Because of everyone's involvement in social networks, social networks are full of massive multimedia data, and events are got released and disseminated through social networks in the form of multi-modal and multi-att...Because of everyone's involvement in social networks, social networks are full of massive multimedia data, and events are got released and disseminated through social networks in the form of multi-modal and multi-attribute heterogeneous data. There have been numerous researches on social network search. Considering the spatio-temporal feature of messages and social relationships among users, we summarized an overall social network search framework from the perspective of semantics based on existing researches. For social network search, the acquisition and representation of spatio-temporal data is the basis, the semantic analysis and modeling of social network cross-media big data is an important component, deep semantic learning of social networks is the key research field, and the indexing and ranking mechanism is the indispensable part. This paper reviews the current studies in these fields, and then main challenges of social network search are given. Finally, we give an outlook to the prospect and further work of social network search.展开更多
Link prediction,also known as Knowledge Graph Completion(KGC),is the common task in Knowledge Graphs(KGs)to predict missing connections between entities.Most existing methods focus on designing shallow,scalable models...Link prediction,also known as Knowledge Graph Completion(KGC),is the common task in Knowledge Graphs(KGs)to predict missing connections between entities.Most existing methods focus on designing shallow,scalable models,which have less expressive than deep,multi-layer models.Furthermore,most operations like addition,matrix multiplications or factorization are handcrafted based on a few known relation patterns in several wellknown datasets,such as FB15k,WN18,etc.However,due to the diversity and complex nature of real-world data distribution,it is inherently difficult to preset all latent patterns.To address this issue,we proposeKGE-ANS,a novel knowledge graph embedding framework for general link prediction tasks using automatic network search.KGEANS can learn a deep,multi-layer effective architecture to adapt to different datasets through neural architecture search.In addition,the general search spacewe designed is tailored forKGtasks.We performextensive experiments on benchmark datasets and the dataset constructed in this paper.The results show that our KGE-ANS outperforms several state-of-the-art methods,especially on these datasets with complex relation patterns.展开更多
The previously proposed syllable-synchronous network search (SSNS) algorithm plays a very important role in the word decoding of the continuous Chinese speech recognition and achieves satisfying performance. Several r...The previously proposed syllable-synchronous network search (SSNS) algorithm plays a very important role in the word decoding of the continuous Chinese speech recognition and achieves satisfying performance. Several related key factors that may affect the overall word decoding effect are carefully studied in this paper, including the perfecting of the vocabulary, the big-discount Turing re-estimating of the N-Gram probabilities, and the managing of the searching path buffers. Based on these discussions, corresponding approaches to improving the SSNS algorithm are proposed. Compared with the previous version of SSNS algorithm, the new version decreases the Chinese character error rate (CCER) in the word decoding by 42.1% across a database consisting of a large number of testing sentences (syllable strings).展开更多
By considering the eigenratio of the Laplacian matrix as the synchronizability measure, this paper presents an efficient method to enhance the synchronizability of undirected and unweighted networks via rewiring. The ...By considering the eigenratio of the Laplacian matrix as the synchronizability measure, this paper presents an efficient method to enhance the synchronizability of undirected and unweighted networks via rewiring. The rewiring method combines the use of tabu search and a local greedy algorithm so that an effective search of solutions can be achieved. As demonstrated in the simulation results, the performance of the proposed approach outperforms the existing methods for a large variety of initial networks, both in terms of speed and quality of solutions.展开更多
The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and co...The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm.展开更多
Energy efficient routing is one of the major thrust areas in Wireless Sensor Communication Networks (WSCNs) and it attracts most of the researchers by its valuable applications and various challenges. Wireless sensor ...Energy efficient routing is one of the major thrust areas in Wireless Sensor Communication Networks (WSCNs) and it attracts most of the researchers by its valuable applications and various challenges. Wireless sensor networks contain several nodes in its terrain region. Reducing the energy consumption over the WSCN has its significance since the nodes are battery powered. Various research methodologies were proposed by researchers in this area. One of the bio-inspired computing paradigms named Cuckoo search algorithm is used in this research work for finding the energy efficient path and routing is performed. Several performance metrics are taken into account for determining the performance of the proposed routing protocol such as throughput, packet delivery ratio, energy consumption and delay. Simulation is performed using NS2 and the results shows that the proposed routing protocol is better in terms of average throughput, and average energy consumption.展开更多
In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a ...In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a technique of training and building neural networks that starts with a simple network of neurons and adds additional neurons as they are needed to suit a particular problem. In our approach, instead ofmodifying the genetic algorithm to account for convergence problems, we search the weight-space using the genetic algorithm and then apply the gradient technique of Quickprop to optimize the weights. This hybrid algorithm which is a combination of genetic algorithms and cascade-correlation is applied to the two spirals problem. We also use our algorithm in the prediction of the cyclic oxidation resistance of Ni- and Co-base superalloys.展开更多
Personalized search utilizes user preferences to optimize search results,and most existing studies obtain user preferences by analyzing user behaviors in search engines that provide click-through data.However,the beha...Personalized search utilizes user preferences to optimize search results,and most existing studies obtain user preferences by analyzing user behaviors in search engines that provide click-through data.However,the behavioral data are noisy because users often clicked some irrelevant documents to find their required information,and the new user cold start issue represents a serious problem,greatly reducing the performance of personalized search.This paper attempts to utilize online social network data to obtain user preferences that can be used to personalize search results,mine the knowledge of user interests,user influence and user relationships from online social networks,and use this knowledge to optimize the results returned by search engines.The proposed model is based on a holonic multiagent system that improves the adaptability and scalability of the model.The experimental results show that utilizing online social network data to implement personalized search is feasible and that online social network data are significant for personalized search.展开更多
Wireless sensor networks are suffering from serious frequency interference.In this paper,we propose a channel assignment algorithm based on graph theory in wireless sensor networks.We first model the conflict infectio...Wireless sensor networks are suffering from serious frequency interference.In this paper,we propose a channel assignment algorithm based on graph theory in wireless sensor networks.We first model the conflict infection graph for channel assignment with the goal of global optimization minimizing the total interferences in wireless sensor networks.The channel assignment problem is equivalent to the generalized graph-coloring problem which is a NP-complete problem.We further present a meta-heuristic Wireless Sensor Network Parallel Tabu Search(WSN-PTS) algorithm,which can optimize global networks with small numbers of iterations.The results from a simulation experiment reveal that the novel algorithm can effectively solve the channel assignment problem.展开更多
For the problem of large network load generated by the Gnutella resource-searching model in Peer to Peer (P2P) network, a improved model to decrease the network expense is proposed, which establishes a duster in P2P...For the problem of large network load generated by the Gnutella resource-searching model in Peer to Peer (P2P) network, a improved model to decrease the network expense is proposed, which establishes a duster in P2P network, auto-organizes logical layers, and applies a hybrid mechanism of directional searching and flooding. The performance analysis and simulation results show that the proposed hierarchical searching model has availably reduced the generated message load and that its searching-response time performance is as fairly good as that of the Gnutella model.展开更多
A model is built to analyze the performance of service location based on greedy search in P2P networks. Hops and relative QoS index of the node found in a service location process are used to evaluate the performance ...A model is built to analyze the performance of service location based on greedy search in P2P networks. Hops and relative QoS index of the node found in a service location process are used to evaluate the performance as well as the probability of locating the top 5% nodes with highest QoS level. Both model and simulation results show that, the performance of greedy search based service location improves significantly with the increase of the average degree of the network. It is found that, if changes of both overlay topology and QoS level of nodes can be ignored during a location process, greedy-search based service location has high probability of finding the nodes with relatively high QoS in small number of hops in a big overlay network. Model extension under arbitrary network degree distribution is also studied.展开更多
In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this stud...In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable.展开更多
Searching the maximum bicliques or bipartite subgraphs in a graph is a tough question. We proposed a new and efficient method, Searching Quasi-Bicliques (SQB) algorithm, to detect maximum quasi-bicliques from protein-...Searching the maximum bicliques or bipartite subgraphs in a graph is a tough question. We proposed a new and efficient method, Searching Quasi-Bicliques (SQB) algorithm, to detect maximum quasi-bicliques from protein-protein interaction network. As a Divide-and-Conquer method, SQB consists of three steps: first, it divides the protein-protein interaction network into a number of Distance-2-Subgraphs;second, by combining top-down and branch-and-bound methods, SQB seeks quasi-bicliques from every Distance-2-Subgraph;third, all the redundant results are removed. We successfully applied our method on the Saccharomyces cerevisiae dataset and obtained 2754 distinct quasi-bicliques.展开更多
The main purpose of establishing a complex agent network (CAN) search model is to specifically model each type of the relationships between different types of Agent structure domain and make it easier to be implemen...The main purpose of establishing a complex agent network (CAN) search model is to specifically model each type of the relationships between different types of Agent structure domain and make it easier to be implemented in the existing programming language environment. Under the guidance of complex Agent network method, CAN search process was analyzed, a dynamic search model description was established based on CAN search process, and then individual Agent modelling and the memory and processing of the thinking attributes such as beliefs, desires and intentions in CAN search process were mainly introduced from the individual level; all sorts of Agent conceptual models and Agent type descriptions for CAN search model were designed by introducing BDI Agent; the states and behaviors of the Agent involving in CAN search process were clearly defined.展开更多
Background:Breast reconstruction is an effective technique to rebuild the appearance of the breasts in patients after mastectomy and improves the prognosis.The current study aimed to compare and analyze willingness fo...Background:Breast reconstruction is an effective technique to rebuild the appearance of the breasts in patients after mastectomy and improves the prognosis.The current study aimed to compare and analyze willingness for breast reconstruction after breast cancer between populations in China and the United States,from the perspective of social concern,using big data analysis.We also aimed to explore factors affecting surgical selection and to identify methods that can improve social cognition and acceptance of breast reconstruction.Methods:Using Baidu and Google,two representative Internet search engines in China and the United States as research tools,and using big data search volume as the benchmark,we compared and analyzed breast reconstruction willingness and attention characteristics between Chinese and American people,based on search heat,geographical distribution,age and sex,keyword distribution,ethnic group,and social development degree.Results:In both the long-term and short-term,Chinese people paid more attention towards searching about breast cancer,but less attention to breast reconstruction after breast cancer surgery.However,in both the short-term and long-term,people from the United States paid more attention towards breast cancer and breast reconstruction with the help of the Internet,showing a synchronous change relationship.There was a large regional difference in the search volume for breast cancer among the Chinese population,while no significant regional differences were noted in the search volume for breast cancer in the United States.However,a large regional difference was observed in the search volume for breast reconstruction between the two countries;people in the coastal and economically developed areas paid more attention to it.Most people who paid attention to breast reconstruction in China were women aged 20–39 years,while the attention among men was low.Search keywords were also limited to breast cancer-related information.However,between Asians and European Americans,Americans paid more attention to breast cancer and were affected by regional development,religious beliefs,and health facilities.Conclusion:Attention towards breast reconstruction after breast cancer was lower in the Chinese population than in the American population,and this difference was closely related to the level of regional development.There is insufficient information on breast reconstruction after breast cancer in recent Internet media.In addition to strengthening communication in clinics,media education is important to improve the cognitive level and social awareness of patients and their families,which is conducive to breast reconstruction.展开更多
Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based s...Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based search methods, we first propose to increase the search space, which can facilitate escaping from the local optima. We present our search operators with majorizations, which are easy to implement. Experiments show that the proposed algorithm can obtain significantly more accurate results. With regard to the problem of the decrease on efficiency due to the increase of the search space, we then propose to add path priors as constraints into the swap process. We analyze the coefficient which may influence the performance of the proposed algorithm, the experiments show that the constraints can enhance the efficiency greatly, while has little effect on the accuracy. The final experiments show that, compared to other competitive methods, the proposed algorithm can find better solutions while holding high efficiency at the same time on both synthetic and real data sets.展开更多
We investigate the navigation process on a variant of the Watts-Strogatz small-world network model with local information. In the network construction, each vertex of an N x N square lattice sends out a long-range lin...We investigate the navigation process on a variant of the Watts-Strogatz small-world network model with local information. In the network construction, each vertex of an N x N square lattice sends out a long-range link with probability p. The other end of the link falls on a randomly chosen vertex with probability proportional to r^-α, where r is the lattice distance between the two vertices, and α ≥ 0. The average actual path length, i.e. the expected number of steps for passing messages between randomly chosen vertex pairs, is found to scale as a power-law function of the network size N^β, except when α is close to a specific value value, which gives the highest efficiency of message navigation. For a finite network, the exponent β depends on both α and p, and p αmin drops to zero at a critical value of p which depends on N. When the network size goes to infinity,β depends only only on α, and αmin is equal to the network dimensionality.展开更多
文摘Because of everyone's involvement in social networks, social networks are full of massive multimedia data, and events are got released and disseminated through social networks in the form of multi-modal and multi-attribute heterogeneous data. There have been numerous researches on social network search. Considering the spatio-temporal feature of messages and social relationships among users, we summarized an overall social network search framework from the perspective of semantics based on existing researches. For social network search, the acquisition and representation of spatio-temporal data is the basis, the semantic analysis and modeling of social network cross-media big data is an important component, deep semantic learning of social networks is the key research field, and the indexing and ranking mechanism is the indispensable part. This paper reviews the current studies in these fields, and then main challenges of social network search are given. Finally, we give an outlook to the prospect and further work of social network search.
基金supported in part by the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-006.
文摘Link prediction,also known as Knowledge Graph Completion(KGC),is the common task in Knowledge Graphs(KGs)to predict missing connections between entities.Most existing methods focus on designing shallow,scalable models,which have less expressive than deep,multi-layer models.Furthermore,most operations like addition,matrix multiplications or factorization are handcrafted based on a few known relation patterns in several wellknown datasets,such as FB15k,WN18,etc.However,due to the diversity and complex nature of real-world data distribution,it is inherently difficult to preset all latent patterns.To address this issue,we proposeKGE-ANS,a novel knowledge graph embedding framework for general link prediction tasks using automatic network search.KGEANS can learn a deep,multi-layer effective architecture to adapt to different datasets through neural architecture search.In addition,the general search spacewe designed is tailored forKGtasks.We performextensive experiments on benchmark datasets and the dataset constructed in this paper.The results show that our KGE-ANS outperforms several state-of-the-art methods,especially on these datasets with complex relation patterns.
文摘The previously proposed syllable-synchronous network search (SSNS) algorithm plays a very important role in the word decoding of the continuous Chinese speech recognition and achieves satisfying performance. Several related key factors that may affect the overall word decoding effect are carefully studied in this paper, including the perfecting of the vocabulary, the big-discount Turing re-estimating of the N-Gram probabilities, and the managing of the searching path buffers. Based on these discussions, corresponding approaches to improving the SSNS algorithm are proposed. Compared with the previous version of SSNS algorithm, the new version decreases the Chinese character error rate (CCER) in the word decoding by 42.1% across a database consisting of a large number of testing sentences (syllable strings).
基金Project supported by the grant from City University of Hong Kong (Grant No. 7008105)
文摘By considering the eigenratio of the Laplacian matrix as the synchronizability measure, this paper presents an efficient method to enhance the synchronizability of undirected and unweighted networks via rewiring. The rewiring method combines the use of tabu search and a local greedy algorithm so that an effective search of solutions can be achieved. As demonstrated in the simulation results, the performance of the proposed approach outperforms the existing methods for a large variety of initial networks, both in terms of speed and quality of solutions.
基金supported by the National Natural Science Foundation of China(51875465)
文摘The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm.
文摘Energy efficient routing is one of the major thrust areas in Wireless Sensor Communication Networks (WSCNs) and it attracts most of the researchers by its valuable applications and various challenges. Wireless sensor networks contain several nodes in its terrain region. Reducing the energy consumption over the WSCN has its significance since the nodes are battery powered. Various research methodologies were proposed by researchers in this area. One of the bio-inspired computing paradigms named Cuckoo search algorithm is used in this research work for finding the energy efficient path and routing is performed. Several performance metrics are taken into account for determining the performance of the proposed routing protocol such as throughput, packet delivery ratio, energy consumption and delay. Simulation is performed using NS2 and the results shows that the proposed routing protocol is better in terms of average throughput, and average energy consumption.
文摘In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a technique of training and building neural networks that starts with a simple network of neurons and adds additional neurons as they are needed to suit a particular problem. In our approach, instead ofmodifying the genetic algorithm to account for convergence problems, we search the weight-space using the genetic algorithm and then apply the gradient technique of Quickprop to optimize the weights. This hybrid algorithm which is a combination of genetic algorithms and cascade-correlation is applied to the two spirals problem. We also use our algorithm in the prediction of the cyclic oxidation resistance of Ni- and Co-base superalloys.
基金supported by the National Natural Science Foundation of China (61972300, 61672401, 61373045, and 61902288,)the Pre-Research Project of the “Thirteenth Five-Year-Plan” of China (315***10101 and 315**0102)
文摘Personalized search utilizes user preferences to optimize search results,and most existing studies obtain user preferences by analyzing user behaviors in search engines that provide click-through data.However,the behavioral data are noisy because users often clicked some irrelevant documents to find their required information,and the new user cold start issue represents a serious problem,greatly reducing the performance of personalized search.This paper attempts to utilize online social network data to obtain user preferences that can be used to personalize search results,mine the knowledge of user interests,user influence and user relationships from online social networks,and use this knowledge to optimize the results returned by search engines.The proposed model is based on a holonic multiagent system that improves the adaptability and scalability of the model.The experimental results show that utilizing online social network data to implement personalized search is feasible and that online social network data are significant for personalized search.
基金supported by National Key Basic Research Program of China(973 program) under Grant No. 2007CB307101National Natural Science Foundation of China under Grant No.60833002,No.60802016,No.60972010+1 种基金Next Generation Internet of China under Grant No.CNGI-0903-05the Fundamental Research Funds for the Central Universities under Grant No.2009YJS011
文摘Wireless sensor networks are suffering from serious frequency interference.In this paper,we propose a channel assignment algorithm based on graph theory in wireless sensor networks.We first model the conflict infection graph for channel assignment with the goal of global optimization minimizing the total interferences in wireless sensor networks.The channel assignment problem is equivalent to the generalized graph-coloring problem which is a NP-complete problem.We further present a meta-heuristic Wireless Sensor Network Parallel Tabu Search(WSN-PTS) algorithm,which can optimize global networks with small numbers of iterations.The results from a simulation experiment reveal that the novel algorithm can effectively solve the channel assignment problem.
文摘For the problem of large network load generated by the Gnutella resource-searching model in Peer to Peer (P2P) network, a improved model to decrease the network expense is proposed, which establishes a duster in P2P network, auto-organizes logical layers, and applies a hybrid mechanism of directional searching and flooding. The performance analysis and simulation results show that the proposed hierarchical searching model has availably reduced the generated message load and that its searching-response time performance is as fairly good as that of the Gnutella model.
文摘A model is built to analyze the performance of service location based on greedy search in P2P networks. Hops and relative QoS index of the node found in a service location process are used to evaluate the performance as well as the probability of locating the top 5% nodes with highest QoS level. Both model and simulation results show that, the performance of greedy search based service location improves significantly with the increase of the average degree of the network. It is found that, if changes of both overlay topology and QoS level of nodes can be ignored during a location process, greedy-search based service location has high probability of finding the nodes with relatively high QoS in small number of hops in a big overlay network. Model extension under arbitrary network degree distribution is also studied.
基金Supported by China Postdoctoral Science Foundation(20090460873)
文摘In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable.
文摘Searching the maximum bicliques or bipartite subgraphs in a graph is a tough question. We proposed a new and efficient method, Searching Quasi-Bicliques (SQB) algorithm, to detect maximum quasi-bicliques from protein-protein interaction network. As a Divide-and-Conquer method, SQB consists of three steps: first, it divides the protein-protein interaction network into a number of Distance-2-Subgraphs;second, by combining top-down and branch-and-bound methods, SQB seeks quasi-bicliques from every Distance-2-Subgraph;third, all the redundant results are removed. We successfully applied our method on the Saccharomyces cerevisiae dataset and obtained 2754 distinct quasi-bicliques.
文摘The main purpose of establishing a complex agent network (CAN) search model is to specifically model each type of the relationships between different types of Agent structure domain and make it easier to be implemented in the existing programming language environment. Under the guidance of complex Agent network method, CAN search process was analyzed, a dynamic search model description was established based on CAN search process, and then individual Agent modelling and the memory and processing of the thinking attributes such as beliefs, desires and intentions in CAN search process were mainly introduced from the individual level; all sorts of Agent conceptual models and Agent type descriptions for CAN search model were designed by introducing BDI Agent; the states and behaviors of the Agent involving in CAN search process were clearly defined.
基金the National Natural Science Foundation of China(grant no.:81901958)Zhejiang Provincial National Natural Science Foundation of China(grant nos.:LY18H150004,LY19H150004,and LY20H150010).
文摘Background:Breast reconstruction is an effective technique to rebuild the appearance of the breasts in patients after mastectomy and improves the prognosis.The current study aimed to compare and analyze willingness for breast reconstruction after breast cancer between populations in China and the United States,from the perspective of social concern,using big data analysis.We also aimed to explore factors affecting surgical selection and to identify methods that can improve social cognition and acceptance of breast reconstruction.Methods:Using Baidu and Google,two representative Internet search engines in China and the United States as research tools,and using big data search volume as the benchmark,we compared and analyzed breast reconstruction willingness and attention characteristics between Chinese and American people,based on search heat,geographical distribution,age and sex,keyword distribution,ethnic group,and social development degree.Results:In both the long-term and short-term,Chinese people paid more attention towards searching about breast cancer,but less attention to breast reconstruction after breast cancer surgery.However,in both the short-term and long-term,people from the United States paid more attention towards breast cancer and breast reconstruction with the help of the Internet,showing a synchronous change relationship.There was a large regional difference in the search volume for breast cancer among the Chinese population,while no significant regional differences were noted in the search volume for breast cancer in the United States.However,a large regional difference was observed in the search volume for breast reconstruction between the two countries;people in the coastal and economically developed areas paid more attention to it.Most people who paid attention to breast reconstruction in China were women aged 20–39 years,while the attention among men was low.Search keywords were also limited to breast cancer-related information.However,between Asians and European Americans,Americans paid more attention to breast cancer and were affected by regional development,religious beliefs,and health facilities.Conclusion:Attention towards breast reconstruction after breast cancer was lower in the Chinese population than in the American population,and this difference was closely related to the level of regional development.There is insufficient information on breast reconstruction after breast cancer in recent Internet media.In addition to strengthening communication in clinics,media education is important to improve the cognitive level and social awareness of patients and their families,which is conducive to breast reconstruction.
基金supported by the National Natural Science Fundation of China(61573285)the Doctoral Fundation of China(2013ZC53037)
文摘Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based search methods, we first propose to increase the search space, which can facilitate escaping from the local optima. We present our search operators with majorizations, which are easy to implement. Experiments show that the proposed algorithm can obtain significantly more accurate results. With regard to the problem of the decrease on efficiency due to the increase of the search space, we then propose to add path priors as constraints into the swap process. We analyze the coefficient which may influence the performance of the proposed algorithm, the experiments show that the constraints can enhance the efficiency greatly, while has little effect on the accuracy. The final experiments show that, compared to other competitive methods, the proposed algorithm can find better solutions while holding high efficiency at the same time on both synthetic and real data sets.
基金Supported by the National Natural Science Foundation of China under Grant No 10375008, and the National Basic Research Programme of China under Grant No 2003CB716302
文摘We investigate the navigation process on a variant of the Watts-Strogatz small-world network model with local information. In the network construction, each vertex of an N x N square lattice sends out a long-range link with probability p. The other end of the link falls on a randomly chosen vertex with probability proportional to r^-α, where r is the lattice distance between the two vertices, and α ≥ 0. The average actual path length, i.e. the expected number of steps for passing messages between randomly chosen vertex pairs, is found to scale as a power-law function of the network size N^β, except when α is close to a specific value value, which gives the highest efficiency of message navigation. For a finite network, the exponent β depends on both α and p, and p αmin drops to zero at a critical value of p which depends on N. When the network size goes to infinity,β depends only only on α, and αmin is equal to the network dimensionality.