期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Cross-Modal Hashing Retrieval Based on Deep Residual Network
1
作者 Zhiyi Li Xiaomian Xu +1 位作者 Du Zhang Peng Zhang 《Computer Systems Science & Engineering》 SCIE EI 2021年第2期383-405,共23页
In the era of big data rich inWe Media,the single mode retrieval system has been unable to meet people’s demand for information retrieval.This paper proposes a new solution to the problem of feature extraction and un... In the era of big data rich inWe Media,the single mode retrieval system has been unable to meet people’s demand for information retrieval.This paper proposes a new solution to the problem of feature extraction and unified mapping of different modes:A Cross-Modal Hashing retrieval algorithm based on Deep Residual Network(CMHR-DRN).The model construction is divided into two stages:The first stage is the feature extraction of different modal data,including the use of Deep Residual Network(DRN)to extract the image features,using the method of combining TF-IDF with the full connection network to extract the text features,and the obtained image and text features used as the input of the second stage.In the second stage,the image and text features are mapped into Hash functions by supervised learning,and the image and text features are mapped to the common binary Hamming space.In the process of mapping,the distance measurement of the original distance measurement and the common feature space are kept unchanged as far as possible to improve the accuracy of Cross-Modal Retrieval.In training the model,adaptive moment estimation(Adam)is used to calculate the adaptive learning rate of each parameter,and the stochastic gradient descent(SGD)is calculated to obtain the minimum loss function.The whole training process is completed on Caffe deep learning framework.Experiments show that the proposed algorithm CMHR-DRN based on Deep Residual Network has better retrieval performance and stronger advantages than other Cross-Modal algorithms CMFH,CMDN and CMSSH. 展开更多
关键词 Deep residual network cross-modal retrieval HASHING cross-modal hashing retrieval based on deep residual network
下载PDF
A COMPARISON OF THE RETRIEVAL OF ATMOSPHERIC TEMPERATURE PROFILES USING OBSERVATIONS OF THE 60 GHZ AND 118.75 GHZ ABSORPTION LINES 被引量:2
2
作者 HE Qiu-rui WANG Zhen-zhan +1 位作者 HE Jie-ying ZHANG Lan-jie 《Journal of Tropical Meteorology》 SCIE 2018年第2期151-162,共12页
The Microwave Temperature Sounder-Ⅱ(MWTS-Ⅱ) and Microwave Humidity and Temperature Sounder(MWHTS) onboard the Fengyun-3 C(FY-3 C) satellite can be used to detect atmospheric temperature profiles. The MWTS-II has 13 ... The Microwave Temperature Sounder-Ⅱ(MWTS-Ⅱ) and Microwave Humidity and Temperature Sounder(MWHTS) onboard the Fengyun-3 C(FY-3 C) satellite can be used to detect atmospheric temperature profiles. The MWTS-II has 13 temperature sounding channels around the 60 GHz oxygen absorption band and the MWHTS has 8 temperature sounding channels around the 118.75 GHz oxygen absorption line. The data quality of the observed brightness temperatures can be evaluated using atmospheric temperature retrievals from the MWTS-Ⅱ and MWHTS observations. Here, the bias characteristics and corrections of the observed brightness temperatures are described. The information contents of observations are calculated, and the retrieved atmospheric temperature profiles are compared using a neural network(NN) retrieval algorithm and a one-dimensional variational inversion(1 D-var) retrieval algorithm. The retrieval results from the NN algorithm show that the accuracy of the MWTS-Ⅱ retrieval is higher than that of the MWHTS retrieval, which is consistent with the results of the radiometric information analysis. The retrieval results from the 1 D-var algorithm show that the accuracy of MWTS-Ⅱ retrieval is similar to that of the MWHTS retrieval at the levels from 850-1,000 h Pa, is lower than that of the MWHTS retrieval at the levels from 650-850 h Pa and 125-300 h Pa, and is higher than that of MWHTS at the other levels. A comparison of the retrieved atmospheric temperature using these satellite observations provides a reference value for assessing the accuracy of atmospheric temperature detection at the 60 GHz oxygen band and 118.75 GHz oxygen line. In addition, based on the comparison of the retrieval results, an optimized combination method is proposed using a branch and bound algorithm for the NN retrieval algorithm, which combines the observations from both the MWTS-Ⅱand MWHTS instruments to retrieve the atmospheric temperature profiles. The results show that the optimal combination can further improve the accuracy of MWTS-Ⅱ retrieval and enhance the detection accuracy of atmospheric temperatures near the surface. 展开更多
关键词 Fengyun-3C satellite Microwave Temperature Sounder-II microwave humidity and temperature sounder one-dimensional variational retrieval algorithm neural networks retrieval algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部