Based on monthly river runoff and meteorological data, a method of Morlet wavelet transform was used to analyze the multiple time scale characteristics of river runoff in the Dagujia River Basin, Yantai City, Shandong...Based on monthly river runoff and meteorological data, a method of Morlet wavelet transform was used to analyze the multiple time scale characteristics of river runoff in the Dagujia River Basin, Yantai City, Shandong Province. The results showed that the total annual river runoffin the Dagujia River Basin decreased significantly from 1966 to 2004, and the rate of decrease was 48× 10^6ma/10yr, which was higher than the mean value of most rivers in China. Multiple time scale characteristics existed, which accounted for different aspects of the changes in annual river runoff, and the major periods of the runofftime series were identified as about 28 years, 14 years and 4 years with decreasing levels of fluctuation. The river runoff evolution process was controlled by changes in precipitation to a certain extent, but it was also greatly influenced by human activities. Also, for different time periods and scales, the impacts of climate changes and human activities on annual river runoff evolution occurred at the same time. Changes in the annual river runoffwere mainly associated with climate change before the 1980s and with human activities after 1981.展开更多
Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system b...Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system based on multiple time scales.On the basis of the analysis of the uncertainty of wind power and PV power as well as the characteristics of load side resource dispatching,the optimal model of coordinating and dispatching“source-load”in power system based on multiple time scales is established.It can simultaneously and effectively dispatch conventional generators,wind plant,PV power station,pumped-storage power station and load side resources by optimally using three time scales:day-ahead,intra-day and real-time.According to the latest predicted information of wind power,PV power and load,the original generation schedule can be rolled and amended by using the corresponding time scale.The effectiveness of the model can be verified by a real system.The simulation results show that the proposed model can make full use of“source-load”resources to improve the ability to consume wind power and PV power of the grid-connected system.展开更多
A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established ...A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established using Lagrange's equation. In order to obtain approximate solution, multiple time scales method, one of perturbation technique, was applied. Cases of non-resonant and 1:1:2:2 internal resonant were discussed. In the non-resonant case, the validity of multiple time scales method is confirmed, comparing numerical results derived from fourth order Runge-Kutta method with analytical results derived from first order approximate expression. In the 1:1:2:2 internal resonant case, modal amplitudes of Aa1 and Ab2 increase, respectively, from 0.38 to 0.63 and from 0.19 to 0.32, while the corresponding frequencies have an increase of almost 1.6 times with changes of initial conditions, indicating the existence of typical nonlinear phenomenon. In addition, the chaotic motion is found under this condition.展开更多
Fluvial processes comprise water flow,sediment transport and bed evolution,which normally feature distinct time scales.The time scales of sediment transport and bed deformation relative to the flow essentially measure...Fluvial processes comprise water flow,sediment transport and bed evolution,which normally feature distinct time scales.The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity region in line with local flow scenario and the bed deforms in comparison with the flow,which literally dictates if a capacity based and/or decoupled model is justified.This paper synthesizes the recently developed multiscale theory for sediment-laden flows over erodible bed,with bed load and suspended load transport,respectively.It is unravelled that bed load transport can adapt to capacity sufficiently rapidly even under highly unsteady flows and thus a capacity model is mostly applicable,whereas a non-capacity model is critical for suspended sediment because of the lower rate of adaptation to capacity.Physically coupled modelling is critical for fluvial processes characterized by rapid bed variation.Applications are outlined on very active bed load sediment transported by flash floods and landslide dam break floods.展开更多
The multiple time scale climate changes are studied and calculated with statistical analysis and wavelet transformation on the basis of daily series of observed data over the period 1901-2007 in Macao.The result shows...The multiple time scale climate changes are studied and calculated with statistical analysis and wavelet transformation on the basis of daily series of observed data over the period 1901-2007 in Macao.The result shows that statistically significant oscillations with 2 to 5 years of period generally exist in the series of climate variables(e.g.annual mean surface air temperature and precipitation as well as evaporation etc.),but with obvious locality in time domain.The variation of annual mean surface air temperature has a quasi 60-year period.The phases of the 60-year variation approximately and consistently match that of Atlantic Multidecadal Oscillation(AMO).The oscillations of seasonal mean surface air temperature in summer and winter have the periods of quasi 30-year and quasi 60-year,respectively.These two periods of oscillations have statistically significant correlation with Pacific decadal oscillation(PDO) and AMO,individually.The multidecadal variations of the precipitation of the annually first flood period and annual evaporation are dominated by periods of quasi 30-year and quasi 50-year,respectively.展开更多
The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To th...The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.展开更多
Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve...Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve the expected economy.This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control(MPC).In the day-ahead stage,an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min.In order to cope with power fluctuations of photovoltaic,wind turbine and conventional load,MPC is used to track and roll correct the day-ahead operating simulation plan in the intra-day stage to meet the actual operating operation status of the park.Finally,the validity and economy of the operating simulation strategy are verified through the analysis of arithmetic examples.展开更多
Environmental and electrical factors such as wind speed,air temperature and switching frequency have significant influences on the operational reliability of hybrid modular multilevel converter(MMC),which is commonly ...Environmental and electrical factors such as wind speed,air temperature and switching frequency have significant influences on the operational reliability of hybrid modular multilevel converter(MMC),which is commonly used for the wind power transmission.However,the existing reliability model of hybrid MMC based on statistics cannot accurately reflect the impact of these factors.In this paper,a new operational reliability model of hybrid MMC is presented.The reliability index of the hybrid MMC is coupled with its operation characteristics by calculating multi-term thermal cycling.In addition,an operation strategy of hybrid MMC is proposed to improve its reliability.The multi-state submodule(SM)is developed,which is capable of bypassing specific faulty power modules instead of the whole SM.Case studies show that the proposed operational reliability model could describe the impact of environmental and electrical factors.Also,the proposed operation strategy can improve the reliability of hybrid IMMC by extending the operation time of SMs.展开更多
An externally excited Duffing oscillator under feedback control is discussed and analyzed under the worst resonance case.Multiple time scales method is applied for this system to find analytic solution with the existe...An externally excited Duffing oscillator under feedback control is discussed and analyzed under the worst resonance case.Multiple time scales method is applied for this system to find analytic solution with the existence and nonexistence of the time delay on control loop.An appropriate stability analysis is also performed and appropriate choices for the feedback gains and the time delay are found in order to reduce the amplitude peak.Different response curves are involved to show and compare controller effects.In addition,analytic solutions are compared with numerical approximation solutions using Rung-Kutta method of fourth order.展开更多
Heat waves have attracted increasing attention in recent years due to their frequent occurrence.The present study investigates the heat wave intensity and duration in China using daily maximum temperature from 753 wea...Heat waves have attracted increasing attention in recent years due to their frequent occurrence.The present study investigates the heat wave intensity and duration in China using daily maximum temperature from 753 weather stations from 1960 to 2010.In addition,its relationships with soil moisture local forcing on the ten-day period and monthly scales in spring and summer are analyzed using soil moisture data from weather stations and ERA40 reanalysis data.And finally,a mechanistic analysis is carried out using CAM5.1(Community Atmosphere Model,version 5.1) coupled with CLM2(Community Land Model,version 2).It is found that the heat wave frequency and duration show a sandwich distribution across China,with high occurrence rates in Southeast China and Northwest China,where the maximum frequency and duration exceeded 2.1 times and 9 days per year,respectively.The increasing trends in both duration and intensity occurred to the north of 35°N.The relationships between heat wave frequency in northern China in July(having peak distribution) and soil moisture in the earlier stage(from March to June) and corresponding period(July) are further analyzed,revealing a strong negative correlation in March,June and July,and thus showing that soil moisture in spring and early summer could be an important contributor to heat waves in July via positive subtropical high anomalies.However,the time scales of influence were relatively short in the semi-humid and humid regions,and longer in the arid region.The contribution in the corresponding period took place via positive subtropical high anomalies and positive surface skin temperature and sensible heat flux anomalies.展开更多
The nonlinear interactions of a microarch resonator with 3:1 internal resonance are studied.The microarch is subjected to a combination of direct current(DC)and alternating current(AC)electric voltages.Thin piezoelect...The nonlinear interactions of a microarch resonator with 3:1 internal resonance are studied.The microarch is subjected to a combination of direct current(DC)and alternating current(AC)electric voltages.Thin piezoelectric layers are thoroughly bonded on the top and bottom surfaces of the microarch.The piezoelectric actuation is not only used to modulate the stiffness and resonance frequency of the resonator but also to provide the suitable linear frequency ratio for the activation of the internal resonance.The size effect is incorporated by using the so-called modified strain gradient theory.The system is highly nonlinear due to the co-existence of the initial curvature,the mid-plane stretching resulting from clamped anchors,and the electrostatic excitation.The eigenvalue problem is solved to conduct a frequency analysis and identify the possible regions for activating the internal resonance.The effects of the piezoelectric actuation,the electric excitation,and the small-scale effect are investigated on the internal resonance.Exclusive nonlinear phenomena such as Hopf bifurcation and hysteresis are identified in the microarch response.It is shown that by applying appropriate piezoelectric actuation,one is able to activate microarch internal resonance regardless of the initial rise level of the microarch.It is also disclosed that among all the parameters,AC electric voltage has the greatest effect on the energy exchange between the interacting modes.The results can be used to design resonators and internal resonance based micro-electro-mechanical system(MEMS)energy harvesters.展开更多
Based on the chaotic geomagnetic field model, a non-smooth factor is introduced to explore complex dynamical behaviors of a system with multiple time scales. By regarding the whole excitation term as a parameter, bifu...Based on the chaotic geomagnetic field model, a non-smooth factor is introduced to explore complex dynamical behaviors of a system with multiple time scales. By regarding the whole excitation term as a parameter, bifurcation sets are derived, which divide the generalized parameter space into several regions corresponding to different kinds of dynamic behaviors. Due to the existence of non-smooth factors, different types of bifurcations are presented in spiking states, such as grazing-sliding bifurcation and across-sliding bifurcation. In addition, the non-smooth fold bifurcation may lead to the appearance of a special quiescent state in the interface as well as a non-smooth homoclinic bifurcation phenomenon. Due to these bifurcation behaviors, a special transition between spiking and quiescent state can also occur.展开更多
The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distribute...The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales.展开更多
Steady-state periodical response is investigated for an axially moving viscoelastic beam with hybrid supports via approximate analysis with numerical confirmation. It is assumed that the excitation is spatially unifor...Steady-state periodical response is investigated for an axially moving viscoelastic beam with hybrid supports via approximate analysis with numerical confirmation. It is assumed that the excitation is spatially uniform and temporally harmonic. The transverse motion of axially moving beams is governed by a nonlinear partial-differential equation and a nonlinear integro-partial-differential equation. The material time derivative is used in the viscoelastic constitutive relation. The method of multiple scales is applied to the governing equations to investigate primary resonances under general boundary conditions. It is demonstrated that the mode uninvolved in the resonance has no effect on the steady-state response. Numerical examples are presented to demonstrate the effects of the boundary constraint stiffness on the amplitude and the stability of the steady-state response. The results derived for two governing equations are qualitatively the same,but quantitatively different. The differential quadrature schemes are developed to verify those results via the method of multiple scales.展开更多
A time-varying control law via nominal trajectory linearization for an air-breathing hypersonic vehicle (ABHV) model is applied. Feasible guidance command signal serials are generated by nonlinear dynamic inverse (...A time-varying control law via nominal trajectory linearization for an air-breathing hypersonic vehicle (ABHV) model is applied. Feasible guidance command signal serials are generated by nonlinear dynamic inverse (NDI) method considering interactions between aerodynamic effects and propulsion systems. Multiple-time-scale continuous time-varying control, which meets the requirement with accurate, robust, and decoupled tracking of both the commanded trajectory and angular rate profiles in the presence of modeling uncertainties and external disturbances are applied. The simulations for an ABHV model with modeling uncertainties, wind gust, and measuring noises are presented to demonstrate the capacity and reliability of this proposed method.展开更多
The discrete material, which belongs to the category of soft materials, is one of the most prevalent forms of matter in nature and engineering fields. These materials often exhibit abundant and complex mechanical prop...The discrete material, which belongs to the category of soft materials, is one of the most prevalent forms of matter in nature and engineering fields. These materials often exhibit abundant and complex mechanical properties which are still far from being perfectly understood. From the view of multi-scale framework concentrated on the 'bridge' role in the macro-micro relation, this review mainly introduces some theoretical investigations of mechanical behaviors in discrete materials, including the continuum constitutive model based on the macroscopic phenomenological approach and coupled micro-macro approach, the statistical analysis of some microscopic physical quantities involved contacted forces between particles and its transmission within the whole system, and the statistical analysis for some microscopic processes in aeolian landform systems involving the grain-bed impact, the transportation and sedimentation of wind-blown sand flux, et al. Finally, some further worthwhile challenges in these fields are suggested.展开更多
基金Under the auspices of National Key Science and Technology Support Program of China (No. 2006BCA01A07-2)National Natural Science Foundation of China (No. 40101005)Science Foundation of Shandong Province, China (No. Q02E03)
文摘Based on monthly river runoff and meteorological data, a method of Morlet wavelet transform was used to analyze the multiple time scale characteristics of river runoff in the Dagujia River Basin, Yantai City, Shandong Province. The results showed that the total annual river runoffin the Dagujia River Basin decreased significantly from 1966 to 2004, and the rate of decrease was 48× 10^6ma/10yr, which was higher than the mean value of most rivers in China. Multiple time scale characteristics existed, which accounted for different aspects of the changes in annual river runoff, and the major periods of the runofftime series were identified as about 28 years, 14 years and 4 years with decreasing levels of fluctuation. The river runoff evolution process was controlled by changes in precipitation to a certain extent, but it was also greatly influenced by human activities. Also, for different time periods and scales, the impacts of climate changes and human activities on annual river runoff evolution occurred at the same time. Changes in the annual river runoffwere mainly associated with climate change before the 1980s and with human activities after 1981.
基金Major Projects of Gansu Province(No.17ZD2GA010)Power Company Technology Projects of State Grid Corporation in Gansu Province(No.52272716000K)
文摘Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system based on multiple time scales.On the basis of the analysis of the uncertainty of wind power and PV power as well as the characteristics of load side resource dispatching,the optimal model of coordinating and dispatching“source-load”in power system based on multiple time scales is established.It can simultaneously and effectively dispatch conventional generators,wind plant,PV power station,pumped-storage power station and load side resources by optimally using three time scales:day-ahead,intra-day and real-time.According to the latest predicted information of wind power,PV power and load,the original generation schedule can be rolled and amended by using the corresponding time scale.The effectiveness of the model can be verified by a real system.The simulation results show that the proposed model can make full use of“source-load”resources to improve the ability to consume wind power and PV power of the grid-connected system.
基金Projects(50574091, 50774084) supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions+1 种基金Project(CXLX12_0949) supported by Research and Innovation Project for College Graduates of Jiangsu Province, ChinaProject(2013DXS03) supported by the Fundamental Research Funds for the Central Universities, China
文摘A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established using Lagrange's equation. In order to obtain approximate solution, multiple time scales method, one of perturbation technique, was applied. Cases of non-resonant and 1:1:2:2 internal resonant were discussed. In the non-resonant case, the validity of multiple time scales method is confirmed, comparing numerical results derived from fourth order Runge-Kutta method with analytical results derived from first order approximate expression. In the 1:1:2:2 internal resonant case, modal amplitudes of Aa1 and Ab2 increase, respectively, from 0.38 to 0.63 and from 0.19 to 0.32, while the corresponding frequencies have an increase of almost 1.6 times with changes of initial conditions, indicating the existence of typical nonlinear phenomenon. In addition, the chaotic motion is found under this condition.
基金supported by the National Natural Science Foundation of China (10932012 and 10972164)State Key Basic Research and Development Program (973) of China (2007CB714106)
文摘Fluvial processes comprise water flow,sediment transport and bed evolution,which normally feature distinct time scales.The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity region in line with local flow scenario and the bed deforms in comparison with the flow,which literally dictates if a capacity based and/or decoupled model is justified.This paper synthesizes the recently developed multiscale theory for sediment-laden flows over erodible bed,with bed load and suspended load transport,respectively.It is unravelled that bed load transport can adapt to capacity sufficiently rapidly even under highly unsteady flows and thus a capacity model is mostly applicable,whereas a non-capacity model is critical for suspended sediment because of the lower rate of adaptation to capacity.Physically coupled modelling is critical for fluvial processes characterized by rapid bed variation.Applications are outlined on very active bed load sediment transported by flash floods and landslide dam break floods.
文摘The multiple time scale climate changes are studied and calculated with statistical analysis and wavelet transformation on the basis of daily series of observed data over the period 1901-2007 in Macao.The result shows that statistically significant oscillations with 2 to 5 years of period generally exist in the series of climate variables(e.g.annual mean surface air temperature and precipitation as well as evaporation etc.),but with obvious locality in time domain.The variation of annual mean surface air temperature has a quasi 60-year period.The phases of the 60-year variation approximately and consistently match that of Atlantic Multidecadal Oscillation(AMO).The oscillations of seasonal mean surface air temperature in summer and winter have the periods of quasi 30-year and quasi 60-year,respectively.These two periods of oscillations have statistically significant correlation with Pacific decadal oscillation(PDO) and AMO,individually.The multidecadal variations of the precipitation of the annually first flood period and annual evaporation are dominated by periods of quasi 30-year and quasi 50-year,respectively.
基金supported by the National Natural Science Foundation of China(No.12171145)。
文摘The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.
基金supported by the Science and Technology Project of State Grid Shanxi Electric Power Research Institute:Research on Data-Driven New Power System Operation Simulation and Multi Agent Control Strategy(52053022000F).
文摘Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve the expected economy.This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control(MPC).In the day-ahead stage,an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min.In order to cope with power fluctuations of photovoltaic,wind turbine and conventional load,MPC is used to track and roll correct the day-ahead operating simulation plan in the intra-day stage to meet the actual operating operation status of the park.Finally,the validity and economy of the operating simulation strategy are verified through the analysis of arithmetic examples.
基金This work was supported by the National Key R&D Program of China(No.2017YFB0902200)the Science and Technology Project of State Grid Corporation of China(No.5228001700CW)the International Cooperation and Exchange Project of National Natural Science Foundation of China(No.51861145406).
文摘Environmental and electrical factors such as wind speed,air temperature and switching frequency have significant influences on the operational reliability of hybrid modular multilevel converter(MMC),which is commonly used for the wind power transmission.However,the existing reliability model of hybrid MMC based on statistics cannot accurately reflect the impact of these factors.In this paper,a new operational reliability model of hybrid MMC is presented.The reliability index of the hybrid MMC is coupled with its operation characteristics by calculating multi-term thermal cycling.In addition,an operation strategy of hybrid MMC is proposed to improve its reliability.The multi-state submodule(SM)is developed,which is capable of bypassing specific faulty power modules instead of the whole SM.Case studies show that the proposed operational reliability model could describe the impact of environmental and electrical factors.Also,the proposed operation strategy can improve the reliability of hybrid IMMC by extending the operation time of SMs.
文摘An externally excited Duffing oscillator under feedback control is discussed and analyzed under the worst resonance case.Multiple time scales method is applied for this system to find analytic solution with the existence and nonexistence of the time delay on control loop.An appropriate stability analysis is also performed and appropriate choices for the feedback gains and the time delay are found in order to reduce the amplitude peak.Different response curves are involved to show and compare controller effects.In addition,analytic solutions are compared with numerical approximation solutions using Rung-Kutta method of fourth order.
基金supported by the National Natural Science Foundation of China(Grant Nos.41375155 and 91437107)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Heat waves have attracted increasing attention in recent years due to their frequent occurrence.The present study investigates the heat wave intensity and duration in China using daily maximum temperature from 753 weather stations from 1960 to 2010.In addition,its relationships with soil moisture local forcing on the ten-day period and monthly scales in spring and summer are analyzed using soil moisture data from weather stations and ERA40 reanalysis data.And finally,a mechanistic analysis is carried out using CAM5.1(Community Atmosphere Model,version 5.1) coupled with CLM2(Community Land Model,version 2).It is found that the heat wave frequency and duration show a sandwich distribution across China,with high occurrence rates in Southeast China and Northwest China,where the maximum frequency and duration exceeded 2.1 times and 9 days per year,respectively.The increasing trends in both duration and intensity occurred to the north of 35°N.The relationships between heat wave frequency in northern China in July(having peak distribution) and soil moisture in the earlier stage(from March to June) and corresponding period(July) are further analyzed,revealing a strong negative correlation in March,June and July,and thus showing that soil moisture in spring and early summer could be an important contributor to heat waves in July via positive subtropical high anomalies.However,the time scales of influence were relatively short in the semi-humid and humid regions,and longer in the arid region.The contribution in the corresponding period took place via positive subtropical high anomalies and positive surface skin temperature and sensible heat flux anomalies.
文摘The nonlinear interactions of a microarch resonator with 3:1 internal resonance are studied.The microarch is subjected to a combination of direct current(DC)and alternating current(AC)electric voltages.Thin piezoelectric layers are thoroughly bonded on the top and bottom surfaces of the microarch.The piezoelectric actuation is not only used to modulate the stiffness and resonance frequency of the resonator but also to provide the suitable linear frequency ratio for the activation of the internal resonance.The size effect is incorporated by using the so-called modified strain gradient theory.The system is highly nonlinear due to the co-existence of the initial curvature,the mid-plane stretching resulting from clamped anchors,and the electrostatic excitation.The eigenvalue problem is solved to conduct a frequency analysis and identify the possible regions for activating the internal resonance.The effects of the piezoelectric actuation,the electric excitation,and the small-scale effect are investigated on the internal resonance.Exclusive nonlinear phenomena such as Hopf bifurcation and hysteresis are identified in the microarch response.It is shown that by applying appropriate piezoelectric actuation,one is able to activate microarch internal resonance regardless of the initial rise level of the microarch.It is also disclosed that among all the parameters,AC electric voltage has the greatest effect on the energy exchange between the interacting modes.The results can be used to design resonators and internal resonance based micro-electro-mechanical system(MEMS)energy harvesters.
基金Project supported by the National Natural Science Foundation of China(Grant No.11472116)the Key Program of the National Natural Science Foundation of China(Grant No.11632008)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX17 1784)
文摘Based on the chaotic geomagnetic field model, a non-smooth factor is introduced to explore complex dynamical behaviors of a system with multiple time scales. By regarding the whole excitation term as a parameter, bifurcation sets are derived, which divide the generalized parameter space into several regions corresponding to different kinds of dynamic behaviors. Due to the existence of non-smooth factors, different types of bifurcations are presented in spiking states, such as grazing-sliding bifurcation and across-sliding bifurcation. In addition, the non-smooth fold bifurcation may lead to the appearance of a special quiescent state in the interface as well as a non-smooth homoclinic bifurcation phenomenon. Due to these bifurcation behaviors, a special transition between spiking and quiescent state can also occur.
文摘The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales.
基金supported by the National Natural Science Foundation of China (10902064 and 10932006)China National Funds for Distinguished Young Scientists (10725209)+2 种基金the Program of Shanghai Subject Chief Scientist (09XD1401700)Shanghai Leading Talent Program,Shanghai Leading Academic Discipline Project (S30106)the program for Cheung Kong Scholars Programme and Innovative Research Team in University (IRT0844)
文摘Steady-state periodical response is investigated for an axially moving viscoelastic beam with hybrid supports via approximate analysis with numerical confirmation. It is assumed that the excitation is spatially uniform and temporally harmonic. The transverse motion of axially moving beams is governed by a nonlinear partial-differential equation and a nonlinear integro-partial-differential equation. The material time derivative is used in the viscoelastic constitutive relation. The method of multiple scales is applied to the governing equations to investigate primary resonances under general boundary conditions. It is demonstrated that the mode uninvolved in the resonance has no effect on the steady-state response. Numerical examples are presented to demonstrate the effects of the boundary constraint stiffness on the amplitude and the stability of the steady-state response. The results derived for two governing equations are qualitatively the same,but quantitatively different. The differential quadrature schemes are developed to verify those results via the method of multiple scales.
文摘A time-varying control law via nominal trajectory linearization for an air-breathing hypersonic vehicle (ABHV) model is applied. Feasible guidance command signal serials are generated by nonlinear dynamic inverse (NDI) method considering interactions between aerodynamic effects and propulsion systems. Multiple-time-scale continuous time-varying control, which meets the requirement with accurate, robust, and decoupled tracking of both the commanded trajectory and angular rate profiles in the presence of modeling uncertainties and external disturbances are applied. The simulations for an ABHV model with modeling uncertainties, wind gust, and measuring noises are presented to demonstrate the capacity and reliability of this proposed method.
基金Project supported by the Ministry of Science and Technology of China (No. 2009CB421304)National Natural Science Foundation of China (Nos. 10872082 and 11002064)Ministry of Education, Science and Technology Research Project(No. 308022)
文摘The discrete material, which belongs to the category of soft materials, is one of the most prevalent forms of matter in nature and engineering fields. These materials often exhibit abundant and complex mechanical properties which are still far from being perfectly understood. From the view of multi-scale framework concentrated on the 'bridge' role in the macro-micro relation, this review mainly introduces some theoretical investigations of mechanical behaviors in discrete materials, including the continuum constitutive model based on the macroscopic phenomenological approach and coupled micro-macro approach, the statistical analysis of some microscopic physical quantities involved contacted forces between particles and its transmission within the whole system, and the statistical analysis for some microscopic processes in aeolian landform systems involving the grain-bed impact, the transportation and sedimentation of wind-blown sand flux, et al. Finally, some further worthwhile challenges in these fields are suggested.