For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang For ...For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang-bang evasive maneuver with a random switching time.Combined Fast multiple model adaptive estimation(Fast MMAE)algorithm,the cooperative guidance law takes detection configuration affecting the accuracy of interception into consideration.Introduced the detection error model related to the line-of-sight(LOS)separation angle of two interceptors,an optimal cooperative guidance law solving the optimization problem is designed to modulate the LOS separation angle to reduce the estimation error and improve the interception performance.Due to the uncertainty of the target bang-bang maneuver switching time and the effective fitting of its multi-modal motion,Fast MMAE is introduced to identify its maneuver switching time and estimate the acceleration of the target to track and intercept the target accurately.The designed cooperative optimal guidance law with Fast MMAE has better estimation ability and interception performance than the traditional guidance law and estimation method via Monte Carlo simulation.展开更多
This paper focuses on fixed-interval smoothing for stochastic hybrid systems.When the truth-mode mismatch is encountered,existing smoothing methods based on fixed structure of model-set have significant performance de...This paper focuses on fixed-interval smoothing for stochastic hybrid systems.When the truth-mode mismatch is encountered,existing smoothing methods based on fixed structure of model-set have significant performance degradation and are inapplicable.We develop a fixedinterval smoothing method based on forward-and backward-filtering in the Variable Structure Multiple Model(VSMM)framework in this paper.We propose to use the Simplified Equivalent model Interacting Multiple Model(SEIMM)in the forward and the backward filters to handle the difficulty of different mode-sets used in both filters,and design a re-filtering procedure in the model-switching stage to enhance the estimation performance.To improve the computational efficiency,we make the basic model-set adaptive by the Likely-Model Set(LMS)algorithm.It turns out that the smoothing performance is further improved by the LMS due to less competition among models.Simulation results are provided to demonstrate the better performance and the computational efficiency of our proposed smoothing algorithms.展开更多
Recurrent events data and gap times between recurrent events are frequently encountered in many clinical and observational studies,and often more than one type of recurrent events is of interest.In this paper,we consi...Recurrent events data and gap times between recurrent events are frequently encountered in many clinical and observational studies,and often more than one type of recurrent events is of interest.In this paper,we consider a proportional hazards model for multiple type recurrent gap times data to assess the effect of covaxiates on the censored event processes of interest.An estimating equation approach is used to obtain the estimators of regression coefficients and baseline cumulative hazard functions.We examine asymptotic properties of the proposed estimators.Finite sample properties of these estimators are demonstrated by simulations.展开更多
Several typical algorithms for tracking maneuvering target with phased array radar are studied in this paper. The constant gain filter with multiple models is analyzed. A typical method for adaptively controlling the ...Several typical algorithms for tracking maneuvering target with phased array radar are studied in this paper. The constant gain filter with multiple models is analyzed. A typical method for adaptively controlling the sampling interval is modified. The performance of the single model and multiple model estimator with uniform and variable sampling interval are evaluated and compared. It is shown by the simulation results that it is necessary to apply the adaptive sampling policy based on the multiple model method when the maneuvering targets are tracked by the phased array radar since saving radar resources is more important. The adaptive algorithms of variable sampling interval are better than the algorithms of variable model. The adaptive policy to determine the sampling interval based on multiple model are superior than those based on the single model filter, because IMM estimator can adapt to the maneuver more quickly and the prediction covariance of IMM is the more sensitive and more reliable index than residual to determine the sampling interval. With IMM based method, lower sampling interval is required for a certain accuracy.展开更多
Estimation of state-of-charge and state-of-health for batteries is one of the most important feature for modern battery management system(BMS).Robust or adaptive methods are the most investigated because a more intell...Estimation of state-of-charge and state-of-health for batteries is one of the most important feature for modern battery management system(BMS).Robust or adaptive methods are the most investigated because a more intelligent BMS could lead to sensible cost reduction of the entire battery system.We propose a new robust method,called ERMES(extendible range multi-model estimator),for determining an estimated state-of-charge(SoC),an estimated state-of-health(SoH)and a prediction of uncertainty of the estimates(state-of-uncertainty—SoU),thanks to which it is possible to monitor the validity of the estimates and adjust it,extending the robustness against a wider range of uncertainty,if necessary.Specifically,a finite number of models in state-space form are considered starting from a modified Thevenin battery model.Each model is characterized by a hypothesis of SoH value.An iterated extended Kalman filter(EKF)is then applied to each model in parallel,estimating for each one the SoC state variable.Residual errors are then considered to fuse both the estimated SoC and SoH from the bank of EKF,yielding the overall SoC and SoH estimates,respectively.In addition,a figure of uncertainty of such estimates is also provided.展开更多
Purpose-The purpose of this paper is to present the research into fault detection and isolation(FDI)and evaluation of the reduction of performance after failures occurred in the flight control system(FCS)during its mi...Purpose-The purpose of this paper is to present the research into fault detection and isolation(FDI)and evaluation of the reduction of performance after failures occurred in the flight control system(FCS)during its mission operation.Design/methodology/approach–The FDI is accomplished via using the multiple models scheme which is developed based on the Extend Kalman Filter(EKF)algorithm.Towards this objective,the healthy mode of the FCS under different type of failures,including the control surfaces and structural,should be considered.It developed a bank of extended multiple models adaptive estimation(EMMAE)to detect and isolate the above mentioned failures in the FCS.In addition,the performances including the flight envelope,the voyage and endurance in cruising are proposed to reference and evaluate the process of mission,especially for UAV under failure conditions.Findings-The contribution of this paper is to provide the information not only about the failures,but also considering whether the UAV can accomplish the task for the ground station.Originality/value-The main contribution of this paper is in the areas of the structural and control surface faults researching,which are occurred in the mission procedures and emphasized the identification of those failures’magnitudes.The FDI scheme includes the performance evaluation,while the evaluation obtained through the extensive numerical simulations and saved in the offline database.As a consequence,it is more accurate and less computationally demanding while evaluating the performance.展开更多
基金This work was supported by the National Natural Science Foundation(NNSF)of China under grant no.61673386,62073335the China Postdoctoral Science Foundation(2017M613201,2019T120944).
文摘For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang-bang evasive maneuver with a random switching time.Combined Fast multiple model adaptive estimation(Fast MMAE)algorithm,the cooperative guidance law takes detection configuration affecting the accuracy of interception into consideration.Introduced the detection error model related to the line-of-sight(LOS)separation angle of two interceptors,an optimal cooperative guidance law solving the optimization problem is designed to modulate the LOS separation angle to reduce the estimation error and improve the interception performance.Due to the uncertainty of the target bang-bang maneuver switching time and the effective fitting of its multi-modal motion,Fast MMAE is introduced to identify its maneuver switching time and estimate the acceleration of the target to track and intercept the target accurately.The designed cooperative optimal guidance law with Fast MMAE has better estimation ability and interception performance than the traditional guidance law and estimation method via Monte Carlo simulation.
基金supported in part by the National Natural Science Foundation of China(No.61773306)the National Key Research and Development Plan,China(Nos.2021YFC2202600 and 2021YFC2202603)。
文摘This paper focuses on fixed-interval smoothing for stochastic hybrid systems.When the truth-mode mismatch is encountered,existing smoothing methods based on fixed structure of model-set have significant performance degradation and are inapplicable.We develop a fixedinterval smoothing method based on forward-and backward-filtering in the Variable Structure Multiple Model(VSMM)framework in this paper.We propose to use the Simplified Equivalent model Interacting Multiple Model(SEIMM)in the forward and the backward filters to handle the difficulty of different mode-sets used in both filters,and design a re-filtering procedure in the model-switching stage to enhance the estimation performance.To improve the computational efficiency,we make the basic model-set adaptive by the Likely-Model Set(LMS)algorithm.It turns out that the smoothing performance is further improved by the LMS due to less competition among models.Simulation results are provided to demonstrate the better performance and the computational efficiency of our proposed smoothing algorithms.
基金supported in part by Natural Science Foundation of Hubei(08BA164)Major Research Program of Hubei Provincial Department of Education(09B2001)+2 种基金supported in part by National Natural Science Foundation of China(1117112)Doctoral Fund of Ministry of Education of China(20090076110001)National Statistical Science Research Major Program of China(2011LZ051)
文摘Recurrent events data and gap times between recurrent events are frequently encountered in many clinical and observational studies,and often more than one type of recurrent events is of interest.In this paper,we consider a proportional hazards model for multiple type recurrent gap times data to assess the effect of covaxiates on the censored event processes of interest.An estimating equation approach is used to obtain the estimators of regression coefficients and baseline cumulative hazard functions.We examine asymptotic properties of the proposed estimators.Finite sample properties of these estimators are demonstrated by simulations.
文摘Several typical algorithms for tracking maneuvering target with phased array radar are studied in this paper. The constant gain filter with multiple models is analyzed. A typical method for adaptively controlling the sampling interval is modified. The performance of the single model and multiple model estimator with uniform and variable sampling interval are evaluated and compared. It is shown by the simulation results that it is necessary to apply the adaptive sampling policy based on the multiple model method when the maneuvering targets are tracked by the phased array radar since saving radar resources is more important. The adaptive algorithms of variable sampling interval are better than the algorithms of variable model. The adaptive policy to determine the sampling interval based on multiple model are superior than those based on the single model filter, because IMM estimator can adapt to the maneuver more quickly and the prediction covariance of IMM is the more sensitive and more reliable index than residual to determine the sampling interval. With IMM based method, lower sampling interval is required for a certain accuracy.
文摘Estimation of state-of-charge and state-of-health for batteries is one of the most important feature for modern battery management system(BMS).Robust or adaptive methods are the most investigated because a more intelligent BMS could lead to sensible cost reduction of the entire battery system.We propose a new robust method,called ERMES(extendible range multi-model estimator),for determining an estimated state-of-charge(SoC),an estimated state-of-health(SoH)and a prediction of uncertainty of the estimates(state-of-uncertainty—SoU),thanks to which it is possible to monitor the validity of the estimates and adjust it,extending the robustness against a wider range of uncertainty,if necessary.Specifically,a finite number of models in state-space form are considered starting from a modified Thevenin battery model.Each model is characterized by a hypothesis of SoH value.An iterated extended Kalman filter(EKF)is then applied to each model in parallel,estimating for each one the SoC state variable.Residual errors are then considered to fuse both the estimated SoC and SoH from the bank of EKF,yielding the overall SoC and SoH estimates,respectively.In addition,a figure of uncertainty of such estimates is also provided.
基金This research is supported by the Aeronautical Science Foundation of China,under Grant Number 20100753009.
文摘Purpose-The purpose of this paper is to present the research into fault detection and isolation(FDI)and evaluation of the reduction of performance after failures occurred in the flight control system(FCS)during its mission operation.Design/methodology/approach–The FDI is accomplished via using the multiple models scheme which is developed based on the Extend Kalman Filter(EKF)algorithm.Towards this objective,the healthy mode of the FCS under different type of failures,including the control surfaces and structural,should be considered.It developed a bank of extended multiple models adaptive estimation(EMMAE)to detect and isolate the above mentioned failures in the FCS.In addition,the performances including the flight envelope,the voyage and endurance in cruising are proposed to reference and evaluate the process of mission,especially for UAV under failure conditions.Findings-The contribution of this paper is to provide the information not only about the failures,but also considering whether the UAV can accomplish the task for the ground station.Originality/value-The main contribution of this paper is in the areas of the structural and control surface faults researching,which are occurred in the mission procedures and emphasized the identification of those failures’magnitudes.The FDI scheme includes the performance evaluation,while the evaluation obtained through the extensive numerical simulations and saved in the offline database.As a consequence,it is more accurate and less computationally demanding while evaluating the performance.