,graphite oxide and graphene oxide were measured using X-ray diffraction technique.The C/O atomic ratios of graphite oxide and graphene oxide were calculated from XPS measurements.The transformation of graphite to graphite oxide and finally to graphene oxide was clearly observed from the micro-Raman spectroscopy data and was confirmed from the FESEM micrographs.UV-VIS-NIR spectrophotometer was used to study the absorbance of graphene oxide and reduced graphene oxide samples.Finally,the chemically reduced graphene oxide was heat-treated in air to obtain chemically modified graphene.
基金National Key R&D Program of China(Grant No.:2020YFA0210704).
文摘In this study,experimental and numerical investigations were conducted on a tube-fin heat-exchanger latent-heat cold energy storage unit.The fin side of the heat exchanger was filled with water as the energy storage medium,and modified expanded graphite(MEG)was employed to improve the thermal characteristics of water.The water contact angle of the expanded graphite decreased from 106.31°to 0°,and the hydrophilicity and the absorption rate of water significantly improved after the modification.Moreover,the experimental analyses of the charge/discharge process showed that the cooling capacity of the system filled with 90 wt.%water/MEG was 80.8%of that of pure water,whereas its cooling time was only 69.7%of that of pure water.The average power increased by 15.9%compared with that of water.The system filled with 90 wt.%water/MEG completed two energy charging and discharging cycles,whereas the system filled with water completed only 1.5 cycles within 15000 s.Furthermore,the effects of the flow rate and inlet temperature of the heat transfer fluid on the charging process were explored.Finally,a numerical model was built and validated to investigate the phase change behavior and the effect of the structure size on the performance of the system.The heat-exchanger fin spacing had no significant effect on the cold energy storage unit,whereas the vertical spacing of the tube pass had the highest effect.It can be concluded that the heat exchanger combined with high-thermal-conductivity water/MEG exhibits better energy storage capacity and working power,showing a wide application prospect in the field of cold energy storage.
基金The authors thankfully acknowledge the financial support of the National Natural Science Foundation of China(Nos.U20A20239,U1908227,and 51772236)for sponsoring this work.
文摘The development of low-carbon refractories is of great significance,but it is limited by the deteriorated properties that resulted from the decreased graphite content.Incorporating composite powders has proved to be effective in improving the properties of low-carbon refractories.The recent progress in the synthesis of composite powders including modified graphite,nanocarbon-containing composite powders,oxide/non-oxide and non-oxide composite powders and their applications in low-carbon refractories were reviewed,and the future development of composite powder technology was prospected.