A mooring system has been designed for the position keeping of a two-module semi-submersible platform which is connected by hinge-type connectors.Under the excitation of ocean waves,the relative motion between the two...A mooring system has been designed for the position keeping of a two-module semi-submersible platform which is connected by hinge-type connectors.Under the excitation of ocean waves,the relative motion between the two modules can be significant.It is therefore no longer adequate to model the platform as a single rigid body in the analysis of the performance of the mooring system.In this study,an analysis method has been developed based on the three-dimensional frequency domain hydroelasticity theory in conjunction with the time domain quasi-static analysis method of mooring actions,which takes into account of the coupling effect of the platform motion and mooring tension.The proposed method is verified by comparing the numerical results with the measured data obtained from the on-site measurements.The comparison shows a good agreement,and demonstrates the feasibility and effectiveness of the proposed method for the analysis of the module responses and mooring tensions of multi-module floating platforms.展开更多
The determination of the gravitational potential of a prism plays an important role in physical geodesy and geophysics. However, there are few literatures that provide accurate approaches for determining the gravitati...The determination of the gravitational potential of a prism plays an important role in physical geodesy and geophysics. However, there are few literatures that provide accurate approaches for determining the gravitational potential of a prism. Discrete element method can be used to determine the gravitational potential of a prism, and can approximate the true gravitational potential values with sufficient accuracy (the smaller each element is, the more accurate the result is). Although Nagy's approach provided a closed expression, one does not know whether it is valid, due to the fact that this approach has not been confirmed in literatures. In this paper, a study on the comparison of Nagy's approach with discrete element method is presented. The results show that Nagy's formulas for determining the gravitational potential of a prism are valid in the domain both inside and outside the prism.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2017YFB0202701)the Ministryof Industry and Information Technology(Grant Nos.[2016J22,[2019J357)+2 种基金supported by the State Key Fundamental Research Program(Grant No.2013CB036100)the Jiangsu Province Science Foundation for Youths(Grant No.BK20190151)the Fund of Southern Marine Science and Engineering Guangdong Laboratory(Zhanjiang)(Grant No.ZJW-2019-02).
文摘A mooring system has been designed for the position keeping of a two-module semi-submersible platform which is connected by hinge-type connectors.Under the excitation of ocean waves,the relative motion between the two modules can be significant.It is therefore no longer adequate to model the platform as a single rigid body in the analysis of the performance of the mooring system.In this study,an analysis method has been developed based on the three-dimensional frequency domain hydroelasticity theory in conjunction with the time domain quasi-static analysis method of mooring actions,which takes into account of the coupling effect of the platform motion and mooring tension.The proposed method is verified by comparing the numerical results with the measured data obtained from the on-site measurements.The comparison shows a good agreement,and demonstrates the feasibility and effectiveness of the proposed method for the analysis of the module responses and mooring tensions of multi-module floating platforms.
基金Supported by the National Natural Science Foundation of China (No.40637034, 40974015)the National 863 Program of China (No.2006AA12Z211)
文摘The determination of the gravitational potential of a prism plays an important role in physical geodesy and geophysics. However, there are few literatures that provide accurate approaches for determining the gravitational potential of a prism. Discrete element method can be used to determine the gravitational potential of a prism, and can approximate the true gravitational potential values with sufficient accuracy (the smaller each element is, the more accurate the result is). Although Nagy's approach provided a closed expression, one does not know whether it is valid, due to the fact that this approach has not been confirmed in literatures. In this paper, a study on the comparison of Nagy's approach with discrete element method is presented. The results show that Nagy's formulas for determining the gravitational potential of a prism are valid in the domain both inside and outside the prism.