As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation...As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation stations were established to monitor movement and deformation in one super-large working face. Based on field measurements, the surface movement and deformation characteristics were obtained, including angle parameters, subsidence prediction parameters, etc. Besides, the angle and subsidence prediction parameters in similar mining areas are summarized; the mechanism of surface movement and deformation was analyzed with the combination of key stratum theory, mining and geological conditions. The research also indicates that compared with conventional working faces, uniform subsidence area of the subsidence trough in the windy and sandy region is larger, the trough margins are relative steep and deformation values present convergence at the margins, the extent of the trough shrink towards the goaf and the influence time of mining activities lasts shorter; the overlying rock movement and breaking characteristics presents regional particularity in the study area, while the single key stratum, thin bedrock and thick sand that can rapidly propagate movement and deformation are the deep factors, contributing to it.展开更多
Movement and deformation of underground rock include vertical dislocation and horizontal deformation,and the energy released by mine earthquake can be calculated basing on deformation energy.So put forwards the predic...Movement and deformation of underground rock include vertical dislocation and horizontal deformation,and the energy released by mine earthquake can be calculated basing on deformation energy.So put forwards the prediction for degree and spread of mine earthquake according to the underground rock's movement and deformation.The actual number of times and spread of mine earthquake on site were greatly identical to the prediction.The practice proves the possibility of prediction for mine earthquake basing on the analysis of underground rock's movement and deformation,and sets up new approach of mine earthquake prediction.展开更多
Based on the data from repeated precise leveling and across-fault deformation measurements carried out in recent 30 years and the analyzed results from GPS observations made in recent years along the northeastern marg...Based on the data from repeated precise leveling and across-fault deformation measurements carried out in recent 30 years and the analyzed results from GPS observations made in recent years along the northeastern margin of Qinghai-Xizang block, and combined with the geological structures and seismic activities, some characteristics in regional tectonic deformation and strong earthquake development are studied and approached preliminarily. The results show that: a) The space-time distribution of current tectonic deformation in this area is inhomogeneous with relatively intensive tectonic deformation in the vicinity of main boundary faults and weak deformation in the farther areas. The intensity of vertical differential movement and the deformation status vary with time, and the horizontal movement and deformation are characterized by apparent compression and strike-slip. b) The tectonic stress field generated by the NE-trending continuous compressive movement of Qinghai-Xizang block due to the northward press and collision of India plate is the principal stress for the tectonic deformation and earthquake development in this area. The evolution of space-time distribution of tectonic deformation and seismicity is closely related to the block activity and dynamic evolution of regional tectonic stress field. c) The vertical deformation uplift and high-gradient deformation zones and the obvious fault deformation anomaly appeared along the boundaries of tectonic blocks can be considered as the indicators of hindered block motion and intensified tectonic stress field for strong earthquake development. Usually, the above-mentioned phenomena would be followed by the seismicity of M6.0, but the earthquake might not occur in the place with the maximum movement. The zones with the fault deformation anomaly characterized by tendencious accumulation acceleration turning and the surrounding areas might be the positions for accumulation of strain energy and development and occurrence of strong earthquakes.展开更多
With the discrete element method, the simulation and analysis of a series of numerical models were made. This research revealed ground movement laws for strip mining under thick alluvium and gave calculation formulae ...With the discrete element method, the simulation and analysis of a series of numerical models were made. This research revealed ground movement laws for strip mining under thick alluvium and gave calculation formulae for the maximum ground subsidence and horizontal movement as a function of basement rock thickness and mining width, thus providing sound evidence for future strip mining under thick alluvium.展开更多
Damage caused by underground coal mining is a serious problem in mining areas in China; therefore, studying and obtaining the rules of ground movement and deformation under different geological conditions is of great ...Damage caused by underground coal mining is a serious problem in mining areas in China; therefore, studying and obtaining the rules of ground movement and deformation under different geological conditions is of great importance. The numerical software ANSYS was used in this study to simulate mining processes under two special geological conditions: (1) thick unconsolidated soil layer and thin bedrock; (2) thin soil layer and thick bedrock. The rules for ground movement and deformation for different soil layer to bedrock ratios were obtained. On the basis of these rules, a prediction parameter modified model of the influence function was proposed, which is suitable for different values of unconsolidated soil layer thickness. The prediction results were verified using two sets of typical field data.展开更多
基金Financial supports for this work, are provided by the National Natural Science Foundation of China (NSFC) & Shenhua Group Corporation Limited key support project of the coal joint fund (U1361203) and NSFC under Grant No. 41501562. Thanks are also due to some participants for rendering assistant cooperation during studies.
文摘As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation stations were established to monitor movement and deformation in one super-large working face. Based on field measurements, the surface movement and deformation characteristics were obtained, including angle parameters, subsidence prediction parameters, etc. Besides, the angle and subsidence prediction parameters in similar mining areas are summarized; the mechanism of surface movement and deformation was analyzed with the combination of key stratum theory, mining and geological conditions. The research also indicates that compared with conventional working faces, uniform subsidence area of the subsidence trough in the windy and sandy region is larger, the trough margins are relative steep and deformation values present convergence at the margins, the extent of the trough shrink towards the goaf and the influence time of mining activities lasts shorter; the overlying rock movement and breaking characteristics presents regional particularity in the study area, while the single key stratum, thin bedrock and thick sand that can rapidly propagate movement and deformation are the deep factors, contributing to it.
基金the Education Research Project of Liaoning(20060388)Liaoning Technology University Project(06A07)
文摘Movement and deformation of underground rock include vertical dislocation and horizontal deformation,and the energy released by mine earthquake can be calculated basing on deformation energy.So put forwards the prediction for degree and spread of mine earthquake according to the underground rock's movement and deformation.The actual number of times and spread of mine earthquake on site were greatly identical to the prediction.The practice proves the possibility of prediction for mine earthquake basing on the analysis of underground rock's movement and deformation,and sets up new approach of mine earthquake prediction.
基金Foundation item: The Development Program on National Key Basic Researches under the Project Mechanism and Prediction of Continental strong Earthquakes (G1998040703)
文摘Based on the data from repeated precise leveling and across-fault deformation measurements carried out in recent 30 years and the analyzed results from GPS observations made in recent years along the northeastern margin of Qinghai-Xizang block, and combined with the geological structures and seismic activities, some characteristics in regional tectonic deformation and strong earthquake development are studied and approached preliminarily. The results show that: a) The space-time distribution of current tectonic deformation in this area is inhomogeneous with relatively intensive tectonic deformation in the vicinity of main boundary faults and weak deformation in the farther areas. The intensity of vertical differential movement and the deformation status vary with time, and the horizontal movement and deformation are characterized by apparent compression and strike-slip. b) The tectonic stress field generated by the NE-trending continuous compressive movement of Qinghai-Xizang block due to the northward press and collision of India plate is the principal stress for the tectonic deformation and earthquake development in this area. The evolution of space-time distribution of tectonic deformation and seismicity is closely related to the block activity and dynamic evolution of regional tectonic stress field. c) The vertical deformation uplift and high-gradient deformation zones and the obvious fault deformation anomaly appeared along the boundaries of tectonic blocks can be considered as the indicators of hindered block motion and intensified tectonic stress field for strong earthquake development. Usually, the above-mentioned phenomena would be followed by the seismicity of M6.0, but the earthquake might not occur in the place with the maximum movement. The zones with the fault deformation anomaly characterized by tendencious accumulation acceleration turning and the surrounding areas might be the positions for accumulation of strain energy and development and occurrence of strong earthquakes.
基金National Natural Science Foundation of China (5 98740 2 9) and F oundation of University Key Teacher by the Min-istry of Education
文摘With the discrete element method, the simulation and analysis of a series of numerical models were made. This research revealed ground movement laws for strip mining under thick alluvium and gave calculation formulae for the maximum ground subsidence and horizontal movement as a function of basement rock thickness and mining width, thus providing sound evidence for future strip mining under thick alluvium.
文摘Damage caused by underground coal mining is a serious problem in mining areas in China; therefore, studying and obtaining the rules of ground movement and deformation under different geological conditions is of great importance. The numerical software ANSYS was used in this study to simulate mining processes under two special geological conditions: (1) thick unconsolidated soil layer and thin bedrock; (2) thin soil layer and thick bedrock. The rules for ground movement and deformation for different soil layer to bedrock ratios were obtained. On the basis of these rules, a prediction parameter modified model of the influence function was proposed, which is suitable for different values of unconsolidated soil layer thickness. The prediction results were verified using two sets of typical field data.