期刊文献+
共找到1,074篇文章
< 1 2 54 >
每页显示 20 50 100
FK506 contributes to peripheral nerve regeneration by inhibiting neuroinflammatory responses and promoting neuron survival
1
作者 Yuhui Kou Zongxue Jin +3 位作者 Yusong Yuan Bo Ma Wenyong Xie Na Han 《Neural Regeneration Research》 SCIE CAS 2025年第7期2108-2115,共8页
FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways ... FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways remain unclear.In this study,we established a rat model of sciatic nerve injury and found that FK506 improved the morphology of the injured sciatic nerve,increased the numbers of motor and sensory neurons,reduced inflammatory responses,markedly improved the conduction function of the injured nerve,and promoted motor function recovery.These findings suggest that FK506 promotes peripheral nerve structure recovery and functional regeneration by reducing the intensity of inflammation after neuronal injury and increasing the number of surviving neurons. 展开更多
关键词 FK506 inflammation motor neurons nerve regeneration NEURON peripheral nerve injury sensory neurons
下载PDF
A novel flexible nerve guidance conduit promotes nerve regeneration while providing excellent mechanical properties
2
作者 Tong Li Quhan Cheng +11 位作者 Jingai Zhang Boxin Liu Yu Shi Haoxue Wang Lijie Huang Su Zhang Ruixin Zhang Song Wang Guangxu Lu Peifu Tang Zhongyang Liu Kai Wang 《Neural Regeneration Research》 SCIE CAS 2025年第7期2084-2094,共11页
Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduit... Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries. 展开更多
关键词 aligned fibers anti-kinking helical fibers nerve guidance conduit nerve regeneration peripheral nerve injury topological guidance
下载PDF
A functional tacrolimus-releasing nerve wrap for enhancing nerve regeneration following surgical nerve repair
3
作者 Simeon C.Daeschler Katelyn J.W.So +7 位作者 Konstantin Feinberg Marina Manoraj Jenny Cheung Jennifer Zhang Kaveh Mirmoeini JPaul Santerre Tessa Gordon Gregory HBorschel 《Neural Regeneration Research》 SCIE CAS 2025年第1期291-304,共14页
Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies a... Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies available to promote nerve regeneration.Tacrolimus accelerates axonal regeneration,but systemic side effects presently outweigh its potential benefits for peripheral nerve surgery.The authors describe herein a biodegradable polyurethane-based drug delivery system for the sustained local release of tacrolimus at the nerve repair site,with suitable properties for scalable production and clinical application,aiming to promote nerve regeneration and functional recovery with minimal systemic drug exposure.Tacrolimus is encapsulated into co-axially electrospun polycarbonate-urethane nanofibers to generate an implantable nerve wrap that releases therapeutic doses of bioactive tacrolimus over 31 days.Size and drug loading are adjustable for applications in small and large caliber nerves,and the wrap degrades within 120 days into biocompatible byproducts.Tacrolimus released from the nerve wrap promotes axon elongation in vitro and accelerates nerve regeneration and functional recovery in preclinical nerve repair models while off-target systemic drug exposure is reduced by 80%compared with systemic delivery.Given its surgical suitability and preclinical efficacy and safety,this system may provide a readily translatable approach to support axonal regeneration and recovery in patients undergoing nerve surgery. 展开更多
关键词 BIODEGRADABLE local drug delivery nerve injury nerve regeneration nerve wrap TACROLIMUS
下载PDF
Chemokine platelet factor 4 accelerates peripheral nerve regeneration by regulating Schwann cell activation and axon elongation 被引量:2
4
作者 Miao Gu Xiao Cheng +3 位作者 Di Zhang Weiyan Wu Yi Cao Jianghong He 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期190-195,共6页
Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and foun... Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury.Platelet factor is an important molecule in cell apoptosis,diffe rentiation,survival,and proliferation.Further,polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury.Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells.We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells,while exogenously applied platelet factor 4 stimulated Schwann cell prolife ration and migration and neuronal axon growth.Furthermore,knocking out platelet factor 4 inhibited the prolife ration of Schwann cells in injured rat sciatic nerve.These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth.Thus,platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury. 展开更多
关键词 axon elongation bioinformatic analysis cell migration cell proliferation dorsal root ganglia peripheral nerve regeneration peripheral nerve trauma platelet factor 4 rat sciatic nerve Schwann cells
下载PDF
Role of transforming growth factor-βin peripheral nerve regeneration 被引量:4
5
作者 Zihan Ding Maorong Jiang +4 位作者 Jiaxi Qian Dandan Gu Huiyuan Bai Min Cai Dengbing Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期380-386,共7页
Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to... Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells.However,axon regeneration and repair do not automatically result in the restoration of function,which is the ultimate therapeutic goal but also a major clinical challenge.Transforming growth factor(TGF)is a multifunctional cytokine that regulates various biological processes including tissue repair,embryo development,and cell growth and differentiation.There is accumulating evidence that TGF-βfamily proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells;recruiting specific immune cells;controlling the permeability of the blood-nerve barrier,thereby stimulating axon growth;and inhibiting remyelination of regenerated axons.TGF-βhas been applied to the treatment of peripheral nerve injury in animal models.In this context,we review the functions of TGF-βin peripheral nerve regeneration and potential clinical applications. 展开更多
关键词 MYELINATION nerve repair and regeneration NEURITE NEUROINFLAMMATION peripheral nerve injury Schwann cell transforming growth factor-β Wallerian degeneration
下载PDF
The Achyranthes bidentata polypeptide k fraction enhances neuronal growth in vitro and promotes peripheral nerve regeneration after crush injury in vivo 被引量:6
6
作者 Qiong Cheng Chunyi Jiang +4 位作者 Caiping Wang Shu Yu Qi Zhang Xiaosong Gu Fei Ding 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第24期2142-2150,共9页
We have previously shown that Achyranthes bidentata polypeptides (ABPP), isolated from Achyranthes bidentata Blume (a medicinal herb), exhibit neurotrophic and neuroprotective effects on the nervous system. To ide... We have previously shown that Achyranthes bidentata polypeptides (ABPP), isolated from Achyranthes bidentata Blume (a medicinal herb), exhibit neurotrophic and neuroprotective effects on the nervous system. To identify the major active component of ABPP, and thus optimize the use of ABPP, we used reverse-phase high performance liquid chromatography to separate ABPP. We obtained 12 fractions, among which the fraction of ABPPk demonstrated the strongest neuroactivity. Immunocytochemistry and western blot analysis showed that ABPPk promoted neurite growth in cultured dorsal root ganglion explant and dorsal root ganglion neurons, which might be associated with activation of Erk1/2. A combination of behavioral tests, electrophysiological assessment, and histomorphometric analysis indicated that ABPPk enhanced nerve regeneration and function restoration in a mouse model of crushed sciatic nerve. All the results suggest that ABPPk, as the key component of ABPP, can be used for peripheral nerve repair to yield better outcomes than ABPP. 展开更多
关键词 nerve regeneration Achyranthes bidentata polypeptides neuroactive component dorsal root ganglion neurite outgrowth crush injury sciatic nerve peripheral nerve regeneration neural regeneration
下载PDF
Phrenic and intercostal nerves with rhythmic discharge can promote early nerve regeneration after brachial plexus repair in rats 被引量:6
7
作者 Jing Rui Ya-Li Xu +3 位作者 Xin Zhao Ji-Feng Li Yu-Dong Gu Jie Lao 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第5期862-868,共7页
Exogenous discharge can positively promote nerve repair. We, therefore, hypothesized that endogenous discharges may have similar effects. The phrenic nerve and intercostal nerve, controlled by the respiratory center, ... Exogenous discharge can positively promote nerve repair. We, therefore, hypothesized that endogenous discharges may have similar effects. The phrenic nerve and intercostal nerve, controlled by the respiratory center, can emit regular nerve impulses; therefore these endogenous automatically discharging nerves might promote nerve regeneration. Action potential discharge patterns were examined in the diaphragm, external intercostal and latissimus dorsi muscles of rats. The phrenic and intercostal nerves showed rhythmic clusters of discharge, which were consistent with breathing frequency. From the first to the third intercostal nerves, spontaneous discharge amplitude was gradually increased. There was no obvious rhythmic discharge in the thoracodorsal nerve. Four animal groups were performed in rats as the musculocutaneous nerve cut and repaired was bland control. The other three groups were followed by a side-to-side anastomosis with the phrenic nerve, intercostal nerve and thoracodorsal nerve. Compound muscle action potentials in the biceps muscle innervated by the musculocutaneous nerve were recorded with electrodes. The tetanic forces of ipsilateral and contralateral biceps muscles were detected by a force displacement transducer. Wet muscle weight recovery rate was measured and pathological changes were observed using hematoxylin-eosin staining. The number of nerve fibers was observed using toluidine blue staining and changes in nerve ultrastructure were observed using transmission electron microscopy. The compound muscle action potential amplitude was significantly higher at 1 month after surgery in phrenic and intercostal nerve groups compared with the thoracodorsal nerve and blank control groups. The recovery rate of tetanic tension and wet weight of the right biceps were significantly lower at 2 months after surgery in the phrenic nerve, intercostal nerve, and thoracodorsal nerve groups compared with the negative control group. The number of myelinated axons distal to the coaptation site of the musculocutaneous nerve at 1 month after surgery was significantly higher in phrenic and intercostal nerve groups than in thoracodorsal nerve and negative control groups. These results indicate that endogenous autonomic discharge from phrenic and intercostal nerves can promote nerve regeneration in early stages after brachial plexus injury. 展开更多
关键词 nerve regeneration endogenous automatic discharge side-to-side nerve anastomosis peripheral nerve regeneration phrenic nerve intercostal nerve peripheral nerve injury neural regeneration
下载PDF
Combination of olfactory ensheathing cells and human umbilical cord mesenchymal stem cell-derived exosomes promotes sciatic nerve regeneration 被引量:15
8
作者 Yang Zhang Wen-Tao Wang +2 位作者 Chun-Rong Gong Chao Li Mei Shi 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第10期1903-1911,共9页
Olfactory ensheathing cells(OECs)are promising seed cells for nerve regeneration.However,their application is limited by the hypoxic environment usually present at the site of injury.Exosomes derived from human umbili... Olfactory ensheathing cells(OECs)are promising seed cells for nerve regeneration.However,their application is limited by the hypoxic environment usually present at the site of injury.Exosomes derived from human umbilical cord mesenchymal stem cells have the potential to regulate the pathological processes that occur in response to hypoxia.The ability of OECs to migrate is unknown,especially in hypoxic conditions,and the effect of OECs combined with exosomes on peripheral nerve repair is not clear.Better understanding of these issues will enable the potential of OECs for the treatment of nerve injury to be addressed.In this study,OECs were acquired from the olfactory bulb of Sprague Dawley rats.Human umbilical cord mesenchymal stem cell-derived exosomes(0–400μg/mL)were cultured with OECs for 12–48 hours.After culture with 400μg/mL exosomes for 24 hours,the viability and proliferation of OECs were significantly increased.We observed changes to OECs subjected to hypoxia for 24 hours and treatment with exosomes.Exosomes significantly promoted the survival and migration of OECs in hypoxic conditions,and effectively increased brain-derived neurotrophic factor gene expression,protein levels and secretion.Finally,using a 12 mm left sciatic nerve defect rat model,we confirmed that OECs and exosomes can synergistically promote motor and sensory function of the injured sciatic nerve.These findings show that application of OECs and exosomes can promote nerve regeneration and functional recovery.This study was approved by the Institutional Ethical Committee of the Air Force Medical University,China(approval No.IACUC-20181004)on October 7,2018;and collection and use of human umbilical cord specimens was approved by the Ethics Committee of the Linyi People’s Hospital,China(approval No.30054)on May 20,2019. 展开更多
关键词 brain-derived neurotrophic factor cell migration cell viability functional recovery HYPOXIA nerve regeneration sciatic functional index sciatic nerve injury
下载PDF
Neurotrophic factors and corneal nerve regeneration 被引量:19
9
作者 Marta Sacchetti Alessandro Lambiase 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第8期1220-1224,共5页
The cornea has unique features that make it a useful model for regenerative medicine studies. It is an avascular, transparent, densely innervated tissue and any pathological changes can be easily detected by slit lamp... The cornea has unique features that make it a useful model for regenerative medicine studies. It is an avascular, transparent, densely innervated tissue and any pathological changes can be easily detected by slit lamp examination. Corneal sensitivity is provided by the ophthalmic branch of the trigeminal nerve that elicits protective reflexes such as blinking and tearing and exerts trophic support by releasing neuromediators and growth factors. Corneal nerves are easily evaluated for both function and morphology using standard instruments such as corneal esthesiometer and in vivo confocal microscope. All local and systemic conditions that are associated with damage of the trigeminal nerve cause the development of neurotrophic keratitis, a rare degenerative disease. Neurotrophic keratitis is characterized by impairment of corneal sensitivity associated with development of persistent epithelial defects that may progress to corneal ulcer, melting and perforation. Current neurotrophic keratitis treatments aim at supporting corneal healing and preventing progression of corneal damage. Novel compounds able to stimulate corneal nerve recovery are in advanced development stage. Among them, nerve growth factor eye drops showed to be safe and effective in stimulating corneal healing and improving corneal sensitivity in patients with neurotrophic keratitis. Neurotrophic keratitis represents an useful model to evaluate in clinical practice novel neuro-regenerative drugs. 展开更多
关键词 neurotrophic keratitis corneal sensitivity nerve regeneration nerve growth factor
下载PDF
Repetitive magnetic stimulation affects the microenvironment of nerve regeneration and evoked potentials after spinal cord injury 被引量:10
10
作者 Jin-lan Jiang Xu-dong Guo +2 位作者 Shu-quan Zhang Xin-gang Wang Shi-feng Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第5期816-822,共7页
Repetitive magnetic stimulation has been shown to alter local blood flow of the brain, excite the corticospinal tract and muscle, and induce motor function recovery. We established a rat model of acute spinal cord inj... Repetitive magnetic stimulation has been shown to alter local blood flow of the brain, excite the corticospinal tract and muscle, and induce motor function recovery. We established a rat model of acute spinal cord injury using the modified Allen's method. After 4 hours of injury, rat models received repetitive magnetic stimulation, with a stimulus intensity of 35% maximum output intensity, 5-Hz frequency, 5 seconds for each sequence, and an interval of 2 minutes. This was repeated for a total of 10 sequences, once a day, 5 days in a week, for 2 consecutive weeks. After repetitive magnetic stimulation, the number of apoptotic cells decreased, matrix metalloproteinase 9/2 gene and protein expression decreased, nestin expression increased, somatosensory and motor-evoked potentials recovered, and motor function recovered in the injured spinal cord. These findings confirm that repetitive magnetic stimulation of the spinal cord improved the microenvironment of neural regeneration, reduced neuronal apoptosis, and induced neuroprotective and repair effects on the injured spinal cord. 展开更多
关键词 nerve regeneration spinal cord injury repetitive magnetic stimulation motor function rats rehabilitation plasticity regenerative microenvironment neural regeneration
下载PDF
Bone marrow-derived mesenchymal stem cells versus adipose-derived mesenchymal stem cells for peripheral nerve regeneration 被引量:12
11
作者 Marcela Fernandes Sandra Gomes Valente +5 位作者 Rodrigo Guerra Sabongi Joao Baptista Gomes dos Santos Vilnei Mattioli Leite Henning Ulrich Arthur Andrade Nery Maria José da Silva Fernandes 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第1期100-104,共5页
Studies have confirmed that bone marrow-derived mesenchymal stem cells (MSCs) can be used for treatment of several nervous system diseases. However, isolation of bone marrow-derived MSCs (BMSCs) is an invasive and... Studies have confirmed that bone marrow-derived mesenchymal stem cells (MSCs) can be used for treatment of several nervous system diseases. However, isolation of bone marrow-derived MSCs (BMSCs) is an invasive and painful process and the yield is very low. Therefore, there is a need to search for other alterative stem cell sources. Adipose-derived MSCs (ADSCs) have phenotypic and gene expression profiles similar to those of BMSCs. The production of ADSCs is greater than that of BMSCs, and ADSCs proliferate faster than BMSCs. To compare the effects of venous grafts containing BMSCs or ADSCs on sciatic nerve injury, in this study, rats were randomly divided into four groups: sham (only sciatic nerve exposed), Matrigel (MG; sciatic nerve injury + intravenous transplantation of MG vehicle), ADSCs (sciatic nerve injury + intravenous MG containing ADSCs), and BMSCs (sciatic nerve injury + intravenous MG containing BMSCs) groups. Sciatic functional index was calculated to evaluate the function of injured sciatic nerve. Morphologic characteristics of nerves distal to the lesion were observed by toluidine blue staining. Spinal motor neurons labeled with Fluoro-Gold were quantitatively assessed. Compared with sham-operated rats, sciatic functional index was lower, the density of small-diameter fibers was significantly increased, and the number of motor neurons significantly decreased in rats with sciatic nerve injury. Neither ADSCs nor BMSCs significantly improved the sciatic nerve function of rats with sciatic nerve injury,increased fiber density, fiber diameters, axonal diameters, myelin sheath thickness, and G ratios (axonal diameter/fiber diameter ratios) in the sciatic nerve distal to the lesion site. There was no significant difference in the number of spinal motor neurons among ADSCs, BMSCs and MG groups. These results suggest that neither BMSCs nor ADSCs provide satisfactory results for peripheral nerve repair when using MG as the conductor for engraftment. 展开更多
关键词 nerve regeneration mesenchymal stem cells adipose-derived mesenchmal stem cells sciatic nerve MATRIGEL sciatic functional index neural regeneration
下载PDF
Transplantation of mesenchymal stem cells from human umbilical cord versus human umbilical cord blood for peripheral nerve regeneration 被引量:15
12
作者 Kang-Mi Pang Mi-Ae Sung +7 位作者 Mohammad S.Alrashdan Sang Bae Yoo Samir Jabaiti Soung-Min Kim Sung-June Kim Myung-Jin Kim Jeong Won Jahng Jong-Ho Lee 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第11期838-845,共8页
BACKGROUND: Mesenchymal stem cells (MSCs) appear to be a good alternative to Schwann cells in the treatment of peripheral nerve injury. Fetal stem cells, like umbilical cord blood (UCB) and umbilical cord (UC) ... BACKGROUND: Mesenchymal stem cells (MSCs) appear to be a good alternative to Schwann cells in the treatment of peripheral nerve injury. Fetal stem cells, like umbilical cord blood (UCB) and umbilical cord (UC) stem cells, have several advantages over adult stem cells. OBJECTIVE: To assess the effects of UC-derived MSCs (UCMSCs) and UCB-derived MSCs (UCBMSCs) in repair of sciatic nerve defects. DESIGN, TIME AND SETTING: A randomized controlled animal experiment was performed at the laboratory of Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, from July to December 2009. MATERIALS: UCMSCs were provided by the Research Institute of Biotechnology, Dongguk University. UCBMSCs were provided by the Laboratory of Stem Cells and Tumor Biology, College of Veterinary Medicine, Seoul National University. Dulbecco's modified Eagle's medium (DMEM) was purchased from Gibco-BRL, USA. METHODS: Seven-week-old Sprague-Dawley rats were randomly and evenly divided into three groups: DMEM, UCBMSCs, and UCMSCs. A 10-mm defect in the left sciatic nerve was constructed in all rats. DMEM (15 μL) containing 1×10^6 UCBMSCs or UCMSCs was injected into the gap between nerve stumps, with the surrounding epineurium as a natural conduit. For the DMEM group, simple DMEM was injected. MAIN OUTCOME MEASURES: At 7 weeks after sciatic nerve dissection, dorsal root ganglia neurons were labeled by fluorogold retrograde labeling. At 8 weeks, electrophysiology and histomorphometry were performed. At 2, 4, 6, and 8 weeks after surgery, sciatic nerve function was evaluated using gait analysis. RESULTS: The UCBMSCs group and the UCMSCs group exhibited similar sciatic nerve function and electrophysiological indices, which were better than the DMEM group, as measured by gait analysis (P 〈 0.05). Fluorogold retrograde labeling of sciatic nerve revealed that the UCBMSCs group demonstrated a higher number of labeled neurons; however, the differences were not significant. Histomorphometric indices were similar in the UCBMSCs and UCMSCs groups, and total axon counts, particularly axon density (P 〈 0.05), were significantly greater in the UCBMSCs and UCMSCs groups than in the DMEM group. CONCLUSION: Transplanting either UCBMSCs or UCMSCs into axotomized sciatic nerves could accelerate and promote sciatic nerve regeneration over 8 weeks. Both treatments had similar effects on nerve regeneration. 展开更多
关键词 peripheral nerve regeneration umbilical cord mesenchymal stem cell umbilical cord blood mesenchymal stem cell axotomy defect stem cells
下载PDF
Local administration of icariin contributes to peripheral nerve regeneration and functional recovery 被引量:10
13
作者 Bo Chen Su-ping Niu +7 位作者 Zhi-yong Wang Zhen-wei Wang Jiu-xu Deng Pei-xun Zhang Xiao-feng Yin Na Han Yu-hui Kou Bao-guo Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第1期84-89,共6页
Our previous study showed that systemic administration of the traditional Chinese medicine Epimedium extract promotes peripheral nerve regeneration. Here, we sought to explore the ther- apeutic effects of local admini... Our previous study showed that systemic administration of the traditional Chinese medicine Epimedium extract promotes peripheral nerve regeneration. Here, we sought to explore the ther- apeutic effects of local administration of icariin, a major component of Epimedium extract, on peripheral nerve regeneration. A poly(lactic-co-glycolic acid) biological conduit sleeve was used to bridge a 5 mm right sciatic nerve defect in rats, and physiological saline, nerve growth factor, icariin suspension, or nerve growth factor-releasing microsphere suspension was injected into the defect. Twelve weeks later, sciatic nerve conduction velocity and the number of myelinated fibers were notably greater in the rats treated with icariin suspension or nerve growth factor-releasing microspheres than those that had received nerve growth factor or physiological saline. The effects of icariin suspension were similar to those of nerve growth factor-releasing microspheres. These data suggest that icariin acts as a nerve growth factor-releasing agent, and indicate that local ap- plication of icariin after spinal injury can promote peripheral nerve regeneration. 展开更多
关键词 nerve regeneration peripheral nerve sciatic nerve traditional Chinese medicine ICARIIN sleeve bridging suture nerve growth factor NSFC grants neural regeneration
下载PDF
The effect of platelet-rich plasma on cavernous nerve regeneration in a rat model 被引量:13
14
作者 Xie-Gang Ding Shi-Wen Li +3 位作者 Xin-Min Zheng Li-Quan Hu Wan-Li Hu Yi Luo 《Asian Journal of Andrology》 SCIE CAS CSCD 2009年第2期215-221,共7页
The aim of this study was to investigate the effect of platelet-rich plasma(PRP)on cavernous nerve(CN)regeneration and functional status in a nerve-crush rat model.Twenty-four Sprague-Dawley male rats were randomly di... The aim of this study was to investigate the effect of platelet-rich plasma(PRP)on cavernous nerve(CN)regeneration and functional status in a nerve-crush rat model.Twenty-four Sprague-Dawley male rats were randomly divided into three equal groups:eight had a sham operation,eight underwent bilateral nerve crushing with no further intervention and eight underwent bilateral nerve crushing with an immediate application of PRP on the site of injury.Erectile function was assessed by CN electrostimulation at 3 months and nerve regeneration was assessed by toluidine blue staining of CN and nicotinamide adenine dinucleotide phosphate(NADPH)-diaphorase staining of penile tissue.Three months after surgery,in the group that underwent bilateral nerve crushing with no further intervention,the functional evaluation showed a lower mean maximal intracavernous pressure(ICP)and maximal ICP per mean arterial pressure(MAP)with CN stimulation than those in the sham group.In the group with an immediate application of PRP,the mean maximal ICP and maximal ICP/MAP were significantly higher than those in the injured control group.Histologically,the group with the application of PRP had more myelinated axons of CNs and more NADPH-diaphorase-positive nerve fibres than the injured control group but fewer than the sham group.These results show that the application of PRP to the site of CN-crush injury facilitates nerve regeneration and recovery of erectile function.Our research indicates that clinical application of PRP has potential repairing effect on CN and peripheral nerves. 展开更多
关键词 platelet rich plasma IMPOTENCE erectile dysfunction nerve regeneration
下载PDF
The role of vascularization in nerve regeneration of nerve graft 被引量:9
15
作者 Tiam M.Saffari Meiwand Bedar +2 位作者 Caroline A.Hundepool Allen T.Bishop Alexander Y.Shin 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第9期1573-1579,共7页
Vascularization is an important factor in nerve graft survival and function. The specific molecular regulations and patterns of angiogenesis following peripheral nerve injury are in a broad complex of pathways. This r... Vascularization is an important factor in nerve graft survival and function. The specific molecular regulations and patterns of angiogenesis following peripheral nerve injury are in a broad complex of pathways. This review aims to summarize current knowledge on the role of vascularization in nerve regeneration, including the key regulation molecules, and mechanisms and patterns of revascularization after nerve injury. Angiogenesis, the maturation of pre-existing vessels into new areas, is stimulated through angiogenic factors such as vascular endothelial growth factor and precedes the repair of damaged nerves. Vascular endothelial growth factor administration to nerves has demonstrated to increase revascularization after injury in basic science research. In the clinical setting, vascularized nerve grafts could be used in the reconstruction of large segmental peripheral nerve injuries. Vascularized nerve grafts are postulated to accelerate revascularization and enhance nerve regeneration by providing an optimal nutritional environment, especially in scarred beds, and decrease fibroblast infiltration. This could improve functional recovery after nerve grafting, however, conclusive evidence of the superiority of vascularized nerve grafts is lacking in human studies. A well-designed randomized controlled trial comparing vascularized nerve grafts to non-vascularized nerve grafts involving patients with similar injuries, nerve graft repair and follow-up times is necessary to demonstrate the efficacy of vascularized nerve grafts. Due to technical challenges, composite transfer of a nerve graft along with its adipose tissue has been proposed to provide a healthy tissue bed. Basic science research has shown that a vascularized fascial flap containing adipose tissue and a vascular bundle improves revascularization through excreted angiogenic factors, provided by the stem cells in the adipose tissue as well as by the blood supply and environmental support. While it was previously believed that revascularization occurred from both nerve ends, recent studies propose that revascularization occurs primarily from the proximal nerve coaptation. Fascial flaps or vascularized nerve grafts have limited applicability and future directions could lead towards off-the-shelf alternatives to autografting, such as biodegradable nerve scaffolds which include capillary-like networks to enable vascularization and avoid graft necrosis and ischemia. 展开更多
关键词 ANGIOGENESIS fascial flap nerve graft nerve injury nerve regeneration peripheral nerve vascular endothelial growth factor VASCULARIZATION vascularized nerve graft
下载PDF
Electrical stimulation does not enhance nerve regeneration if delayed after sciatic nerve injury: the role of fibrosis 被引量:6
16
作者 Na Han Chun-gui Xu +4 位作者 Tian-bing Wang Yu-hui Kou Xiao-feng Yin Pei-xun Zhang Feng Xue 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第1期90-94,共5页
Electrical stimulation has been shown to accelerate and enhance nerve regeneration in sensory and motor neurons after injury, but there is little evidence that focuses on the varying degrees of fibrosis in the delayed... Electrical stimulation has been shown to accelerate and enhance nerve regeneration in sensory and motor neurons after injury, but there is little evidence that focuses on the varying degrees of fibrosis in the delayed repair of peripheral nerve tissue. In this study, a rat model of sciatic nerve transec- tion injury was repaired with a biodegradable conduit at 1 day, 1 week, 1 month and 2 months after injury, when the rats were divided into two subgroups. In the experimental group, rats were treated with electrical stimuli of frequency of 20 Hz, pulse width 100 ms and direct current voltage of 3 V; while rats in the control group received no electrical stimulation after the conduit operation. His- tological results showed that stained collagen fibers comprised less than 20% of the total operated area in the two groups after delayed repair at both 1 day and 1 week but after longer delays, the collagen fiber area increased with the time after injury. Immunohistochemical staining revealed that the expression level of transforming growth factor ~ (an indicator of tissue fibrosis) decreased at both 1 day and 1 week after delayed repair but increased at both 1 and 2 months after delayed repair. These findings indicate that if the biodegradable conduit repair combined with electrical stimulation is delayed, it results in a poor outcome following sciatic nerve injury. One month after injury, tissue degeneration and distal fibrosis are apparent and are probably the main reason why electrical stimulation fails to promote nerve regeneration after delayed repair. 展开更多
关键词 nerve regeneration peripheral nerve injury electrical stimulation bioabsorbableconduit delayed repair FIBROBLAST collagen fibers transforming growth factor ~ Masson staining NEUROPROTECTION immunohistochemistry NSFC grants neural regeneration
下载PDF
Translational bioengineering strategies for peripheral nerve regeneration:opportunities,challenges,and novel concepts 被引量:6
17
作者 Karim A.Sarhane Chenhu Qiu +3 位作者 Thomas G.W.Harris Philip J.Hanwright Hai-Quan Mao Sami H.Tuffaha 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1229-1234,共6页
Peripheral nerve injuries remain a challenging problem in need of better treatment strategies.Despite best efforts at surgical reconstruction and postoperative rehabilitation,patients are often left with persistent,de... Peripheral nerve injuries remain a challenging problem in need of better treatment strategies.Despite best efforts at surgical reconstruction and postoperative rehabilitation,patients are often left with persistent,debilitating motor and sensory deficits.There are currently no therapeutic strategies proven to enhance the regenerative process in humans.A clinical need exists for the development of technologies to promote nerve regeneration and improve functional outcomes.Recent advances in the fields of tissue engineering and nanotechnology have enabled biomaterial scaffolds to modulate the host response to tissue repair through tailored mechanical,chemical,and conductive cues.New bioengineered approaches have enabled targeted,sustained delivery of protein therapeutics with the capacity to unlock the clinical potential of a myriad of neurotrophic growth factors that have demonstrated promise in enhancing regenerative outcomes.As such,further exploration of combinatory strategies leveraging these technological advances may offer a pathway towards clinically translatable solutions to advance the care of patients with peripheral nerve injuries.This review first presents the various emerging bioengineering strategies that can be applied for the management of nerve gap injuries.We cover the rationale and limitations for their use as an alternative to autografts,focusing on the approaches to increase the number of regenerating axons crossing the repair site,and facilitating their growth towards the distal stump.We also discuss the emerging growth factor-based therapeutic strategies designed to improve functional outcomes in a multimodal fashion,by accelerating axonal growth,improving the distal regenerative environment,and preventing end-organs atrophy. 展开更多
关键词 BIOENGINEERING BIOMATERIALS growth hormone insulin-like growth factor 1 NANOTECHNOLOGY NEUROBIOLOGY peripheral nerve regeneration Schwann cells translational research
下载PDF
Peripheral nerve regeneration with conduits:use of vein tubes 被引量:7
18
作者 Rodrigo Guerra Sabongi Marcela Fernandes Joao Baptista Gomes dos Santos 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第4期529-533,共5页
Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the com-plexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are n... Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the com-plexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are not amenable to primary end-to-end tensionless neurorraphy. When facing a segmental nerve defect, great effort has been made to develop an alternative to the au-tologous nerve graft in order to circumvent morbidity at donor site, such as neuroma formation, scarring and permanent loss of function. Tubolization techniques have been developed to bridge nerve gaps and have been extensively studied in numerous experimental and clinical trials. The use of a conduit intends to act as a vehicle for moderation and modulation of the cellular and molecular ambience for nerve regeneration. Among several conduits, vein tubes were validated for clinical application with improving outcomes over the years. This article aims to address the investigation and treatment of segmental nerve injury and draw the current panorama on the use of vein tubes as an autogenous nerve conduit. 展开更多
关键词 peripheral nerve injury nerve graft nerve conduit Wallerian degeneration neurotrophic factors VEINS AUTOGRAFTS nerve regeneration
下载PDF
Adipose-derived mesenchymal stem cells accelerate nerve regeneration and functional recovery in a rat model of recurrent laryngeal nerve injury 被引量:6
19
作者 Yun Li Wen Xu Li-yu Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第9期1544-1550,共7页
Medialization thyroplasty or injection laryngoplasty for unilateral vocal fold paralysis cannot restore mobility of the vocal fold. Recent studies have shown that transplantation of mesenchymal stem cells is effective... Medialization thyroplasty or injection laryngoplasty for unilateral vocal fold paralysis cannot restore mobility of the vocal fold. Recent studies have shown that transplantation of mesenchymal stem cells is effective in the repair of nerve injuries. This study investigated wheth- er adipose-derived stem celt transplantation could repair recurrent laryngeal nerve injury. Rat models of recurrent laryngeal nerve injury were established by crushing with micro forceps. Adipose-derived mesenchymal stem cells (ADSCs; 8 ×105) or differentiated Schwann-like adipose-derived mesenchymal stem cells (dADSCs; 8×105) or extracellular matrix were injected at the site of injury. At 2, 4 and 6 weeks post-surgery, a higher density of myelinated nerve fiber, thicker myelin sheath, improved vocal fold movement, better recovery of nerve conduction capacity and reduced thyroarytenoid muscle atrophy were found in ADSCs and dADSCs groups compared with the extracellu- lar matrix group. The effects were more pronounced in the ADSCs group than in the dADSCs group. These experimental results indicated that ADSCs transplantation could be an early interventional strategy to promote regeneration after recurrent laryngeal nerve injury. 展开更多
关键词 nerve regeneration mesenchymal stem cell transplantation adipose-derived mesenchymal stem cells recurrent laryngeal nerve LARYNX nerve injury functional recovery vocal fold cell differentiation neural regeneration
下载PDF
Decellularized sciatic nerve matrix as a biodegradable conduit for peripheral nerve regeneration 被引量:5
20
作者 Jongbae Choi Jun Ho Kim +3 位作者 Ji Wook Jang Hyun Jung Kim Sung Hoon Choi Sung Won Kwon 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第10期1796-1803,共8页
The use of autologous nerve grafts remains the gold standard for treating nerve defects, but current nerve repair techniques are limited by donor tissue availability and morbidity associated with tissue loss. Recently... The use of autologous nerve grafts remains the gold standard for treating nerve defects, but current nerve repair techniques are limited by donor tissue availability and morbidity associated with tissue loss. Recently, the use of conduits in nerve injury repair, made possible by tissue engineering, has shown therapeutic potential. We manufactured a biodegradable, collagen-based nerve conduit containing decellularized sciatic nerve matrix and compared this with a silicone conduit for peripheral nerve regeneration using a rat model. The collagen-based conduit contains nerve growth factor, brain-derived neurotrophic factor, and laminin, as demonstrated by enzyme-linked immunosorbent assay. Scanning electron microscopy images showed that the collagen-based conduit had an outer wall to prevent scar tissue infiltration and a porous inner structure to allow axonal growth. Rats that were implanted with the collagen-based conduit to bridge a sciatic nerve defect experienced significantly improved motor and sensory nerve functions and greatly enhanced nerve regeneration compared with rats in the sham control group and the silicone conduit group. Our results suggest that the biodegradable collagen-based nerve conduit is more effective for peripheral nerve regeneration than the silicone conduit. 展开更多
关键词 nerve regeneration BIODEGRADABLE decellularized collagen nerve conduit growth factor peripheral nerve injury regeneration silicone conduit rat model
下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部