A 40-day gnotobiotic microcosm experiment was carried out to quantify the effect of hastenal-feeding nematode on plant growth and nutrient absorption. The results showed that inoculation of bacterial-feeding nematode ...A 40-day gnotobiotic microcosm experiment was carried out to quantify the effect of hastenal-feeding nematode on plant growth and nutrient absorption. The results showed that inoculation of bacterial-feeding nematode Protorhabditis sp. stimulated the growth of wheat (Triticum aestivum) and the uptake of N. By the end of the 40-day incubation wheat biomass and N uptake in the treatment with nematode and bacteria (Pseudomonas sp.) increased by 6.5% and 5.9%, respectively, compared with bacteria alone treatment. The presence of nematode mainly accelerated the growth of aboveground of wheat, while it slightly inhibited the root development. There was little difference in plant tissue N concentration between treatments. P concentration and uptake of wheat, however, were generally reduced by nematode. It appears that the enhancement of plant growth and nitrogen uptake is attributed to the enhancement of nitrogen mineralization induced by nematode feeding on bacteria, and the reduction of phosphorous uptake is the result of weak root status and competition by bacteria immobilization.展开更多
The larger ionic radius of potassium ions than that of lithium ions significantly limits the accomplishment of rapid diffusion kinetics in graphite electrodes for potassium-ion batteries(PIBs),resulting in comparative...The larger ionic radius of potassium ions than that of lithium ions significantly limits the accomplishment of rapid diffusion kinetics in graphite electrodes for potassium-ion batteries(PIBs),resulting in comparatively poor rate performance and cycle stability.Herein,we report a high-rate performance and cycling stability amorphous carbon electrode achieved through nitrogen and phosphorous co-doping.The as-prepared N,P co-doped carbon electrodes have distinct 3D structures with large surface areas,hierarchical pore architectures,and increased interlayer spaces resulting from the direct pyrolysis of supramolecular self-assembled aggregates without templates.The obtained electrode N3P1 exhibits a reversible specific capacity of 258 m Ah·g^(-1)at a current density of 0.1A·g^(-1)and a good long-term cycle performance(96.1%capacity retention after 800 cycles at 0.5 A·g^(-1)).Kinetic investigations show that the N3P1 electrode with the welldeveloped porous structure and large number of surface defects exhibits capacitive-driven behavior at all scan rates,which may be attributed by N and P co-doping.Ex-situ transmission electron microscopy analyses in the fully discharged and charged states demonstrate structural stability and reversibility owing to the expanded interlayer space.The suggested synthesis approach is simple and effective for producing heteroatom-doped carbon materials for PIBs and other advanced electrochemical energy storage materials.展开更多
基金Project (No. 39570134 and 39970419) supported by the National Natural Science Foundation of China.
文摘A 40-day gnotobiotic microcosm experiment was carried out to quantify the effect of hastenal-feeding nematode on plant growth and nutrient absorption. The results showed that inoculation of bacterial-feeding nematode Protorhabditis sp. stimulated the growth of wheat (Triticum aestivum) and the uptake of N. By the end of the 40-day incubation wheat biomass and N uptake in the treatment with nematode and bacteria (Pseudomonas sp.) increased by 6.5% and 5.9%, respectively, compared with bacteria alone treatment. The presence of nematode mainly accelerated the growth of aboveground of wheat, while it slightly inhibited the root development. There was little difference in plant tissue N concentration between treatments. P concentration and uptake of wheat, however, were generally reduced by nematode. It appears that the enhancement of plant growth and nitrogen uptake is attributed to the enhancement of nitrogen mineralization induced by nematode feeding on bacteria, and the reduction of phosphorous uptake is the result of weak root status and competition by bacteria immobilization.
基金financially supported by the National Research Foundation of Korea(NRF)from Korean government(MSIT,Korea)(No.2023R1A2C1005459)the Materials/Parts Technology Development Program from the Ministry of Trade,Industry,and Energy(MOTIE,Korea)(No.20019205)。
文摘The larger ionic radius of potassium ions than that of lithium ions significantly limits the accomplishment of rapid diffusion kinetics in graphite electrodes for potassium-ion batteries(PIBs),resulting in comparatively poor rate performance and cycle stability.Herein,we report a high-rate performance and cycling stability amorphous carbon electrode achieved through nitrogen and phosphorous co-doping.The as-prepared N,P co-doped carbon electrodes have distinct 3D structures with large surface areas,hierarchical pore architectures,and increased interlayer spaces resulting from the direct pyrolysis of supramolecular self-assembled aggregates without templates.The obtained electrode N3P1 exhibits a reversible specific capacity of 258 m Ah·g^(-1)at a current density of 0.1A·g^(-1)and a good long-term cycle performance(96.1%capacity retention after 800 cycles at 0.5 A·g^(-1)).Kinetic investigations show that the N3P1 electrode with the welldeveloped porous structure and large number of surface defects exhibits capacitive-driven behavior at all scan rates,which may be attributed by N and P co-doping.Ex-situ transmission electron microscopy analyses in the fully discharged and charged states demonstrate structural stability and reversibility owing to the expanded interlayer space.The suggested synthesis approach is simple and effective for producing heteroatom-doped carbon materials for PIBs and other advanced electrochemical energy storage materials.