Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked cont...Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective.展开更多
To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally toleran...To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally tolerant to disturbances and sensitive to fault, the robustness and stability properties of the fault diagnosis scheme are established rigorously. Using the residual vector, a fault tolerant controller is established in order to guarantee the stability of the closed-loop system, and the controller law can be obtained by solving a set of linear matrix inequalities. Then, some relevant sufficient conditions for the existence of a solution are given by applying Lyapunov stability theory. Finally, a simulation example is performed to show the effectiveness of the proposed approach.展开更多
This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transf...This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method.展开更多
This paper deals with the robust control problem for a class of uncertain nonlinear networked systems with stochastic communication delays via sliding mode conception (SMC). A sequence of variables obeying Bernoulli...This paper deals with the robust control problem for a class of uncertain nonlinear networked systems with stochastic communication delays via sliding mode conception (SMC). A sequence of variables obeying Bernoulli distribution are employed to model the randomly occurring communication delays which could be different for different state variables. A discrete switching function that is different from those in the existing literature is first proposed. Then, expressed as the feasibility of a linear matrix inequality (LMI) with an equality constraint, sufficient conditions are derived in order to ensure the globally mean-square asymptotic stability of the system dynamics on the sliding surface. A discrete-time SMC controller is then synthesized to guarantee the discrete-time sliding mode reaching condition with the specified sliding surface. Finally, a simulation example is given to show the effectiveness of the proposed method.展开更多
The globally exponential stability of nonlinear impul- sive networked control systems (NINCS) with time delay and packet dropouts is investigated. By applying Lyapunov function theory, sufficient conditions on the g...The globally exponential stability of nonlinear impul- sive networked control systems (NINCS) with time delay and packet dropouts is investigated. By applying Lyapunov function theory, sufficient conditions on the global exponential stability are derived by introducing a comparison system and estimating the corresponding Cauchy matrix. An impulsive controller is explicitly designed to achieve exponential stability and ensure state con- verge with a given decay rate for the system. The Lorenz oscillator system is presented as a numerical example to illustrate the theo- retical results and effectiveness of the proposed controller design procedure.展开更多
The main harmonic components in nonlinear differential equations can be solved by using the harmonic balance principle. The nonlinear coupling relation among various harmonics can be found by balance theorem of freque...The main harmonic components in nonlinear differential equations can be solved by using the harmonic balance principle. The nonlinear coupling relation among various harmonics can be found by balance theorem of frequency domain. The superhet receiver circuits which are described by nonlinear differential equation of comprising even degree terms include three main harmonic components: the difference frequency and two signal frequencies. Based on the nonlinear coupling relation, taking superhet circuit as an example, this paper demonstrates that the every one of three main harmonics in networks must individually observe conservation of complex power. The power of difference frequency is from variable-frequency device. And total dissipative power of each harmonic is equal to zero. These conclusions can also be verified by the traditional harmonic analysis. The oscillation solutions which consist of the mixture of three main harmonics possess very long oscillation period, the spectral distribution are very tight, similar to evolution from doubling period leading to chaos. It can be illustrated that the chaos is sufficient or infinite extension of the oscillation period. In fact, the oscillation solutions plotted by numerical simulation all are certainly a periodic function of discrete spectrum. When phase portrait plotted hasn’t finished one cycle, it is shown as aperiodic chaos.展开更多
The problem of robust stabilization for a class of uncertain networked control systems (NCSs) with nonlinearities satisfying a given sector condition is investigated in this paper. By introducing a new model of NCSs...The problem of robust stabilization for a class of uncertain networked control systems (NCSs) with nonlinearities satisfying a given sector condition is investigated in this paper. By introducing a new model of NCSs with parameter uncertainty, network-induced delay, nonlinearity and data packet dropout in the transmission, a strict linear matrix inequality (LMI) criterion is proposed for robust stabilization of the uncertain nonlinear NCSs based on the Lyapunov stability theory. The maximum allowable transfer interval (MATI) can be derived by solving the feasibility problem of the corresponding LMI. Some numerical examples are provided to demonstrate the applicability of the proposed algorithm.展开更多
It is important to solve the nth-order Volterra kernel or nonlinear transfer function indescribing a nonlinear network by the Volterra series.Based on an auxiliary algebraic expression ofthe Volterra series,an algebra...It is important to solve the nth-order Volterra kernel or nonlinear transfer function indescribing a nonlinear network by the Volterra series.Based on an auxiliary algebraic expression ofthe Volterra series,an algebraic algorithm is proposed to evaluate the nth-order Volterra kernel andnonlinear transfer function in regular,triangular and symmetric forms.In addition,the complexity ofthe algebraic algorithm is improved.展开更多
Dear Editor,This letter concerns the parameter tuning problem for nonlinear satellite buffer networks with communication delays, aiming to optimize their stability properties under L_(1)-gain. We first model the satel...Dear Editor,This letter concerns the parameter tuning problem for nonlinear satellite buffer networks with communication delays, aiming to optimize their stability properties under L_(1)-gain. We first model the satellite buffer networks by a nonlinear time-delay positive system and propose a novel characterization under which the nonlinear system is asymptotically stable with a prescribed L_(1)-induced performance.展开更多
Nonlinear Hall effect(NLHE)has been detected in various of condensed matter systems.Unlike linear Hall effect,NLHE may exist in physical systems with broken inversion symmetry in crystals.On the other hand,real space ...Nonlinear Hall effect(NLHE)has been detected in various of condensed matter systems.Unlike linear Hall effect,NLHE may exist in physical systems with broken inversion symmetry in crystals.On the other hand,real space spin texture may also break inversion symmetry and result in NLHE.We employ the Feynman diagrammatic technique to calculate non-linear Hall conductivity(NLHC)in three-dimensional magnetic systems.The results connect NLHE with the physical quantity of emergent electrodynamics which originates from the magnetic texture.The leading order contribution of NLHC,χ_(abb),is proportional to the emergent toroidal moment T_(α)^(e),which reflects how the spin textures wind in three dimensions.展开更多
Nonlinear energy sink is a passive energy absorption device that surpasses linear dampers, and has gained significant attention in various fields of vibration suppression. This is owing to its capacity to offer high v...Nonlinear energy sink is a passive energy absorption device that surpasses linear dampers, and has gained significant attention in various fields of vibration suppression. This is owing to its capacity to offer high vibration attenuation and robustness across a wide frequency spectrum. Energy harvester is a device employed to convert kinetic energy into usable electric energy. In this paper, we propose an electromagnetic energy harvester enhanced viscoelastic nonlinear energy sink(VNES) to achieve passive vibration suppression and energy harvesting simultaneously. A critical departure from prior studies is the investigation of the stochastic P-bifurcation of the electromechanically coupled VNES system under narrowband random excitation. Initially, approximate analytical solutions are derived using a combination of a multiple-scale method and a perturbation approach. The substantial agreement between theoretical analysis solutions and numerical solutions obtained from Monte Carlo simulation underscores the method's high degree of validity. Furthermore, the effects of system parameters on system responses are carefully examined. Additionally, we demonstrate that stochastic P-bifurcation can be induced by system parameters, which is further verified by the steady-state density functions of displacement. Lastly,we analyze the impacts of various parameters on the mean square current and the mean output power, which are crucial for selecting suitable parameters to enhance the energy harvesting performance.展开更多
This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication...This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.展开更多
Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep lea...Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep learning-based methods to the forefront of research on numerical methods for partial differential equations.Among them,physics-informed neural networks(PINNs)are a new class of deep learning methods that show great potential in solving PDEs and predicting complex physical phenomena.In the field of nonlinear science,solitary waves and rogue waves have been important research topics.In this paper,we propose an improved PINN that enhances the physical constraints of the neural network model by adding gradient information constraints.In addition,we employ meta-learning optimization to speed up the training process.We apply the improved PINNs to the numerical simulation and prediction of solitary and rogue waves.We evaluate the accuracy of the prediction results by error analysis.The experimental results show that the improved PINNs can make more accurate predictions in less time than that of the original PINNs.展开更多
A Weyl node is characterized by its chirality and tilt.We develop a theory of how nth-order nonlinear optical conductivity behaves under transformations of anisotropic tensor and tilt, which clarifies how chirality-de...A Weyl node is characterized by its chirality and tilt.We develop a theory of how nth-order nonlinear optical conductivity behaves under transformations of anisotropic tensor and tilt, which clarifies how chirality-dependent and-independent parts of optical conductivity transform under the reversal of tilt and chirality.Built on this theory, we propose ferromagnetic Mn Bi2Te4as a magnetoelectrically regulated, terahertz optical device, by magnetoelectrically switching the chiralitydependent and-independent DC photocurrents.These results are useful for creating nonlinear optical devices based on the topological Weyl semimetals.展开更多
Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic feature...Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic features exhibit potential applications in acoustic frequency conversion,non-reciprocal wave propagation,and non-destructive testing.Precisely manipulating the harmonic band structure presents a major challenge in the design of nonlinear phononic crystals.Traditional design approaches based on parameter adjustments to meet specific application requirements are inefficient and often yield suboptimal performance.Therefore,this paper develops a design methodology using Softmax logistic regression and multi-label classification learning to inversely design the material distribution of nonlinear phononic crystals by exploiting information from harmonic transmission spectra.The results demonstrate that the neural network-based inverse design method can effectively tailor nonlinear phononic crystals with desired functionalities.This work establishes a mapping relationship between the band structure and the material distribution within phononic crystals,providing valuable insights into the inverse design of metamaterials.展开更多
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ...In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.展开更多
The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered ...The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.展开更多
Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and ...Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and nonlinear optical characteristics were investigated by Hall tester,Ultraviolet(UV)-visible spectrophotometer and optical characterization method.The results indicate that RF power significantly influences the electrical and optical properties of the deposited films.As RF power raises,the resistivity and Urbach energy fall initially and then rise,while the figure of merit,mean visible transmittance and optical bandgap show the reverse variation trend.At RF power of 190 W,the TGZO sample exhibits the highest electro-optical properties,with the maximum figure of merit(1.14×10^(4)Ω^(-1)∙cm^(-1)),mean visible transmittance(86.9%)and optical bandgap(3.50 eV),the minimum resistivity(6.26×10^(-4)Ω∙cm)and Urbach energy(174.23 meV).In addition,the optical constants of the deposited films were determined by the optical spectrum fitting method,and the RF power dependence of nonlinear optical properties was studied.It is observed that all the thin films exhibit normal dispersion characteristics in the visible region,and the nonlinear optical parameters are greatly affected by the RF power in the ultraviolet region.展开更多
Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on s...Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on some weapon tracking servo system, a three layer BPNN was used to off line identify the backlash characteristics, then a nonlinear compensator was designed according to the identification results. Results The simulation results show that the method can effectively get rid of the sustained oscillation(limit cycle) of the system caused by the backlash characteristics, and can improve the system accuracy. Conclusion The method is effective on sloving the problems produced by the backlash characteristics in servo systems, and it can be easily accomplished in engineering.展开更多
This article proposes a novel nonlinear network code in the GF(2^m) finite field. Different from previous linear network codes that linearly mix multiple input flows, the proposed nonlinear network code mixes input ...This article proposes a novel nonlinear network code in the GF(2^m) finite field. Different from previous linear network codes that linearly mix multiple input flows, the proposed nonlinear network code mixes input flows through both multiplication and exponentiation in the GF(2^m). Three relevant rules for selecting discussed, and the relationship between the power parameter m proper parameters for the proposed nonlinear network code are and the coding coefficient K is explored. Further analysis shows that the proposed nonlinear network code is equivalent to a linear network code with deterministic coefficients.展开更多
文摘Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective.
基金supported by the National Natural Science Foundation of China(90816023).
文摘To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally tolerant to disturbances and sensitive to fault, the robustness and stability properties of the fault diagnosis scheme are established rigorously. Using the residual vector, a fault tolerant controller is established in order to guarantee the stability of the closed-loop system, and the controller law can be obtained by solving a set of linear matrix inequalities. Then, some relevant sufficient conditions for the existence of a solution are given by applying Lyapunov stability theory. Finally, a simulation example is performed to show the effectiveness of the proposed approach.
基金supported by National Natural Science Foundation of China (No. 60574014, No. 60425310)Doctor Subject Foundation of China (No. 200805330004)+2 种基金Program for New Century Excellent Talents in University (No. NCET-06-0679)Natural Science Foundation of Hunan Province of China (No. 08JJ1010)Science Foundation of Education Department of Hunan Province (No. 08C106)
文摘This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method.
基金supported by the Engineering and Physical Sciences Research Council(EPSRC)of the UK(No.GR/S27658/01)the Royal Society of the UK and the Alexander von Humboldt Foundation of Germany
文摘This paper deals with the robust control problem for a class of uncertain nonlinear networked systems with stochastic communication delays via sliding mode conception (SMC). A sequence of variables obeying Bernoulli distribution are employed to model the randomly occurring communication delays which could be different for different state variables. A discrete switching function that is different from those in the existing literature is first proposed. Then, expressed as the feasibility of a linear matrix inequality (LMI) with an equality constraint, sufficient conditions are derived in order to ensure the globally mean-square asymptotic stability of the system dynamics on the sliding surface. A discrete-time SMC controller is then synthesized to guarantee the discrete-time sliding mode reaching condition with the specified sliding surface. Finally, a simulation example is given to show the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (6090402060574006)the Research Fund for the Doctoral Program of Higher Eolucation of China (20070286039)
文摘The globally exponential stability of nonlinear impul- sive networked control systems (NINCS) with time delay and packet dropouts is investigated. By applying Lyapunov function theory, sufficient conditions on the global exponential stability are derived by introducing a comparison system and estimating the corresponding Cauchy matrix. An impulsive controller is explicitly designed to achieve exponential stability and ensure state con- verge with a given decay rate for the system. The Lorenz oscillator system is presented as a numerical example to illustrate the theo- retical results and effectiveness of the proposed controller design procedure.
文摘The main harmonic components in nonlinear differential equations can be solved by using the harmonic balance principle. The nonlinear coupling relation among various harmonics can be found by balance theorem of frequency domain. The superhet receiver circuits which are described by nonlinear differential equation of comprising even degree terms include three main harmonic components: the difference frequency and two signal frequencies. Based on the nonlinear coupling relation, taking superhet circuit as an example, this paper demonstrates that the every one of three main harmonics in networks must individually observe conservation of complex power. The power of difference frequency is from variable-frequency device. And total dissipative power of each harmonic is equal to zero. These conclusions can also be verified by the traditional harmonic analysis. The oscillation solutions which consist of the mixture of three main harmonics possess very long oscillation period, the spectral distribution are very tight, similar to evolution from doubling period leading to chaos. It can be illustrated that the chaos is sufficient or infinite extension of the oscillation period. In fact, the oscillation solutions plotted by numerical simulation all are certainly a periodic function of discrete spectrum. When phase portrait plotted hasn’t finished one cycle, it is shown as aperiodic chaos.
基金the National Natural Science Foundation of China (No.60421002)the National High Technology Research and Development Program of China under grant 863 Program (2006AA04 Z182).
文摘The problem of robust stabilization for a class of uncertain networked control systems (NCSs) with nonlinearities satisfying a given sector condition is investigated in this paper. By introducing a new model of NCSs with parameter uncertainty, network-induced delay, nonlinearity and data packet dropout in the transmission, a strict linear matrix inequality (LMI) criterion is proposed for robust stabilization of the uncertain nonlinear NCSs based on the Lyapunov stability theory. The maximum allowable transfer interval (MATI) can be derived by solving the feasibility problem of the corresponding LMI. Some numerical examples are provided to demonstrate the applicability of the proposed algorithm.
文摘It is important to solve the nth-order Volterra kernel or nonlinear transfer function indescribing a nonlinear network by the Volterra series.Based on an auxiliary algebraic expression ofthe Volterra series,an algebraic algorithm is proposed to evaluate the nth-order Volterra kernel andnonlinear transfer function in regular,triangular and symmetric forms.In addition,the complexity ofthe algebraic algorithm is improved.
基金supported by the National Natural Science Foundation of China (61903258)Guangdong Basic and Applied Basic Research Foundation (2022A1515010234)+1 种基金Project of Department of Education of Guangdong Province (2022KTSCX105, 2023ZDZX4046)Shenzhen Natural Science Fund (Stable Support Plan Program 20231122121608001)。
文摘Dear Editor,This letter concerns the parameter tuning problem for nonlinear satellite buffer networks with communication delays, aiming to optimize their stability properties under L_(1)-gain. We first model the satellite buffer networks by a nonlinear time-delay positive system and propose a novel characterization under which the nonlinear system is asymptotically stable with a prescribed L_(1)-induced performance.
基金supported by the Startup Foundation in Tiangong University(Grant No.63010201/52010399)supported by the Office of Basic Energy Sciences,Division of Materials Sciences and Engineering,U.S.Department of Energy(Grant No.DE-SC0020221)。
文摘Nonlinear Hall effect(NLHE)has been detected in various of condensed matter systems.Unlike linear Hall effect,NLHE may exist in physical systems with broken inversion symmetry in crystals.On the other hand,real space spin texture may also break inversion symmetry and result in NLHE.We employ the Feynman diagrammatic technique to calculate non-linear Hall conductivity(NLHC)in three-dimensional magnetic systems.The results connect NLHE with the physical quantity of emergent electrodynamics which originates from the magnetic texture.The leading order contribution of NLHC,χ_(abb),is proportional to the emergent toroidal moment T_(α)^(e),which reflects how the spin textures wind in three dimensions.
基金Project supported by the National Natural Science Foundation of China(Grant No.12002089)the Science and Technology Projects in Guangzhou(Grant No.2023A04J1323)UKRI Horizon Europe Guarantee(Grant No.EP/Y016130/1)。
文摘Nonlinear energy sink is a passive energy absorption device that surpasses linear dampers, and has gained significant attention in various fields of vibration suppression. This is owing to its capacity to offer high vibration attenuation and robustness across a wide frequency spectrum. Energy harvester is a device employed to convert kinetic energy into usable electric energy. In this paper, we propose an electromagnetic energy harvester enhanced viscoelastic nonlinear energy sink(VNES) to achieve passive vibration suppression and energy harvesting simultaneously. A critical departure from prior studies is the investigation of the stochastic P-bifurcation of the electromechanically coupled VNES system under narrowband random excitation. Initially, approximate analytical solutions are derived using a combination of a multiple-scale method and a perturbation approach. The substantial agreement between theoretical analysis solutions and numerical solutions obtained from Monte Carlo simulation underscores the method's high degree of validity. Furthermore, the effects of system parameters on system responses are carefully examined. Additionally, we demonstrate that stochastic P-bifurcation can be induced by system parameters, which is further verified by the steady-state density functions of displacement. Lastly,we analyze the impacts of various parameters on the mean square current and the mean output power, which are crucial for selecting suitable parameters to enhance the energy harvesting performance.
基金supported in part by the National Natural Science Foundation of China (61933007,62273087,U22A2044,61973102,62073180)the Shanghai Pujiang Program of China (22PJ1400400)+1 种基金the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.42005003 and 41475094).
文摘Efficiently solving partial differential equations(PDEs)is a long-standing challenge in mathematics and physics research.In recent years,the rapid development of artificial intelligence technology has brought deep learning-based methods to the forefront of research on numerical methods for partial differential equations.Among them,physics-informed neural networks(PINNs)are a new class of deep learning methods that show great potential in solving PDEs and predicting complex physical phenomena.In the field of nonlinear science,solitary waves and rogue waves have been important research topics.In this paper,we propose an improved PINN that enhances the physical constraints of the neural network model by adding gradient information constraints.In addition,we employ meta-learning optimization to speed up the training process.We apply the improved PINNs to the numerical simulation and prediction of solitary and rogue waves.We evaluate the accuracy of the prediction results by error analysis.The experimental results show that the improved PINNs can make more accurate predictions in less time than that of the original PINNs.
基金Project supported by the National Key R&D Program of China (Grant Nos.2018YFA, 0305601, and 2021YFA1400100)the National Natural Science Foundation of China (Grant Nos.12274003, 11725415, and 11934001)the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0302600)。
文摘A Weyl node is characterized by its chirality and tilt.We develop a theory of how nth-order nonlinear optical conductivity behaves under transformations of anisotropic tensor and tilt, which clarifies how chirality-dependent and-independent parts of optical conductivity transform under the reversal of tilt and chirality.Built on this theory, we propose ferromagnetic Mn Bi2Te4as a magnetoelectrically regulated, terahertz optical device, by magnetoelectrically switching the chiralitydependent and-independent DC photocurrents.These results are useful for creating nonlinear optical devices based on the topological Weyl semimetals.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0211400)the State Key Program of the National Natural Science of China(Grant No.11834008)+2 种基金the National Natural Science Foundation of China(Grant Nos.12174192,12174188,and 11974176)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA202410)the Fund from the Key Laboratory of Underwater Acoustic Environment,Chinese Academy of Sciences(Grant No.SSHJ-KFKT-1701).
文摘Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic features exhibit potential applications in acoustic frequency conversion,non-reciprocal wave propagation,and non-destructive testing.Precisely manipulating the harmonic band structure presents a major challenge in the design of nonlinear phononic crystals.Traditional design approaches based on parameter adjustments to meet specific application requirements are inefficient and often yield suboptimal performance.Therefore,this paper develops a design methodology using Softmax logistic regression and multi-label classification learning to inversely design the material distribution of nonlinear phononic crystals by exploiting information from harmonic transmission spectra.The results demonstrate that the neural network-based inverse design method can effectively tailor nonlinear phononic crystals with desired functionalities.This work establishes a mapping relationship between the band structure and the material distribution within phononic crystals,providing valuable insights into the inverse design of metamaterials.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62373197 and 61873326)。
文摘In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.
基金supported in part by the National Natural Science Foundation of China (62233012,62273087)the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe Shanghai Pujiang Program of China (22PJ1400400)。
文摘The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.
文摘Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and nonlinear optical characteristics were investigated by Hall tester,Ultraviolet(UV)-visible spectrophotometer and optical characterization method.The results indicate that RF power significantly influences the electrical and optical properties of the deposited films.As RF power raises,the resistivity and Urbach energy fall initially and then rise,while the figure of merit,mean visible transmittance and optical bandgap show the reverse variation trend.At RF power of 190 W,the TGZO sample exhibits the highest electro-optical properties,with the maximum figure of merit(1.14×10^(4)Ω^(-1)∙cm^(-1)),mean visible transmittance(86.9%)and optical bandgap(3.50 eV),the minimum resistivity(6.26×10^(-4)Ω∙cm)and Urbach energy(174.23 meV).In addition,the optical constants of the deposited films were determined by the optical spectrum fitting method,and the RF power dependence of nonlinear optical properties was studied.It is observed that all the thin films exhibit normal dispersion characteristics in the visible region,and the nonlinear optical parameters are greatly affected by the RF power in the ultraviolet region.
文摘Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on some weapon tracking servo system, a three layer BPNN was used to off line identify the backlash characteristics, then a nonlinear compensator was designed according to the identification results. Results The simulation results show that the method can effectively get rid of the sustained oscillation(limit cycle) of the system caused by the backlash characteristics, and can improve the system accuracy. Conclusion The method is effective on sloving the problems produced by the backlash characteristics in servo systems, and it can be easily accomplished in engineering.
基金supported by Xilinx University Program(XUP),Xilinx(China)Ltd,the National Natural Science Foundation of China(60572066)
文摘This article proposes a novel nonlinear network code in the GF(2^m) finite field. Different from previous linear network codes that linearly mix multiple input flows, the proposed nonlinear network code mixes input flows through both multiplication and exponentiation in the GF(2^m). Three relevant rules for selecting discussed, and the relationship between the power parameter m proper parameters for the proposed nonlinear network code are and the coding coefficient K is explored. Further analysis shows that the proposed nonlinear network code is equivalent to a linear network code with deterministic coefficients.