Since bamboo has the advantages of straight grain, beautiful color, high strength and toughness, and excellent abrasion resistance, bamboo-based panels have been widely used in the fields of vehicle, construction, shi...Since bamboo has the advantages of straight grain, beautiful color, high strength and toughness, and excellent abrasion resistance, bamboo-based panels have been widely used in the fields of vehicle, construction, ship building, furniture, and decoration to partly take the place of wood, steel, plastic etc in China. This paper briefly described the basic component units, including strip, sliver, and particle, of bamboo-based panel and pointed out that to design the structure of bamboo-based panels should follow the principle of symmetric structure, surface forming method, and structuring principle of equalizing stress. According to the processing methods and formation of component units, the authors classified the bamboo-based panels in China into 13 types and presented the manufacturing technique and uses of the bamboo products, such as plybamboo, bamboo flooring, and bamboo-wood composite products in detail. In the last part of the paper, much information were offered on the output, market, and selling prospect of each type of bamboo-based panels.展开更多
Build-up panels for the commercial aircraft fuselage subjected to the axial compression load are studied by both experimental and theoretical methods.An integral panel is designed with the same overall size and weight...Build-up panels for the commercial aircraft fuselage subjected to the axial compression load are studied by both experimental and theoretical methods.An integral panel is designed with the same overall size and weight as the build-up structure,and finite element models(FEMs)of these two panels are established.Experimental results of build-up panels agree well with the FEM results with the nonliearity and the large deformation,so FEMs are validated.FEM calculation results of these two panels indicate that the failure mode of the integral panel is different from that of the build-up panel,and the failure load increases by 18.4% up to post-buckling.Furthermore,the integral structure is optimized by using the multi-island genetic algorithm and the sequential quadratic programming.Compared with the initial design,the optimal mass is reduced by 8.7% and the strength is unchanged.展开更多
Global population aging trends are intensifying,presenting multifaceted economic and social challenges for countries worldwide.As the world’s largest developing country,China has entered a phase of extreme demographi...Global population aging trends are intensifying,presenting multifaceted economic and social challenges for countries worldwide.As the world’s largest developing country,China has entered a phase of extreme demographic aging,posing significant questions about its impact on the ongoing upgrading of industrial structures.How does this demographic shift influence the upgrading of industrial structures,and does technological innovation mitigate or exacerbate this impact?The empirical results indicate that population aging impedes upgrading the industrial structure,while technological innovation positively affects the relationship between the two.Moreover,using technological innovation as a threshold variable,the impact of population aging on industrial structure upgrading evolves in a“gradient”manner from“impediment”to“insignificant”to“promotion”as the technological innovation levels increase.These findings offer practical guidance for tailoring industrial policies to different stages of technological advancement.展开更多
An idea to develop a family of cellular cores for sandwich panels using a technology of prepreg folding is presented. Polar folded quadra structures are regarded as a geometric basis for these cores whose standard fra...An idea to develop a family of cellular cores for sandwich panels using a technology of prepreg folding is presented. Polar folded quadra structures are regarded as a geometric basis for these cores whose standard frag ment has lhe fourlh degree of axial symmelry. The classification of the polar strucluresaredeseribedanda method of various quadra slrueture synthesis is developed. A possibilily to provide high strength of lhe structure due m preservation of faces reinforcement pattern is presented. Arrangemen! of the plane core on a bi curvature surface is also introduced. Besides, provision of isotropyof the core in two or three directions are described. Finally, exam ples of cellular folded cores manufaclured from basalt reinforced plaslic are demonslrated.展开更多
In recent years, China's economic growth speed has been slowing down, leading to the problems of overcapacity and unbalanced regional economic development, and the mismatch between industrial and financial structu...In recent years, China's economic growth speed has been slowing down, leading to the problems of overcapacity and unbalanced regional economic development, and the mismatch between industrial and financial structure is becoming intense. Therefore, this paper, starting with the relationship among economic growth, industrial structure and financial structure, summarizes the research by the former scholars. On this basis, by using data of 31 provincial panel data in China from 2007 to 2016, the article aims to find out the relationship between the industrial structure and economic growth, the relationship between the financial structure and economic growth and the relationship between the interaction of financial and industrial structure and economic growth. Finally, the corresponding policy recommendations are obtained following the systematical empirical conclusions. The conclusions of this paper are as follows:(1) developing indirect financing mode can effectively drive China's economic growth.(2) continuing to develop the second industry can play a catalytic role in the economic growth in most areas of China.(3) the interaction between the financial structure and the industrial structure can promote the economic growth significantly. However, the matching effect of the financial structure and industrial structure in China has not been completely formed, and the industrial upgrading should be guided to be structurally reformed through the policy.展开更多
New approximate formulas are proposed to determine the natural frequencies of structures considering the effects of panel zone flexibility and soil-structure interaction. Several structures with various earthquake res...New approximate formulas are proposed to determine the natural frequencies of structures considering the effects of panel zone flexibility and soil-structure interaction. Several structures with various earthquake resisting systems are idealized as prismatic cantilever flexural-shear beams. Floor masses are considered as lumped masses at each story level and masses of columns are evenly distributed along the cantilever beam. Soil-structure interaction is considered as axial and rotational springs, whose potential energy are formulated and incorporated into overall potential energy of the structure. Subsequently, natural frequency equations are derived on the basis of energy conservation principle. The effect of axial forces on natural frequency is also considered in the proposed formulas. Using the method presented in this study, natural frequencies are computed using a simplified method with no complex numerical modeling. The proposed formulas are verified via experimental and numerical methods. Close agreement between the results from these three approaches are observed. Furthermore, the effects of panel zone flexibility, continuity plates and doubler plates on the natural frequencies of buildings are investigated.展开更多
For the structural-acoustic radiation optimization problem under external loading,acoustic radiation power was considered to be an objective function in the optimization method. The finite element method(FEM) and boun...For the structural-acoustic radiation optimization problem under external loading,acoustic radiation power was considered to be an objective function in the optimization method. The finite element method(FEM) and boundary element method(BEM) were adopted in numerical calculations,and structural response and the acoustic response were assumed to be de-coupled in the analysis. A genetic algorithm was used as the strategy in optimization. In order to build the relational expression of the pressure objective function and the power objective function,the enveloping surface model was used to evaluate pressure in the acoustic domain. By taking the stiffened panel structural-acoustic optimization problem as an example,the acoustic power and field pressure after optimized was compared. Optimization results prove that this method is reasonable and effective.展开更多
The objective of this work is to analyse fatigue reliability of deck structures subjected to correlated crack growth.The stress intensity factors of the correlated cracks are obtained by finite element analysis and ba...The objective of this work is to analyse fatigue reliability of deck structures subjected to correlated crack growth.The stress intensity factors of the correlated cracks are obtained by finite element analysis and based on which the geometry correction functions are derived.The Monte Carlo simulations are applied to predict the statistical descriptors of correlated cracks based on the Paris-Erdogan equation.A probabilistic model of crack growth as a function of time is used to analyse the fatigue reliability of deck structures accounting for the crack propagation correlation.A deck structure is modelled as a series system of stiffened panels,where a stiffened panel is regarded as a parallel system composed of plates and are longitudinal.It has been proven that the method developed here can be conveniently applied to perform the fatigue reliability assessment of structures subjected to correlated crack growth.展开更多
Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and ...Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.展开更多
Based on the inter-provincial panel data for 31 provinces in China from 2000 to 2019,and incorporating geospatial factors,a spatial panel vector autoregressive(SPVAR)model consisting of population mobility,industrial ...Based on the inter-provincial panel data for 31 provinces in China from 2000 to 2019,and incorporating geospatial factors,a spatial panel vector autoregressive(SPVAR)model consisting of population mobility,industrial structure upgrading,and economic growth is constructed.The space-time impulse response function is used to analyze the space-time conduction of exogenous variables on the impact of three endogenous variables.The study found that first,the population influx barely benefited the industrial structure upgrading and economic growth.Second,the upgrading of the industrial structure would aggravate the population mobility in the province,causing low-level laborers to leave the province in shortterm,but in long-term,there would be influx of talents.Third,the economic growth in developed regions plays a significant role in promoting the industrial development of their province and population-rich provinces,but it has less impact on provinces with high-level industrial structure.Finally,policy recommendations are provided in regard to the benign interaction among population mobility,industrial structure upgrading,and economic growth in addition to clarifying the idea of economic development,implementing correct population policies,and promoting the coordinated regional development.展开更多
To acquire a knowledge of the stress-strain state in the process of mining beforehand, a numerical method was used to simulate the stoping process of access mechanized panel mining in No. 3 ore-body of Tonglushan mine...To acquire a knowledge of the stress-strain state in the process of mining beforehand, a numerical method was used to simulate the stoping process of access mechanized panel mining in No. 3 ore-body of Tonglushan mine; and for the sake of obtaining better stability, the optimal panel dimension and access stoping sequence were researched. The results show that the integral stability of the mechanized panel of No. 3 ore-body is passable in the process of winning at full level height; the stability of panel tends to be worse gradually with continuous increasing of panel width; and the better width of access panel in No.3 ore-body is less than 52 m. It is indicated that 3D elasto-plastic finite element method can make a satisfactory study of numerical simulation on the panel stability and its structural dimension in the test for the upward access mechanized-panel mining. The results of the theoretical calculation and analysis accord with the actual situation from the field ground pressure monitoring.展开更多
This study tests the hysteresis hypothesis of unemployment in fifteen OECD countries by using panel unit root tests which allow for structural breaks. We apply annual unemployment rates covering 1985-2008 periods. We ...This study tests the hysteresis hypothesis of unemployment in fifteen OECD countries by using panel unit root tests which allow for structural breaks. We apply annual unemployment rates covering 1985-2008 periods. We test whether unemployment rates are stationary by using second generation tests which allow cross section dependency among series and panel unit root test based on structural break advanced by Carrion-i-Silvestre, Barrio-Castro and Lopez-Bazo (2005). We find series as a stationary process with structural breaks according to Carrion-i Silvestre et al. (2005) test, while we find series as unit root process with second generation panel unit root test. According to the Carrion-i Silvestre et al. (2005) test, we find the evidence of absence of hysteresis in analyzed countries. As a result, temporary shocks have temporary effects on unemployment instead of permanent effect. Structural factors can affect the natural rate of unemployment and, therefore, unemployment would be stationary around a process that is subject to structural breaks. So, there still exists a unique natural rate of unemployment to which the economy eventually will converge.展开更多
This paper investigates the effectiveness of various factors upon the capital structure decisions of Chinese firms by conducting an empirical analysis of Chinese-listed retail companies.An unbalanced panel dataset was...This paper investigates the effectiveness of various factors upon the capital structure decisions of Chinese firms by conducting an empirical analysis of Chinese-listed retail companies.An unbalanced panel dataset was formed with a sample of 110 companies observed for 12 years(2010~2021).Each observation is measured quarterly.Traditional explanatory variables are adopted in the study,including profitability,company size,tangibility of assets,internal financing ability,tax ratio,growth opportunities,and volatility.By employing the Fama-Macbeth approach,the regression results are interpreted to determine the impact of independent variables upon the leverage a company takes on.To solve the reverse causality problem,we include the lag term(last quarter’s data)of the debt-to-equity ratio as control variables.Consistent with previous theoretical and empirical studies,firms’leverage ratio is positively related to size,tangibility,tax ratio,and last quarter’s debt level.Companies’profitability and internal financing ability are negatively correlated with their debt-to-equity ratio.Firms’earning volatility and growth opportunities do not show significant relationship with the debt-to-equity ratio.The study has provided more empirical evidence on capital structure theories regarding emerging financial markets.展开更多
The factors that influence the economic growth are various and complicated.This paper has especially probed into calculating and impact on regional economic growth of the human capital structure. First, on the basis o...The factors that influence the economic growth are various and complicated.This paper has especially probed into calculating and impact on regional economic growth of the human capital structure. First, on the basis of considering human capital quality, we use Gini coefficient law to calculate human capital structure coefficient of our country's each province (municipal or district); Second, according to the result of calculating of human capital structure coefficient, considering input of material capital, average education level and so on at the same time, we set up regional economic growth model and use the panel data to examine the model. The result indicates the human capital structure coefficient of each province (municipal or district)in inverse proportion to economic growth (- 0. 108). The last is the conclusion of this text.展开更多
In this paper, we present the results of our numerical seakeeping analyses of a 6750-TEU containership, which were subjected to the benchmark test of the 2 nd ITTC–ISSC Joint Workshop held in 2014. We performed the s...In this paper, we present the results of our numerical seakeeping analyses of a 6750-TEU containership, which were subjected to the benchmark test of the 2 nd ITTC–ISSC Joint Workshop held in 2014. We performed the seakeeping analyses using three different methods based on a 3D Rankine panel method, including 1) a rigid-body solver, 2) a flexible-body solver using a beam model, and 3) a flexible-body solver using the eigenvectors of a 3D Finite Element Model(FEM). The flexible-body solvers adopt a fully coupled approach between the fluid and structure. We consider the nonlinear Froude–Krylov and restoring forces using a weakly nonlinear approach. In addition, we calculate the slamming loads on the bow flare and stern using a 2D generalized Wagner model. We compare the numerical and experimental results in terms of the linear response, the time series of the nonlinear response, and the longitudinal distribution of the sagging and hogging moments. The flexible-body solvers show good agreement with the experimental model with respect to both the linear and nonlinear results, including the high-frequency oscillations due to springing and whipping vibrations. The rigid-body solver gives similar results except for the springing and whipping.展开更多
The use of structural insulated panels(SIPs)for wall and roof assemblies in residential and commercial buildings is a well-known construction technique.SIPs typically use a combination of either expanded polystyrene f...The use of structural insulated panels(SIPs)for wall and roof assemblies in residential and commercial buildings is a well-known construction technique.SIPs typically use a combination of either expanded polystyrene foam(EPS)or polyurethane foam(PUR)as the core material.The covering or skin is predominantly oriented strand board(OSB).The OSB is either bonded to the foam with adhesive in the case of EPS,while polyurethane is used to provide adhesion with PUR SIPs.This paper presents the results of research that investigated the use of industrial hemp mat used as a skin for soy-based polyurethane foam panels.A series of tests were conducted to investigate moisture resistance and flexural behaviour on hemp mat foam panels.Moisture absorption behaviour was evaluated on three specimen types:uncoated,earth plaster and tung oil treated hemp mat.The absorption coefficient Aw was determined for all specimens.The tung oil treated specimens exhibited a water absorption coefficient that was 5.3%of that for untreated hemp mat panel specimens.Flexural tests were conducted on dry specimens with earth-plastered hemp mat,tung oil coated hemp mat,OSB and,untreated hemp mat skins.Tung oil provided resistance to tension failure and increased capacity to withstand considerable deformation without tensile failure in flexural specimens.Compared with pure foam specimens,untreated hemp mat improved flexural performance by 16.3%.展开更多
A theoretical analysis is presented to predict the nonlinear thermo-structural response of metallicsandwich panels with truss cores under through-thickness gradient temperature field, which is acommon service condit...A theoretical analysis is presented to predict the nonlinear thermo-structural response of metallicsandwich panels with truss cores under through-thickness gradient temperature field, which is acommon service condition for metallic thermal protection system (TPS). The in-planetemperature distribution is assumed to be uniform, and through-thickness temperature field isdetermined by heat conduction. Two typical conditions are analyzed: nonlinear thermal bendingin fixed inside surface temperature, and thermal post-buckling in fixed temperature differencebetween two surfaces. Temperature-dependent mechanical properties are considered, andgradient shear stiffness and bending stiffness due to non-uniform temperature is included. Resultsindicate that the temperature-dependent material properties obviously affect bending resistance;however, the effect is negligible on post-buckling behavior. Influences of geometric parameters onthe thermo-structural behavior of the sandwich panel according to the present theoretical modelare discussed.展开更多
The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scatt...The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.展开更多
基金This study was supported by National 9th-Five-Year Plan Project (No. 96-011-02-07-02).
文摘Since bamboo has the advantages of straight grain, beautiful color, high strength and toughness, and excellent abrasion resistance, bamboo-based panels have been widely used in the fields of vehicle, construction, ship building, furniture, and decoration to partly take the place of wood, steel, plastic etc in China. This paper briefly described the basic component units, including strip, sliver, and particle, of bamboo-based panel and pointed out that to design the structure of bamboo-based panels should follow the principle of symmetric structure, surface forming method, and structuring principle of equalizing stress. According to the processing methods and formation of component units, the authors classified the bamboo-based panels in China into 13 types and presented the manufacturing technique and uses of the bamboo products, such as plybamboo, bamboo flooring, and bamboo-wood composite products in detail. In the last part of the paper, much information were offered on the output, market, and selling prospect of each type of bamboo-based panels.
文摘Build-up panels for the commercial aircraft fuselage subjected to the axial compression load are studied by both experimental and theoretical methods.An integral panel is designed with the same overall size and weight as the build-up structure,and finite element models(FEMs)of these two panels are established.Experimental results of build-up panels agree well with the FEM results with the nonliearity and the large deformation,so FEMs are validated.FEM calculation results of these two panels indicate that the failure mode of the integral panel is different from that of the build-up panel,and the failure load increases by 18.4% up to post-buckling.Furthermore,the integral structure is optimized by using the multi-island genetic algorithm and the sequential quadratic programming.Compared with the initial design,the optimal mass is reduced by 8.7% and the strength is unchanged.
基金supported by the Research Center for Aging Career and Industrial Development,Sichuan Key Research Base of Social Sciences[Grant No.XJLL2022009].
文摘Global population aging trends are intensifying,presenting multifaceted economic and social challenges for countries worldwide.As the world’s largest developing country,China has entered a phase of extreme demographic aging,posing significant questions about its impact on the ongoing upgrading of industrial structures.How does this demographic shift influence the upgrading of industrial structures,and does technological innovation mitigate or exacerbate this impact?The empirical results indicate that population aging impedes upgrading the industrial structure,while technological innovation positively affects the relationship between the two.Moreover,using technological innovation as a threshold variable,the impact of population aging on industrial structure upgrading evolves in a“gradient”manner from“impediment”to“insignificant”to“promotion”as the technological innovation levels increase.These findings offer practical guidance for tailoring industrial policies to different stages of technological advancement.
基金supported by the Ministry of Education and Science of Russian Federation (No.RFMEFI57414X0078)
文摘An idea to develop a family of cellular cores for sandwich panels using a technology of prepreg folding is presented. Polar folded quadra structures are regarded as a geometric basis for these cores whose standard frag ment has lhe fourlh degree of axial symmelry. The classification of the polar strucluresaredeseribedanda method of various quadra slrueture synthesis is developed. A possibilily to provide high strength of lhe structure due m preservation of faces reinforcement pattern is presented. Arrangemen! of the plane core on a bi curvature surface is also introduced. Besides, provision of isotropyof the core in two or three directions are described. Finally, exam ples of cellular folded cores manufaclured from basalt reinforced plaslic are demonslrated.
文摘In recent years, China's economic growth speed has been slowing down, leading to the problems of overcapacity and unbalanced regional economic development, and the mismatch between industrial and financial structure is becoming intense. Therefore, this paper, starting with the relationship among economic growth, industrial structure and financial structure, summarizes the research by the former scholars. On this basis, by using data of 31 provincial panel data in China from 2007 to 2016, the article aims to find out the relationship between the industrial structure and economic growth, the relationship between the financial structure and economic growth and the relationship between the interaction of financial and industrial structure and economic growth. Finally, the corresponding policy recommendations are obtained following the systematical empirical conclusions. The conclusions of this paper are as follows:(1) developing indirect financing mode can effectively drive China's economic growth.(2) continuing to develop the second industry can play a catalytic role in the economic growth in most areas of China.(3) the interaction between the financial structure and the industrial structure can promote the economic growth significantly. However, the matching effect of the financial structure and industrial structure in China has not been completely formed, and the industrial upgrading should be guided to be structurally reformed through the policy.
文摘New approximate formulas are proposed to determine the natural frequencies of structures considering the effects of panel zone flexibility and soil-structure interaction. Several structures with various earthquake resisting systems are idealized as prismatic cantilever flexural-shear beams. Floor masses are considered as lumped masses at each story level and masses of columns are evenly distributed along the cantilever beam. Soil-structure interaction is considered as axial and rotational springs, whose potential energy are formulated and incorporated into overall potential energy of the structure. Subsequently, natural frequency equations are derived on the basis of energy conservation principle. The effect of axial forces on natural frequency is also considered in the proposed formulas. Using the method presented in this study, natural frequencies are computed using a simplified method with no complex numerical modeling. The proposed formulas are verified via experimental and numerical methods. Close agreement between the results from these three approaches are observed. Furthermore, the effects of panel zone flexibility, continuity plates and doubler plates on the natural frequencies of buildings are investigated.
文摘For the structural-acoustic radiation optimization problem under external loading,acoustic radiation power was considered to be an objective function in the optimization method. The finite element method(FEM) and boundary element method(BEM) were adopted in numerical calculations,and structural response and the acoustic response were assumed to be de-coupled in the analysis. A genetic algorithm was used as the strategy in optimization. In order to build the relational expression of the pressure objective function and the power objective function,the enveloping surface model was used to evaluate pressure in the acoustic domain. By taking the stiffened panel structural-acoustic optimization problem as an example,the acoustic power and field pressure after optimized was compared. Optimization results prove that this method is reasonable and effective.
基金Supported by China Scholarship Council under Grant No.2008110133
文摘The objective of this work is to analyse fatigue reliability of deck structures subjected to correlated crack growth.The stress intensity factors of the correlated cracks are obtained by finite element analysis and based on which the geometry correction functions are derived.The Monte Carlo simulations are applied to predict the statistical descriptors of correlated cracks based on the Paris-Erdogan equation.A probabilistic model of crack growth as a function of time is used to analyse the fatigue reliability of deck structures accounting for the crack propagation correlation.A deck structure is modelled as a series system of stiffened panels,where a stiffened panel is regarded as a parallel system composed of plates and are longitudinal.It has been proven that the method developed here can be conveniently applied to perform the fatigue reliability assessment of structures subjected to correlated crack growth.
基金supported by the National Natural Science Foundation of China(Grant No.52079046).
文摘Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.
基金This work was supported by 2021 Jiangxi University of Finance and Economics Student Innovation Training Program(No.202110421068).
文摘Based on the inter-provincial panel data for 31 provinces in China from 2000 to 2019,and incorporating geospatial factors,a spatial panel vector autoregressive(SPVAR)model consisting of population mobility,industrial structure upgrading,and economic growth is constructed.The space-time impulse response function is used to analyze the space-time conduction of exogenous variables on the impact of three endogenous variables.The study found that first,the population influx barely benefited the industrial structure upgrading and economic growth.Second,the upgrading of the industrial structure would aggravate the population mobility in the province,causing low-level laborers to leave the province in shortterm,but in long-term,there would be influx of talents.Third,the economic growth in developed regions plays a significant role in promoting the industrial development of their province and population-rich provinces,but it has less impact on provinces with high-level industrial structure.Finally,policy recommendations are provided in regard to the benign interaction among population mobility,industrial structure upgrading,and economic growth in addition to clarifying the idea of economic development,implementing correct population policies,and promoting the coordinated regional development.
基金Project(2001BA901A09) supported by the Key Program of the 10th Five year Plan of China
文摘To acquire a knowledge of the stress-strain state in the process of mining beforehand, a numerical method was used to simulate the stoping process of access mechanized panel mining in No. 3 ore-body of Tonglushan mine; and for the sake of obtaining better stability, the optimal panel dimension and access stoping sequence were researched. The results show that the integral stability of the mechanized panel of No. 3 ore-body is passable in the process of winning at full level height; the stability of panel tends to be worse gradually with continuous increasing of panel width; and the better width of access panel in No.3 ore-body is less than 52 m. It is indicated that 3D elasto-plastic finite element method can make a satisfactory study of numerical simulation on the panel stability and its structural dimension in the test for the upward access mechanized-panel mining. The results of the theoretical calculation and analysis accord with the actual situation from the field ground pressure monitoring.
文摘This study tests the hysteresis hypothesis of unemployment in fifteen OECD countries by using panel unit root tests which allow for structural breaks. We apply annual unemployment rates covering 1985-2008 periods. We test whether unemployment rates are stationary by using second generation tests which allow cross section dependency among series and panel unit root test based on structural break advanced by Carrion-i-Silvestre, Barrio-Castro and Lopez-Bazo (2005). We find series as a stationary process with structural breaks according to Carrion-i Silvestre et al. (2005) test, while we find series as unit root process with second generation panel unit root test. According to the Carrion-i Silvestre et al. (2005) test, we find the evidence of absence of hysteresis in analyzed countries. As a result, temporary shocks have temporary effects on unemployment instead of permanent effect. Structural factors can affect the natural rate of unemployment and, therefore, unemployment would be stationary around a process that is subject to structural breaks. So, there still exists a unique natural rate of unemployment to which the economy eventually will converge.
文摘This paper investigates the effectiveness of various factors upon the capital structure decisions of Chinese firms by conducting an empirical analysis of Chinese-listed retail companies.An unbalanced panel dataset was formed with a sample of 110 companies observed for 12 years(2010~2021).Each observation is measured quarterly.Traditional explanatory variables are adopted in the study,including profitability,company size,tangibility of assets,internal financing ability,tax ratio,growth opportunities,and volatility.By employing the Fama-Macbeth approach,the regression results are interpreted to determine the impact of independent variables upon the leverage a company takes on.To solve the reverse causality problem,we include the lag term(last quarter’s data)of the debt-to-equity ratio as control variables.Consistent with previous theoretical and empirical studies,firms’leverage ratio is positively related to size,tangibility,tax ratio,and last quarter’s debt level.Companies’profitability and internal financing ability are negatively correlated with their debt-to-equity ratio.Firms’earning volatility and growth opportunities do not show significant relationship with the debt-to-equity ratio.The study has provided more empirical evidence on capital structure theories regarding emerging financial markets.
文摘The factors that influence the economic growth are various and complicated.This paper has especially probed into calculating and impact on regional economic growth of the human capital structure. First, on the basis of considering human capital quality, we use Gini coefficient law to calculate human capital structure coefficient of our country's each province (municipal or district); Second, according to the result of calculating of human capital structure coefficient, considering input of material capital, average education level and so on at the same time, we set up regional economic growth model and use the panel data to examine the model. The result indicates the human capital structure coefficient of each province (municipal or district)in inverse proportion to economic growth (- 0. 108). The last is the conclusion of this text.
基金Supported by Lloyd’s Register Foundation(LRF)-Funded Research Center at SNU(LRFC)
文摘In this paper, we present the results of our numerical seakeeping analyses of a 6750-TEU containership, which were subjected to the benchmark test of the 2 nd ITTC–ISSC Joint Workshop held in 2014. We performed the seakeeping analyses using three different methods based on a 3D Rankine panel method, including 1) a rigid-body solver, 2) a flexible-body solver using a beam model, and 3) a flexible-body solver using the eigenvectors of a 3D Finite Element Model(FEM). The flexible-body solvers adopt a fully coupled approach between the fluid and structure. We consider the nonlinear Froude–Krylov and restoring forces using a weakly nonlinear approach. In addition, we calculate the slamming loads on the bow flare and stern using a 2D generalized Wagner model. We compare the numerical and experimental results in terms of the linear response, the time series of the nonlinear response, and the longitudinal distribution of the sagging and hogging moments. The flexible-body solvers show good agreement with the experimental model with respect to both the linear and nonlinear results, including the high-frequency oscillations due to springing and whipping vibrations. The rigid-body solver gives similar results except for the springing and whipping.
文摘The use of structural insulated panels(SIPs)for wall and roof assemblies in residential and commercial buildings is a well-known construction technique.SIPs typically use a combination of either expanded polystyrene foam(EPS)or polyurethane foam(PUR)as the core material.The covering or skin is predominantly oriented strand board(OSB).The OSB is either bonded to the foam with adhesive in the case of EPS,while polyurethane is used to provide adhesion with PUR SIPs.This paper presents the results of research that investigated the use of industrial hemp mat used as a skin for soy-based polyurethane foam panels.A series of tests were conducted to investigate moisture resistance and flexural behaviour on hemp mat foam panels.Moisture absorption behaviour was evaluated on three specimen types:uncoated,earth plaster and tung oil treated hemp mat.The absorption coefficient Aw was determined for all specimens.The tung oil treated specimens exhibited a water absorption coefficient that was 5.3%of that for untreated hemp mat panel specimens.Flexural tests were conducted on dry specimens with earth-plastered hemp mat,tung oil coated hemp mat,OSB and,untreated hemp mat skins.Tung oil provided resistance to tension failure and increased capacity to withstand considerable deformation without tensile failure in flexural specimens.Compared with pure foam specimens,untreated hemp mat improved flexural performance by 16.3%.
基金The financial support from the National Natural Science Foundation of China (91016025, 11472276, 11602271, and 11332011)the Defense Industrial Technology Development Program of China (JCKY2016130B009)
文摘A theoretical analysis is presented to predict the nonlinear thermo-structural response of metallicsandwich panels with truss cores under through-thickness gradient temperature field, which is acommon service condition for metallic thermal protection system (TPS). The in-planetemperature distribution is assumed to be uniform, and through-thickness temperature field isdetermined by heat conduction. Two typical conditions are analyzed: nonlinear thermal bendingin fixed inside surface temperature, and thermal post-buckling in fixed temperature differencebetween two surfaces. Temperature-dependent mechanical properties are considered, andgradient shear stiffness and bending stiffness due to non-uniform temperature is included. Resultsindicate that the temperature-dependent material properties obviously affect bending resistance;however, the effect is negligible on post-buckling behavior. Influences of geometric parameters onthe thermo-structural behavior of the sandwich panel according to the present theoretical modelare discussed.
基金supported by the National Key Research and Development Program of China(No.2018YFA0702800)the National Natural Science Foundation of China(No.12072056)supported by National Defense Fundamental Scientific Research Project(XXXX2018204BXXX).
文摘The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.