Multi-temporal Interferometric Synthetic Aperture Radar(MT-InSAR) is one of the most powerful Earth observation techniques, especially useful for measuring highly detailed ground deformation over large ground areas. M...Multi-temporal Interferometric Synthetic Aperture Radar(MT-InSAR) is one of the most powerful Earth observation techniques, especially useful for measuring highly detailed ground deformation over large ground areas. Much research has been carried out to apply MT-InSAR to monitor ground and infrastructure deformation in urban areas related to land reclamation, underground construction and groundwater extraction.This paper reviews the progress in the research and identifies challenges in applying the technology, including the inconsistency in coherent point identification when different approaches are used, the reliability issue in parameter estimation, difficulty in accurate geolocation of measured points, the one-dimensional line-of-sight nature of InSAR measurements, the inability of making complete measurements over an area due to geometric distortions, especially the shadowing effects, the challenges in processing large SAR datasets, the decrease of the number of coherent points with the increase of the length of SAR time series, and the difficulty in quality control of MT-InSAR results.展开更多
China has been affected by some of the world’s most serious geological disasters and experiences high economic damage every year.Geohazards occur not only in remote areas but also in highly populated cities.In the fr...China has been affected by some of the world’s most serious geological disasters and experiences high economic damage every year.Geohazards occur not only in remote areas but also in highly populated cities.In the framework of the Dragon-432365 Project,this paper presents the main results and the major conclusions derived from an extensive exploitation of Sentinel-1,ALOS-2(Advanced Land Observing Satellite 2),GF-3(Gao Fen Satellite 3),and latest launched SAR(Synthetic Aperture Radar),together with methods that allow the evaluation of their importance for various geohazards.Therefore,in the scope of this project,the great benefits of recent remote sensing data(wide spatial and temporal coverage)that allow a detailed reconstruction of past displacement events and to monitor currently occurring phenomena are exploited to study different areas and geohazards problems,including:surface deformation of mountain slopes;identification and monitoring of ground movements and subsidence;landslides;ground fissure;and building inclination studies.Suspicious movements detected in the different study areas were cross validated with different SAR sensors and truth data.展开更多
Landslides are the most frequent geoenvironmental natural hazards in hilly regions,owing to broken rock masses and slope instability.Every year,landslides occur along the Karakorum highway in the northern section of t...Landslides are the most frequent geoenvironmental natural hazards in hilly regions,owing to broken rock masses and slope instability.Every year,landslides occur along the Karakorum highway in the northern section of the China-Pakistan Economic Corridor,involving complex geological action and causing significant damages and fatalities.To mitigate landslide hazard risks and a better understanding of landslide occurrence in steep mountainous regions,a comprehensive and precise analysis of slow-moving landslides is necessary.To address this challenge,a Multi-Temporal(MT),Interferometry Synthetic Aperture Radar(InSAR)approach using Small Baseline Subsets and Interferometric Point Target Analysis techniques was utilized to extract ground deformation rates.A total of 121 multitrack synthetic aperture radar images from Sentinel-1A were acquired from 2021 to 2023,enabling the detection and monitoring of ground displacement over time.Eight active slope movements were successfully identified by calculating the differences in deformation,indicating a significant deformation rate within the trust fault lines and regional geological formations.The research findings reveal that the regional geological structure,including lithology and fault lines,significantly increase the deformation rate.These identified landslide hazard areas range from 1.47 km2 to 14.88 km2,with an annual average rate of line of sight surface displacement estimated between−4.13 to−16.07 cm/yr.The MT-InSAR analysis demonstrates that fault lines and geology play significant role in surface deformation,providing valuable insights into the deformation induced by regional tectonic activities.展开更多
Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for ...Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for the vegetative stage of the green gram (Vigna. radiata L.) over 5 years (2020, 2018, 2017, 2015, and 2013) for agroecological zone IV and V in Kenya. The years chosen were those whose satellite resolution data was available for the vegetative stage of crop growth in the short rain season (October, November, December (OND)). We used Landsat 8 OLI satellite imagery in this study. Cropping pattern data for the study area were evaluated by calculating the Top of Atmosphere reflectance. Farms geo-referencing, along with field data collection, was undertaken to extract Top of Atmosphere reflectance for bands 2, 3, 4 and 7. We also carried a spectral similarity assessment on the various cropping patterns. The spectral reflectance ranged from 0.07696 - 0.09632, 0.07466 - 0.09467, 0.0704047 - 0.12188,0.19822 - 0.24387, 0.19269 - 0.26900, and 0.11354 - 0.20815 for bands 2, 3, 4, 5, 6, and 7 for green gram, respectively. The results showed a dissimilarity among the various cropping patterns. The lowest dissimilarity index was 0.027 for the maize (Zea mays L.) bean (Phaseolus vulgaris) versus the maize-pigeon pea (Cajanus cajan) crop, while the highest dissimilarity index was 0.443 for the maize bean versus the maize bean and cowpea cropping patterns. High crop dissimilarities experienced across the cropping pattern through these spectral reflectance values confirm that the green gram was potentially identifiable. The results can be used in crop type identification in agroecological lower midland zone IV and V for mung bean management. This study therefore suggests that use of reflectance data in remote sensing of agricultural ecosystems would aid in planning, management, and crop allocation to different ecozones.展开更多
Land subsidence is a major factor that affects metro line (ML) stability. In this study, an improved multi- temporal interferometric synthetic aperture radar (InSAR) (MTI) method to detect land subsidence near M...Land subsidence is a major factor that affects metro line (ML) stability. In this study, an improved multi- temporal interferometric synthetic aperture radar (InSAR) (MTI) method to detect land subsidence near MLs is presented. In particular, our multi-temporal InSAR method provides surface subsidence measurements with high observation density. The MTI method tracks both point-like targets and distributed targets with temporal radar back- scattering steadiness. First, subsidence rates at the point targets with low-amplitude dispersion index (ADI) values are extracted by applying a least-squared estimator on an optimized freely connected network. Second, to reduce error propagation, the pixels with high-ADI values are classified into several groups according to ADI intervals and processed using a Pearson correlation coefficient and hierarchical analysis strategy to obtain the distributed targets. Then, nonlinear subsidence components at all point-like and distributed targets are estimated using phase unwrapping and spatiotemporal filtering on the phase residuals. The proposed MTI method was applied to detect land subsidence near MLs of No. 1 and 3 in the Baoshan district of Shanghai using 18 TerraSAR-X images acquired between April 21, 2008 and October 30, 2010. The results show that the mean subsidence rates of the stations distributed along the two MLs are -12.9 and -14.0 ram/year. Furthermore, three subsidence funnels near the MLs are discovered through the hierarchical analysis. The testing results demonstrate the satisfactory capacity of the proposed MTI method in providing detailed subsidence information near MLs.展开更多
确定矿山开采沉陷边界有助于评估矿区生产活动对周围环境和基础设施的潜在影响,为制定有效的灾害防控措施提供技术手段。充分考虑到概率积分法等传统方法在划定矿山开采沉陷边界时的不足,采用在获取矿区大范围高精度地表沉降数据方面具...确定矿山开采沉陷边界有助于评估矿区生产活动对周围环境和基础设施的潜在影响,为制定有效的灾害防控措施提供技术手段。充分考虑到概率积分法等传统方法在划定矿山开采沉陷边界时的不足,采用在获取矿区大范围高精度地表沉降数据方面具有优势的SBAS-InSAR技术,并结合淘金算法(Gold Rush Optimizer,GRO)优化双向长短期记忆(Bidirectional Long Short Term Memory,BiLSTM)模型的预测方法,实现矿区开采沉陷边界划定。以红会煤矿为研究对象,依据SBAS-InSAR技术提取矿区沉降边缘高相干点在2018-11-29—2020-02-04时间段内共37期沉降数据,以下沉10 mm等值线划定沉陷边界,利用GRO-BiLSTM优化模型预测高相干点的地表沉降值,并将预测结果与LSTM和BiLSTM模型预测结果进行了对比分析。结果表明:GRO-BiLSTM模型在整体测试集中均方根误差为3.204mm,比LSTM和BiLSTM模型分别降低了22.16%和8.21%;平均绝对误差为2.062 mm,比LSTM和BiLSTM模型分别降低了23.96%和5.43%,表明该方法可以有效监测和预测矿区边界地区的沉陷状况。展开更多
基金The National Natural Science Foundation of China(41774023)The Research Grants Council(RGC)of Hong Kong(PolyU152232/17E,PolyU152164/18E),The Faculty of Construction and Environment(ZZGD)+1 种基金The Research Institute for Sustainable Urban Development(RISUD)(1-BBWB)The TerraSAR-X Science plan(GEO3603)。
文摘Multi-temporal Interferometric Synthetic Aperture Radar(MT-InSAR) is one of the most powerful Earth observation techniques, especially useful for measuring highly detailed ground deformation over large ground areas. Much research has been carried out to apply MT-InSAR to monitor ground and infrastructure deformation in urban areas related to land reclamation, underground construction and groundwater extraction.This paper reviews the progress in the research and identifies challenges in applying the technology, including the inconsistency in coherent point identification when different approaches are used, the reliability issue in parameter estimation, difficulty in accurate geolocation of measured points, the one-dimensional line-of-sight nature of InSAR measurements, the inability of making complete measurements over an area due to geometric distortions, especially the shadowing effects, the challenges in processing large SAR datasets, the decrease of the number of coherent points with the increase of the length of SAR time series, and the difficulty in quality control of MT-InSAR results.
基金National Natural Science Foundation of China(Nos.41590852,42071453)。
文摘China has been affected by some of the world’s most serious geological disasters and experiences high economic damage every year.Geohazards occur not only in remote areas but also in highly populated cities.In the framework of the Dragon-432365 Project,this paper presents the main results and the major conclusions derived from an extensive exploitation of Sentinel-1,ALOS-2(Advanced Land Observing Satellite 2),GF-3(Gao Fen Satellite 3),and latest launched SAR(Synthetic Aperture Radar),together with methods that allow the evaluation of their importance for various geohazards.Therefore,in the scope of this project,the great benefits of recent remote sensing data(wide spatial and temporal coverage)that allow a detailed reconstruction of past displacement events and to monitor currently occurring phenomena are exploited to study different areas and geohazards problems,including:surface deformation of mountain slopes;identification and monitoring of ground movements and subsidence;landslides;ground fissure;and building inclination studies.Suspicious movements detected in the different study areas were cross validated with different SAR sensors and truth data.
基金National Key R&D Program of China(2023YFE0208000)Construction Project of China Knowledge Center for Engineering Sciences and Technology(CKCEST-2023-1-5).
文摘Landslides are the most frequent geoenvironmental natural hazards in hilly regions,owing to broken rock masses and slope instability.Every year,landslides occur along the Karakorum highway in the northern section of the China-Pakistan Economic Corridor,involving complex geological action and causing significant damages and fatalities.To mitigate landslide hazard risks and a better understanding of landslide occurrence in steep mountainous regions,a comprehensive and precise analysis of slow-moving landslides is necessary.To address this challenge,a Multi-Temporal(MT),Interferometry Synthetic Aperture Radar(InSAR)approach using Small Baseline Subsets and Interferometric Point Target Analysis techniques was utilized to extract ground deformation rates.A total of 121 multitrack synthetic aperture radar images from Sentinel-1A were acquired from 2021 to 2023,enabling the detection and monitoring of ground displacement over time.Eight active slope movements were successfully identified by calculating the differences in deformation,indicating a significant deformation rate within the trust fault lines and regional geological formations.The research findings reveal that the regional geological structure,including lithology and fault lines,significantly increase the deformation rate.These identified landslide hazard areas range from 1.47 km2 to 14.88 km2,with an annual average rate of line of sight surface displacement estimated between−4.13 to−16.07 cm/yr.The MT-InSAR analysis demonstrates that fault lines and geology play significant role in surface deformation,providing valuable insights into the deformation induced by regional tectonic activities.
文摘Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for the vegetative stage of the green gram (Vigna. radiata L.) over 5 years (2020, 2018, 2017, 2015, and 2013) for agroecological zone IV and V in Kenya. The years chosen were those whose satellite resolution data was available for the vegetative stage of crop growth in the short rain season (October, November, December (OND)). We used Landsat 8 OLI satellite imagery in this study. Cropping pattern data for the study area were evaluated by calculating the Top of Atmosphere reflectance. Farms geo-referencing, along with field data collection, was undertaken to extract Top of Atmosphere reflectance for bands 2, 3, 4 and 7. We also carried a spectral similarity assessment on the various cropping patterns. The spectral reflectance ranged from 0.07696 - 0.09632, 0.07466 - 0.09467, 0.0704047 - 0.12188,0.19822 - 0.24387, 0.19269 - 0.26900, and 0.11354 - 0.20815 for bands 2, 3, 4, 5, 6, and 7 for green gram, respectively. The results showed a dissimilarity among the various cropping patterns. The lowest dissimilarity index was 0.027 for the maize (Zea mays L.) bean (Phaseolus vulgaris) versus the maize-pigeon pea (Cajanus cajan) crop, while the highest dissimilarity index was 0.443 for the maize bean versus the maize bean and cowpea cropping patterns. High crop dissimilarities experienced across the cropping pattern through these spectral reflectance values confirm that the green gram was potentially identifiable. The results can be used in crop type identification in agroecological lower midland zone IV and V for mung bean management. This study therefore suggests that use of reflectance data in remote sensing of agricultural ecosystems would aid in planning, management, and crop allocation to different ecozones.
文摘Land subsidence is a major factor that affects metro line (ML) stability. In this study, an improved multi- temporal interferometric synthetic aperture radar (InSAR) (MTI) method to detect land subsidence near MLs is presented. In particular, our multi-temporal InSAR method provides surface subsidence measurements with high observation density. The MTI method tracks both point-like targets and distributed targets with temporal radar back- scattering steadiness. First, subsidence rates at the point targets with low-amplitude dispersion index (ADI) values are extracted by applying a least-squared estimator on an optimized freely connected network. Second, to reduce error propagation, the pixels with high-ADI values are classified into several groups according to ADI intervals and processed using a Pearson correlation coefficient and hierarchical analysis strategy to obtain the distributed targets. Then, nonlinear subsidence components at all point-like and distributed targets are estimated using phase unwrapping and spatiotemporal filtering on the phase residuals. The proposed MTI method was applied to detect land subsidence near MLs of No. 1 and 3 in the Baoshan district of Shanghai using 18 TerraSAR-X images acquired between April 21, 2008 and October 30, 2010. The results show that the mean subsidence rates of the stations distributed along the two MLs are -12.9 and -14.0 ram/year. Furthermore, three subsidence funnels near the MLs are discovered through the hierarchical analysis. The testing results demonstrate the satisfactory capacity of the proposed MTI method in providing detailed subsidence information near MLs.
文摘确定矿山开采沉陷边界有助于评估矿区生产活动对周围环境和基础设施的潜在影响,为制定有效的灾害防控措施提供技术手段。充分考虑到概率积分法等传统方法在划定矿山开采沉陷边界时的不足,采用在获取矿区大范围高精度地表沉降数据方面具有优势的SBAS-InSAR技术,并结合淘金算法(Gold Rush Optimizer,GRO)优化双向长短期记忆(Bidirectional Long Short Term Memory,BiLSTM)模型的预测方法,实现矿区开采沉陷边界划定。以红会煤矿为研究对象,依据SBAS-InSAR技术提取矿区沉降边缘高相干点在2018-11-29—2020-02-04时间段内共37期沉降数据,以下沉10 mm等值线划定沉陷边界,利用GRO-BiLSTM优化模型预测高相干点的地表沉降值,并将预测结果与LSTM和BiLSTM模型预测结果进行了对比分析。结果表明:GRO-BiLSTM模型在整体测试集中均方根误差为3.204mm,比LSTM和BiLSTM模型分别降低了22.16%和8.21%;平均绝对误差为2.062 mm,比LSTM和BiLSTM模型分别降低了23.96%和5.43%,表明该方法可以有效监测和预测矿区边界地区的沉陷状况。