We first provide four new schemes for two-party quantum teleportation of an arbitrary unknown multi-particle state by using three-, four-, and five-particle states as the quantum channel, respectively. The successful ...We first provide four new schemes for two-party quantum teleportation of an arbitrary unknown multi-particle state by using three-, four-, and five-particle states as the quantum channel, respectively. The successful probability and fidelity of the four schemes reach 1. In the first two schemes, the receiver can only apply one of the unitary transformations to reconstruct the original state, making it easier for these two schemes to be directly realized. In the third and fourth schemes, the sender can preform Bell-state measurements instead of multipartite entanglement measurements of the existing similar schemes, which makes real experiments more suitable. It is found that the last three schemes may become tripartite controlled teleportation schemes of teleporting an arbitrary multi-particle state after a simple modification. Finally, we present a new scheme for three-party sharing an arbitrary unknown multi-particle state. In this scheme, the sender first shares three three-particle GHZ states with two agents. After setting up the secure quantum channel, an arbitrary unknown multi-particle state can be perfectly teleported if the sender performs three Bell-state measurements, and either of two receivers operates an appropriate unitary transformation to obtain the original state with the help of other receiver's three single-particle measurements. The successful probability and fidelity of this scheme also reach 1. It is demonstrated that this scheme can be generalized easily to the case of sharing an arbitrary unknown multi-particle state among several agents.展开更多
Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and ...Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and transportation networks. The nodes and arcs in the networks may be in intermediate states which are not fully working either fully failed. A simulation ap- proach for computing the two-terminal reliability of a multi-state network is described. Two-terminal reliability is defined as the probability that d units of demand can be supplied from the source to sink nodes under the time threshold T. The capacities of arcs may be in a stochastic state following any discrete or continuous distribution. The transmission time of each arc is also not a fixed number but stochastic according to its current capacity and de- mand. To solve this problem, a capacitated stochastic coloured Petri net is proposed for modelling the system behaviour. Places and transitions respectively stand for the nodes and arcs of a net- work. Capacitated transition and self-modified token colour with route information are defined to describe the multi-state network. By the simulation, the two-terminal reliability and node importance can be estimated and the optimal route whose reliability is highest can also be given. Finally, two examples of different kinds of multi- state networks are given.展开更多
Importance measures in reliability systems are used to identify weak components in contributing to a proper function of the system. Traditional importance measures mainly concerned the changing value of the system rel...Importance measures in reliability systems are used to identify weak components in contributing to a proper function of the system. Traditional importance measures mainly concerned the changing value of the system reliability caused by the change of the reliability of the component, and seldom considered the joint effect of the probability distribution, improvement rate of the object component. This paper studies the rate of the system reliability upgrading with an improvement of the component reliability for the multi-state consecutive k-out-of-n system. To verify the multi-state consecutive k-out-of-n system reliability upgrading by improving one component based on its improvement rate, an increasing potential importance (IPI) and its physical meaning are described at first. Secondly, the relationship between the IPI and Birnbaum importance measures are discussed. And the IPI for some different improvement actions of the component is further discussed. Thirdly, the characteristics of the IPI are analyzed. Finally, an application to an oil pipeline system is given.展开更多
To verify the effectiveness of the integrated importance measure (IIM) for multi-state coherent systems of k level, the definition and physical meaning of IIM are demonstrated. Then, the improvement potential and Δ...To verify the effectiveness of the integrated importance measure (IIM) for multi-state coherent systems of k level, the definition and physical meaning of IIM are demonstrated. Then, the improvement potential and Δ-importance measures are generalized to multi-state coherent systems based on the system performance level, and the relationships between IIM and traditional importance measures are discussed. The characteristics of IIM are demonstrated in both series and parallel systems. Also, an application to an oil transportation system is given. The comparison results show that: (i) IIM has some useful properties that are not possessed by traditional importance measures; (ii) IIM is effective in evaluating the component role in multi-state systems when the component reliability and the failure rate are simultaneously considered.展开更多
Importance analysis quantifies the critical degree of individual component. Compared with the traditional binary state system,importance analysis of the multi-state system is more aligned with the practice. Because th...Importance analysis quantifies the critical degree of individual component. Compared with the traditional binary state system,importance analysis of the multi-state system is more aligned with the practice. Because the multi-valued decision diagram( MDD) can reflect the relationship between the components and the system state bilaterally, it was introduced into the reliability calculation of the multi-state system( MSS). The building method,simplified criteria,and path search and probability algorithm of MSS structure function MDD were given,and the reliability of the system was calculated. The computing methods of importance based on MDD and direct partial logic derivatives( DPLD) were presented. The diesel engine fuel supply system was taken as an example to illustrate the proposed method. The results show that not only the probability of the system in each state can be easily obtained,but also the influence degree of each component and its state on the system reliability can be obtained,which is conducive to the condition monitoring and structure optimization of the system.展开更多
In order to achieve the functional requirements of multi-moving state, a new autonomous underwater vehicle(AUV) provided with the functions such as the submarine vectorial thrust, landing on the sea bottom, wheel driv...In order to achieve the functional requirements of multi-moving state, a new autonomous underwater vehicle(AUV) provided with the functions such as the submarine vectorial thrust, landing on the sea bottom, wheel driving on the ground and crawling on the ground was designed. Then five new theories and methods were proposed about the motion mechanism of the AUV such as vectorial thruster technology, design of a new wheel propeller, kinematics and dynamics, navigation control and the ambient flow field in complex sea conditions, which can all conquer conventional technique shortages and predict the multi-moving state performance under wave disturbance. The theoretical research can realize the results such as a vectorial transmission shaft with the characteristics of spatial deflexion and continual circumgyratetion, parameterized design of the new wheel propeller with preferable open-water performance and intensity characteristics satisfying multi-moving state requirements, motion computation and kinetic analysis of AUV's arbitrary postures under wave disturbance, a second-order sliding mode controller with double-loop structure based on dynamic boundary layer that ensures AUV's trajectory high-precision tracking performance under wave disturbance, fast and exact prediction of the ambient flow field characteristics and the interaction mechanism between AUV hull and wheel propellers. The elaborate data obtained from the theoretical research can provide an important theoretical guidance and technical support for the manufacture of experimental prototype.展开更多
Multi-hop teleportation has significant value due to long-distance delivery of quantum information. Many studies about multi-hop teleportation are based on Bell pairs, partially entangled pairs or W state. The possibi...Multi-hop teleportation has significant value due to long-distance delivery of quantum information. Many studies about multi-hop teleportation are based on Bell pairs, partially entangled pairs or W state. The possibility of multi-hop teleportation constituted by partially entangled pairs relates to the number of nodes. The possibility of multi-hop teleportation constituted by double W states is (4/9)~n after n-hop teleportation. In this paper, a multi-hop teleportation scheme based on W state and EPR pairs is presented and proved. The successful possibility of quantum information transmitted hop by hop through intermediate nodes is deduced. The possibility of successful transmission is (2/3)~n after n-hop teleportation.展开更多
Fragility analysis for highway bridges has become increasingly important in the risk assessment of highway transportation networks exposed to seismic hazards. This study introduces a methodology to calculate fragility...Fragility analysis for highway bridges has become increasingly important in the risk assessment of highway transportation networks exposed to seismic hazards. This study introduces a methodology to calculate fragility that considers multi-dimensional performance limit state parameters and makes a first attempt to develop fragility curves for a multi-span continuous (MSC) concrete girder bridge considering two performance limit state parameters: column ductility and transverse deformation in the abutments. The main purpose of this paper is to show that the performance limit states, which are compared with the seismic response parameters in the calculation of fragility, should be properly modeled as randomly interdependent variables instead of deterministic quantities. The sensitivity of fragility curves is also investigated when the dependency between the limit states is different. The results indicate that the proposed method can be used to describe the vulnerable behavior of bridges which are sensitive to multiple response parameters and that the fragility information generated by this method will be more reliable and likely to be implemented into transportation network loss estimation.展开更多
This paper proposes a simple scheme for generating a three-atom GHZ state via cavity quantum electrodynamics (QED). The task can be achieved through the interaction between two EPR states, which can be prepared easi...This paper proposes a simple scheme for generating a three-atom GHZ state via cavity quantum electrodynamics (QED). The task can be achieved through the interaction between two EPR states, which can be prepared easily with current technology. In this scheme, the cavity field is only virtually excited during the interaction process, and no quantum information transfer between the atoms and the cavity is required. Thus it greatly prolongs the efficient decoherent time. Moreover, this scheme is also applicable for generating an N-atom GHZ state.展开更多
At the vascular injury sites,the ultra-large (UL) multimeric von willebrand Factor (VWF) is released in response to physiological and pathophysiological stimuli,and mediates platelet adhesion,aggregation,and cross-lin...At the vascular injury sites,the ultra-large (UL) multimeric von willebrand Factor (VWF) is released in response to physiological and pathophysiological stimuli,and mediates platelet adhesion,aggregation,and cross-linking to maintain hemostasis.This UL-VWF is specifically cleaved by ADAMTS13(A Disintegrin And Metalloprotease with a ThromboSpondintype-1 motif,member 13)to prevent microvascular thrombosis.Each VWF monomer consists of five types of repeat domains in the order of D1-D2-D’-D3-A1-A2-A3-D4-C1-C2-C3-C4-C5-C6-CK,in which the A2 domain contains the ADAMTS13cleavage site(Tyr1605-Met1606),exposure of which requires mechanical or chemical stimuli.Under flows,fluid shear stress regulates VWF degradation and size distribution through opening the A2 domain and exposing its cleavage site for ADAMTS13.VWF A2 domain contains a C-terminal vicinal disulfide bond,a calcium binding sites,and a flexibleα4-less-loop.These unique structure features together make A2 more sensitive to mechanical signal than other VWF A subdomains,i.e.A1 and A3 domains.It is believed that A2 is first bound with and then cleaved by ADAMTS13,together with force-induced conformation transformation.To reveal molecular basis of this two-step model of VWF hydrolyzation by ADAMTS13,we here examined stretch-induced unfolding processes of VWF A2 domain in more detail by Steered molecular dynamics(SMD)simulations,with the use of crystal structure of VWF A2(PDB ID 3GXB),and observed that there were multiple quasi-stable conformations of stretched A2 until itsβ4-strand and a3-helix were pulled away the central hydrophobic core and the cleavage sites were fully accessible to solvent.Our MD simulation data showed that,in unfolding,at first,the cleavage site residue Tyr1605 was exposed partially and binding sites for Spacer domain of ADAMTS13 were exposed to a high level whenα6-helix was separated from A2 body;then,withβ6-strand and a5-helix been pulled away,the binding sites for Cysrich domain of ADAMTS13 was exposed completely while the exposure degree of Tyr1605 was not improved;further,separation ofβ5-strand andα4-less-loop made Tyr1605 and Met1606 and the respective binding sites for ADAMTS13 Spacer domain,Cys-rich domain,and Disintegrin-like domain be fully exposed to reach the optimal catalytic state;lastly,withβ4-strand separation,the cleavage sites and binding sites all were overstretched,leading to mismatch of ADAMTS13 and A2 conformation especially in the binding sites.This conformational mismatch may cause reduction of ADAMTS13 hydrolysis efficiency.Furthermore,the data of SMD simulations under constant forces demonstrated that,the stretched A2 conformation had different quasi-stable states,which all had the better mechanical stability within simulation time of 100 ns;and the conformational transformation from one state to another must overcome their respective potential barriers.The hydrolysis efficiency should depend on each state of the stretched A2 conformation,because of the exclusive matched-degree of A2 and ADMATS13.This computer prediction on the mechanical stability and multi-states of stretched A2 provides a novel insight into the mechano-chemical regulation on cleavage of A2 by ADAMTS13.It would be helpful for design of related drug targeting the binding sites on A2 and exosites on ADAMTS13 for the treatment of patients with acquired TTP.展开更多
In the paper, excess methods for improving the reliability of multi-state series-parallel systems are presented: for the hot reserve of single components, the cold reserve of single components, and the mixed (hot an...In the paper, excess methods for improving the reliability of multi-state series-parallel systems are presented: for the hot reserve of single components, the cold reserve of single components, and the mixed (hot and cold) reserve of single components. A process is also introduced to improve the reliability of these methods by replacing their components with more reliable ones. New theorems for multi-state limit reliability functions in homogeneous and non-homogeneous series-parallel large systems composed of components with improved reliability are presented, and applied to compare the effects of these systems in different reliability improving methods.展开更多
The performance and state of multi-state system depend on its structure and different state combinations of the components. In order to evaluate the reliability of multi-state system effectively,a reliability evaluati...The performance and state of multi-state system depend on its structure and different state combinations of the components. In order to evaluate the reliability of multi-state system effectively,a reliability evaluation and sensitivity analysis method based on the time degradation measures was proposed. The equivalence sets of the multi-state system under different output performances were established. The state combinations were classified according to the performance level. The degradation probability models under different states were established,and the new reliability measures,such as dynamic probability of multi-state system,holding time in each state,dynamic expectation function and integrated expectation function of the performance,were proposed and used to implement the dynamic reliability evaluation and sensitivity analysis. A certain diesel engine fuel feeding system was taken as an application example to illustrate the proposed method. The results show that not only the holding time in the desired state of the components and the system can be predicted,but also the best state component in a certain time period can be obtained.展开更多
This article presents hydrodynamics simulation of multi-steady states and modetransition by DC-beam-injected gas discharge, and provides a model approach to hysteresis anddistinct forms of multi-steady states. The cri...This article presents hydrodynamics simulation of multi-steady states and modetransition by DC-beam-injected gas discharge, and provides a model approach to hysteresis anddistinct forms of multi-steady states. The critical transition conditions of the three discharge modes(temperature limited mode, Langmuir mode, and space charge limited mode) are estimated to bedependent on the gas pressure and the filament temperature. Various forms of the multi-steadystates in gas discharge can be uniformly explained by the displacement of the mutant positions.The simulation results are in a good agreement with those of the experiments.展开更多
A simple scheme is proposed to generate the W state of N A-type neutral atoms trapped in an optical cavity via Raman transition. Conditional on no photon leakage from the cavity, the N-qubit W state can be prepared pe...A simple scheme is proposed to generate the W state of N A-type neutral atoms trapped in an optical cavity via Raman transition. Conditional on no photon leakage from the cavity, the N-qubit W state can be prepared perfectly by turning on a classical coupling field for an appropriate time. Compared with the previous ones, our scheme requires neither individual laser addressing of the atoms, nor demand for controlling N atoms to go through an optical cavity simultaneously with a constant velocity. We investigate the influence of cavity decay using the quantum jump approach and show that the preparation time decreases and the success probability increases with atom number because of a collective enhancement of the coupling.展开更多
We demonstrate the controllable generation of multi-photon Fock states in circuit quantum electrodynamics (circuit QED). The external bias flux regulated by a counter can effectively adjust the bias time on each sup...We demonstrate the controllable generation of multi-photon Fock states in circuit quantum electrodynamics (circuit QED). The external bias flux regulated by a counter can effectively adjust the bias time on each superconducting flux qubit so that each flux qubit can pass in turn through the circuit cavity and thereby avoid the effect of decoherence. We further investigate the quantum correlation dynamics of coupling superconducting qubits in a Fock state. The results reveal that the lower the photon number of the light field in the number state, the stronger the interaction between qubits is, then the more beneficial to maintaining entanglement between qubits it will be.展开更多
A new coordination scheme for multi-robot systems is proposed. A state space model of the multi- robot system is defined and constructed in which the system's initial and goal states are included along with the task ...A new coordination scheme for multi-robot systems is proposed. A state space model of the multi- robot system is defined and constructed in which the system's initial and goal states are included along with the task definition and the system's internal and external constraints. Task accomplishment is considered a transition of the system state in its state space (SS) under the system's constraints. Therefore, if there exists a connectable path within reachable area of the SS from the initial state to the goal state, the task is realizable. The optimal strategy for the task realization under constraints is investigated and reached by searching for the optimal state transition trajectory of the robot system in the SS. Moreover, if there is no connectable path, which means the task cannot be performed Successfully, the task could be transformed to be realizable by making the initial state and the goal state connectable and finding a path connecting them in the system's SS. This might be done via adjusting the system's configuration and/or task constraints. Experiments of multi-robot formation control with obstacles in the environment are conducted and simulation results show the validity of the proposed method.展开更多
Based on the prototypes of a 130 t/h boiler, constant proportional cold-state test bench is established, flow characteristics of multi-nozzle in natural gas reburning burner and its influence on the covering effect fo...Based on the prototypes of a 130 t/h boiler, constant proportional cold-state test bench is established, flow characteristics of multi-nozzle in natural gas reburning burner and its influence on the covering effect for the upflow in the furnace are researched. Numerical simulations of this process are also made with standard ?turbulence model. The results show that air flow fullness in furnace is better in the case of the reburning zone with 8 nozzles compared to 4 nozzles and also coverage effect of the reburning flow for the updraft gas in the furnace is better. In the condition each nozzle airflow velocity is constant, the effect of reburning flow on coverage of up-secondary air is best when the incident angle for four corners is 14.17?, while Center of the furnace wall is 84.57. And while the best incident angle is invariable, the effect of reburning flow on coverage of up-secondary air is best when the speed of reburning gas in the corners of furnace is 51 m/s, the same to the center of the furnace wall’s.展开更多
In this paper,we study some new fractional-order multi-agent systems with current and delay states (FMASCD).Using the generalized Nyquist's stability criterion and Gerschgorin's circle theorem,we obtain the bo...In this paper,we study some new fractional-order multi-agent systems with current and delay states (FMASCD).Using the generalized Nyquist's stability criterion and Gerschgorin's circle theorem,we obtain the bounded input-bounded output (BIBO) stability and asymptotical consensus of the FMASCD under mild conditions.Moreover,we give some numerical examples to illustrate our main results.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11071178)
文摘We first provide four new schemes for two-party quantum teleportation of an arbitrary unknown multi-particle state by using three-, four-, and five-particle states as the quantum channel, respectively. The successful probability and fidelity of the four schemes reach 1. In the first two schemes, the receiver can only apply one of the unitary transformations to reconstruct the original state, making it easier for these two schemes to be directly realized. In the third and fourth schemes, the sender can preform Bell-state measurements instead of multipartite entanglement measurements of the existing similar schemes, which makes real experiments more suitable. It is found that the last three schemes may become tripartite controlled teleportation schemes of teleporting an arbitrary multi-particle state after a simple modification. Finally, we present a new scheme for three-party sharing an arbitrary unknown multi-particle state. In this scheme, the sender first shares three three-particle GHZ states with two agents. After setting up the secure quantum channel, an arbitrary unknown multi-particle state can be perfectly teleported if the sender performs three Bell-state measurements, and either of two receivers operates an appropriate unitary transformation to obtain the original state with the help of other receiver's three single-particle measurements. The successful probability and fidelity of this scheme also reach 1. It is demonstrated that this scheme can be generalized easily to the case of sharing an arbitrary unknown multi-particle state among several agents.
基金supported by the National Natural Science Foundation of China (70971132)
文摘Classical network reliability problems assume both net- works and components have only binary states, fully working or fully failed states. But many actual networks are multi-state, such as communication networks and transportation networks. The nodes and arcs in the networks may be in intermediate states which are not fully working either fully failed. A simulation ap- proach for computing the two-terminal reliability of a multi-state network is described. Two-terminal reliability is defined as the probability that d units of demand can be supplied from the source to sink nodes under the time threshold T. The capacities of arcs may be in a stochastic state following any discrete or continuous distribution. The transmission time of each arc is also not a fixed number but stochastic according to its current capacity and de- mand. To solve this problem, a capacitated stochastic coloured Petri net is proposed for modelling the system behaviour. Places and transitions respectively stand for the nodes and arcs of a net- work. Capacitated transition and self-modified token colour with route information are defined to describe the multi-state network. By the simulation, the two-terminal reliability and node importance can be estimated and the optimal route whose reliability is highest can also be given. Finally, two examples of different kinds of multi- state networks are given.
基金supported by the National Natural Science Foundation of China (71271170 71101116)+1 种基金the National High Technology Research and Development Program of China (863 Progrom) (2012AA040914)the Basic Research Foundation of Northwestern Polytechnical University (JC20120228)
文摘Importance measures in reliability systems are used to identify weak components in contributing to a proper function of the system. Traditional importance measures mainly concerned the changing value of the system reliability caused by the change of the reliability of the component, and seldom considered the joint effect of the probability distribution, improvement rate of the object component. This paper studies the rate of the system reliability upgrading with an improvement of the component reliability for the multi-state consecutive k-out-of-n system. To verify the multi-state consecutive k-out-of-n system reliability upgrading by improving one component based on its improvement rate, an increasing potential importance (IPI) and its physical meaning are described at first. Secondly, the relationship between the IPI and Birnbaum importance measures are discussed. And the IPI for some different improvement actions of the component is further discussed. Thirdly, the characteristics of the IPI are analyzed. Finally, an application to an oil pipeline system is given.
基金supported by the National Natural Science Foundation of China (7110111671271170)+2 种基金the National Basic Research Program of China (973 Progrom) (2010CB328000)the National High Technology Research and Development Program of China (863 Progrom) (2012AA040914)the Basic Research Foundation of Northwestern Polytechnical University (JC20120228)
文摘To verify the effectiveness of the integrated importance measure (IIM) for multi-state coherent systems of k level, the definition and physical meaning of IIM are demonstrated. Then, the improvement potential and Δ-importance measures are generalized to multi-state coherent systems based on the system performance level, and the relationships between IIM and traditional importance measures are discussed. The characteristics of IIM are demonstrated in both series and parallel systems. Also, an application to an oil transportation system is given. The comparison results show that: (i) IIM has some useful properties that are not possessed by traditional importance measures; (ii) IIM is effective in evaluating the component role in multi-state systems when the component reliability and the failure rate are simultaneously considered.
基金National Natural Science Foundation of China(No.61164009)the Science and Technology Research Project,Department of Education of Jiangxi Province,China(No.GJJ14420)Natural Science Foundation of Jiangxi Province,China(No.20132BAB206026)
文摘Importance analysis quantifies the critical degree of individual component. Compared with the traditional binary state system,importance analysis of the multi-state system is more aligned with the practice. Because the multi-valued decision diagram( MDD) can reflect the relationship between the components and the system state bilaterally, it was introduced into the reliability calculation of the multi-state system( MSS). The building method,simplified criteria,and path search and probability algorithm of MSS structure function MDD were given,and the reliability of the system was calculated. The computing methods of importance based on MDD and direct partial logic derivatives( DPLD) were presented. The diesel engine fuel supply system was taken as an example to illustrate the proposed method. The results show that not only the probability of the system in each state can be easily obtained,but also the influence degree of each component and its state on the system reliability can be obtained,which is conducive to the condition monitoring and structure optimization of the system.
基金Project(51505491)supported by the National Natural Science Foundation of ChinaProject(ZR2014EEP019)supported by the Natural Science Foundation of Shandong Province,China
文摘In order to achieve the functional requirements of multi-moving state, a new autonomous underwater vehicle(AUV) provided with the functions such as the submarine vectorial thrust, landing on the sea bottom, wheel driving on the ground and crawling on the ground was designed. Then five new theories and methods were proposed about the motion mechanism of the AUV such as vectorial thruster technology, design of a new wheel propeller, kinematics and dynamics, navigation control and the ambient flow field in complex sea conditions, which can all conquer conventional technique shortages and predict the multi-moving state performance under wave disturbance. The theoretical research can realize the results such as a vectorial transmission shaft with the characteristics of spatial deflexion and continual circumgyratetion, parameterized design of the new wheel propeller with preferable open-water performance and intensity characteristics satisfying multi-moving state requirements, motion computation and kinetic analysis of AUV's arbitrary postures under wave disturbance, a second-order sliding mode controller with double-loop structure based on dynamic boundary layer that ensures AUV's trajectory high-precision tracking performance under wave disturbance, fast and exact prediction of the ambient flow field characteristics and the interaction mechanism between AUV hull and wheel propellers. The elaborate data obtained from the theoretical research can provide an important theoretical guidance and technical support for the manufacture of experimental prototype.
基金Project supported by the National Natural Science Foundation of China(Grant No.61571105)the Prospective Future Network Project of Jiangsu Province,China(Grant No.BY2013095-1-18)the Independent Project of State Key Laboratory of Millimeter Waves,China(Grant No.Z201504)
文摘Multi-hop teleportation has significant value due to long-distance delivery of quantum information. Many studies about multi-hop teleportation are based on Bell pairs, partially entangled pairs or W state. The possibility of multi-hop teleportation constituted by partially entangled pairs relates to the number of nodes. The possibility of multi-hop teleportation constituted by double W states is (4/9)~n after n-hop teleportation. In this paper, a multi-hop teleportation scheme based on W state and EPR pairs is presented and proved. The successful possibility of quantum information transmitted hop by hop through intermediate nodes is deduced. The possibility of successful transmission is (2/3)~n after n-hop teleportation.
基金National Natural Science Foundation of China Under Award Number 50878184National High Technology Research and Development Program (863 Program) of China Under Grant No. 2006AA04Z437Graduate Starting Seed Fund of Northwestern Polytechnical University Under the Grant No. Z2012059
文摘Fragility analysis for highway bridges has become increasingly important in the risk assessment of highway transportation networks exposed to seismic hazards. This study introduces a methodology to calculate fragility that considers multi-dimensional performance limit state parameters and makes a first attempt to develop fragility curves for a multi-span continuous (MSC) concrete girder bridge considering two performance limit state parameters: column ductility and transverse deformation in the abutments. The main purpose of this paper is to show that the performance limit states, which are compared with the seismic response parameters in the calculation of fragility, should be properly modeled as randomly interdependent variables instead of deterministic quantities. The sensitivity of fragility curves is also investigated when the dependency between the limit states is different. The results indicate that the proposed method can be used to describe the vulnerable behavior of bridges which are sensitive to multiple response parameters and that the fragility information generated by this method will be more reliable and likely to be implemented into transportation network loss estimation.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574001) and the Program of the Education Department of Anhui Province (Grant No 2004kj029).
文摘This paper proposes a simple scheme for generating a three-atom GHZ state via cavity quantum electrodynamics (QED). The task can be achieved through the interaction between two EPR states, which can be prepared easily with current technology. In this scheme, the cavity field is only virtually excited during the interaction process, and no quantum information transfer between the atoms and the cavity is required. Thus it greatly prolongs the efficient decoherent time. Moreover, this scheme is also applicable for generating an N-atom GHZ state.
基金supported by National Natural Science Foundation of China Grants 11672109 ( to Y. F.) and 11432006 ( to J. W.)
文摘At the vascular injury sites,the ultra-large (UL) multimeric von willebrand Factor (VWF) is released in response to physiological and pathophysiological stimuli,and mediates platelet adhesion,aggregation,and cross-linking to maintain hemostasis.This UL-VWF is specifically cleaved by ADAMTS13(A Disintegrin And Metalloprotease with a ThromboSpondintype-1 motif,member 13)to prevent microvascular thrombosis.Each VWF monomer consists of five types of repeat domains in the order of D1-D2-D’-D3-A1-A2-A3-D4-C1-C2-C3-C4-C5-C6-CK,in which the A2 domain contains the ADAMTS13cleavage site(Tyr1605-Met1606),exposure of which requires mechanical or chemical stimuli.Under flows,fluid shear stress regulates VWF degradation and size distribution through opening the A2 domain and exposing its cleavage site for ADAMTS13.VWF A2 domain contains a C-terminal vicinal disulfide bond,a calcium binding sites,and a flexibleα4-less-loop.These unique structure features together make A2 more sensitive to mechanical signal than other VWF A subdomains,i.e.A1 and A3 domains.It is believed that A2 is first bound with and then cleaved by ADAMTS13,together with force-induced conformation transformation.To reveal molecular basis of this two-step model of VWF hydrolyzation by ADAMTS13,we here examined stretch-induced unfolding processes of VWF A2 domain in more detail by Steered molecular dynamics(SMD)simulations,with the use of crystal structure of VWF A2(PDB ID 3GXB),and observed that there were multiple quasi-stable conformations of stretched A2 until itsβ4-strand and a3-helix were pulled away the central hydrophobic core and the cleavage sites were fully accessible to solvent.Our MD simulation data showed that,in unfolding,at first,the cleavage site residue Tyr1605 was exposed partially and binding sites for Spacer domain of ADAMTS13 were exposed to a high level whenα6-helix was separated from A2 body;then,withβ6-strand and a5-helix been pulled away,the binding sites for Cysrich domain of ADAMTS13 was exposed completely while the exposure degree of Tyr1605 was not improved;further,separation ofβ5-strand andα4-less-loop made Tyr1605 and Met1606 and the respective binding sites for ADAMTS13 Spacer domain,Cys-rich domain,and Disintegrin-like domain be fully exposed to reach the optimal catalytic state;lastly,withβ4-strand separation,the cleavage sites and binding sites all were overstretched,leading to mismatch of ADAMTS13 and A2 conformation especially in the binding sites.This conformational mismatch may cause reduction of ADAMTS13 hydrolysis efficiency.Furthermore,the data of SMD simulations under constant forces demonstrated that,the stretched A2 conformation had different quasi-stable states,which all had the better mechanical stability within simulation time of 100 ns;and the conformational transformation from one state to another must overcome their respective potential barriers.The hydrolysis efficiency should depend on each state of the stretched A2 conformation,because of the exclusive matched-degree of A2 and ADMATS13.This computer prediction on the mechanical stability and multi-states of stretched A2 provides a novel insight into the mechano-chemical regulation on cleavage of A2 by ADAMTS13.It would be helpful for design of related drug targeting the binding sites on A2 and exosites on ADAMTS13 for the treatment of patients with acquired TTP.
文摘In the paper, excess methods for improving the reliability of multi-state series-parallel systems are presented: for the hot reserve of single components, the cold reserve of single components, and the mixed (hot and cold) reserve of single components. A process is also introduced to improve the reliability of these methods by replacing their components with more reliable ones. New theorems for multi-state limit reliability functions in homogeneous and non-homogeneous series-parallel large systems composed of components with improved reliability are presented, and applied to compare the effects of these systems in different reliability improving methods.
基金National Natural Science Foundations of China(Nos.61164009,61463021)the Science Foundation of Education Commission of Jiangxi Province,China(No.GJJ14420)+1 种基金the Young Scientists Object Program of Jiangxi Province,China(No.20144BCB23037)the Graduate Innovation Foundation of Jiangxi Province,China(No.YC2014-S364)
文摘The performance and state of multi-state system depend on its structure and different state combinations of the components. In order to evaluate the reliability of multi-state system effectively,a reliability evaluation and sensitivity analysis method based on the time degradation measures was proposed. The equivalence sets of the multi-state system under different output performances were established. The state combinations were classified according to the performance level. The degradation probability models under different states were established,and the new reliability measures,such as dynamic probability of multi-state system,holding time in each state,dynamic expectation function and integrated expectation function of the performance,were proposed and used to implement the dynamic reliability evaluation and sensitivity analysis. A certain diesel engine fuel feeding system was taken as an application example to illustrate the proposed method. The results show that not only the holding time in the desired state of the components and the system can be predicted,but also the best state component in a certain time period can be obtained.
文摘This article presents hydrodynamics simulation of multi-steady states and modetransition by DC-beam-injected gas discharge, and provides a model approach to hysteresis anddistinct forms of multi-steady states. The critical transition conditions of the three discharge modes(temperature limited mode, Langmuir mode, and space charge limited mode) are estimated to bedependent on the gas pressure and the filament temperature. Various forms of the multi-steadystates in gas discharge can be uniformly explained by the displacement of the mutant positions.The simulation results are in a good agreement with those of the experiments.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10504042)the Key Laboratory of Low Dimensional Quantum Structures and Quantum Control (Hunan Normal University)Ministry of Education of China (Grant No.QSQC0902)
文摘A simple scheme is proposed to generate the W state of N A-type neutral atoms trapped in an optical cavity via Raman transition. Conditional on no photon leakage from the cavity, the N-qubit W state can be prepared perfectly by turning on a classical coupling field for an appropriate time. Compared with the previous ones, our scheme requires neither individual laser addressing of the atoms, nor demand for controlling N atoms to go through an optical cavity simultaneously with a constant velocity. We investigate the influence of cavity decay using the quantum jump approach and show that the preparation time decreases and the success probability increases with atom number because of a collective enhancement of the coupling.
基金Project supported by the National Natural Science Foundation of China(Grant No.11264015)
文摘We demonstrate the controllable generation of multi-photon Fock states in circuit quantum electrodynamics (circuit QED). The external bias flux regulated by a counter can effectively adjust the bias time on each superconducting flux qubit so that each flux qubit can pass in turn through the circuit cavity and thereby avoid the effect of decoherence. We further investigate the quantum correlation dynamics of coupling superconducting qubits in a Fock state. The results reveal that the lower the photon number of the light field in the number state, the stronger the interaction between qubits is, then the more beneficial to maintaining entanglement between qubits it will be.
基金the National Natural Science Foundation of China (60428303).
文摘A new coordination scheme for multi-robot systems is proposed. A state space model of the multi- robot system is defined and constructed in which the system's initial and goal states are included along with the task definition and the system's internal and external constraints. Task accomplishment is considered a transition of the system state in its state space (SS) under the system's constraints. Therefore, if there exists a connectable path within reachable area of the SS from the initial state to the goal state, the task is realizable. The optimal strategy for the task realization under constraints is investigated and reached by searching for the optimal state transition trajectory of the robot system in the SS. Moreover, if there is no connectable path, which means the task cannot be performed Successfully, the task could be transformed to be realizable by making the initial state and the goal state connectable and finding a path connecting them in the system's SS. This might be done via adjusting the system's configuration and/or task constraints. Experiments of multi-robot formation control with obstacles in the environment are conducted and simulation results show the validity of the proposed method.
文摘Based on the prototypes of a 130 t/h boiler, constant proportional cold-state test bench is established, flow characteristics of multi-nozzle in natural gas reburning burner and its influence on the covering effect for the upflow in the furnace are researched. Numerical simulations of this process are also made with standard ?turbulence model. The results show that air flow fullness in furnace is better in the case of the reburning zone with 8 nozzles compared to 4 nozzles and also coverage effect of the reburning flow for the updraft gas in the furnace is better. In the condition each nozzle airflow velocity is constant, the effect of reburning flow on coverage of up-secondary air is best when the incident angle for four corners is 14.17?, while Center of the furnace wall is 84.57. And while the best incident angle is invariable, the effect of reburning flow on coverage of up-secondary air is best when the speed of reburning gas in the corners of furnace is 51 m/s, the same to the center of the furnace wall’s.
基金Project supported by the National Natural Science Foundation of China(Nos.11471230 and11671282)
文摘In this paper,we study some new fractional-order multi-agent systems with current and delay states (FMASCD).Using the generalized Nyquist's stability criterion and Gerschgorin's circle theorem,we obtain the bounded input-bounded output (BIBO) stability and asymptotical consensus of the FMASCD under mild conditions.Moreover,we give some numerical examples to illustrate our main results.