The effects of interface shape on stress wave distribution and attenuation were investiga- ted using finite element method ( FEM ). The simulation results indicate that when the stress wave propagates from SiC ceram...The effects of interface shape on stress wave distribution and attenuation were investiga- ted using finite element method ( FEM ). The simulation results indicate that when the stress wave propagates from SiC ceramic to A1 alloy, the tensile stress decreases and the attenuation coefficient of the stress wave increases with increasing central angle of the concave interface between SiC and A1. But for the convex interface, the tensile stress increases and attenuation coefficient decreases with increasing central angle. As the stress wave propagates from A1 alloy to SiC ceramic, the atten- uation coefficient of stress wave decreases with increasing the central angle of the concave interface. For the convex interface, the attenuation coefficient increases with increasing central angle.展开更多
The distillation column with side reactors (SRC) can overcome the temperature/pressure mismatch in the traditional reactive distillation, the column operates at temperature/pressure favorable for vapor-liquid separati...The distillation column with side reactors (SRC) can overcome the temperature/pressure mismatch in the traditional reactive distillation, the column operates at temperature/pressure favorable for vapor-liquid separation, while the reactors operate at temperatures/pressures favorable for reaction kinetics. According to the smooth operation and automatic control problem of the distillation column with side reactors (SRC), the design, simulation calculation and dynamic control of the SCR process for chlorobenzene production are discussed in the paper. Firstly, the mechanism models, the integrated structure optimal design and process simulation systems are established, respectively. And then multivariable control schemes are designed, the controllability of SRC process based on the optimal steady-state integrated structure is explored. The dynamic response performances of closed-loop system against several disturbances are discussed to verify the effectiveness of control schemes for the SRC process. The simulating results show that the control structure using conventional control strategies can effectively overcome feeding disturbances in a specific range.展开更多
We analyze the electromagnetic interaction between local surface plasmon polaritons (SPPs) and an atmospheric surface wave plasma jet (ASWPJ) in combination with our designed discharge device. Before discharge, th...We analyze the electromagnetic interaction between local surface plasmon polaritons (SPPs) and an atmospheric surface wave plasma jet (ASWPJ) in combination with our designed discharge device. Before discharge, the excitation of the SPPs and the spatial distribution of the enhanced electric field are analyzed. During discharge, the critical breakdown electric field of the gases at atmospheric gas pressure and the surface wave of the SPPs converted into electron plasma waves at resonant points are studied. After discharge, the ionization development process of the ASWPJ is simulated using a two- dimensional fluid model. Our results suggest that the local enhanced electric field of SPPs is merely the precondition of gas breakdown, and the key mechanism in maintaining the discharge development of a low-power ASWPJ is the wave-mode conversion of the local enhanced electric field at the resonant point.展开更多
The formation mechanism of an EFP(explosively formed projectile)using a double curvature liner under the overpressure effect generated by a regular oblique reflection was investigated in this paper.Based on the detona...The formation mechanism of an EFP(explosively formed projectile)using a double curvature liner under the overpressure effect generated by a regular oblique reflection was investigated in this paper.Based on the detonation wave propagation theory,the change of the incident angle of the detonation wave collision at different positions and the distribution area of the overpressure on the surface of the liner were calculated.Three dimensional numerical simulations of the formation process of the EFP with tail.as well as the ability to penetrate 45#steel were performed using LS-DYNA software,and the EFP ve locity,the penetration ability,and the forming were assessed via experiments and x_ray photographs.The experimental results coincides with those of the simulations.Results indicate that the collision of the detonation wave was controlled to be a regular oblique reflection acting on the liner by setting the di-mensions of the unit charge and maintai ning the pressure at the collision point region at more than 2.4 times the CJ detonation when the incident angle approached the cnitical angle.The distance from the liner midline to the boundary of the area within which the pressure ratio of the regular oblique reflection pressure to the qJ detonation pressure was greater than 2.5,2,and 15was approximately 0.66 mm,132 mm,and 3.3 mm,respectively.Itis noted that pressure gradient caused the liner to turn inside out in the middle to form the head of the EFP and close the two tails of the EFP at approximately 120μs.The penetration depth of the EFP into a 45#steel target exceeded 30 mm,and there was radial expansion between the head and tail of the EFP,increasing the penetration resistance of the EFP.Therefore,the structural size of the unit charge and the liner can be further optimized to reduce resist ance to increase the penetration ability of the EFP.展开更多
基金Supported by the National Basic Research Program of China("973" Program)(613135)
文摘The effects of interface shape on stress wave distribution and attenuation were investiga- ted using finite element method ( FEM ). The simulation results indicate that when the stress wave propagates from SiC ceramic to A1 alloy, the tensile stress decreases and the attenuation coefficient of the stress wave increases with increasing central angle of the concave interface between SiC and A1. But for the convex interface, the tensile stress increases and attenuation coefficient decreases with increasing central angle. As the stress wave propagates from A1 alloy to SiC ceramic, the atten- uation coefficient of stress wave decreases with increasing the central angle of the concave interface. For the convex interface, the attenuation coefficient increases with increasing central angle.
基金Supported by the National Natural Science Foundation of China (61203020, 21276126)the Natural Science Foundation of Jiangsu Province (BK2011795)+1 种基金Jiangsu Province Higher Education Natural Science Foundation (09KJA530004)China Postdoctoral Science Foundation (20100471325)
文摘The distillation column with side reactors (SRC) can overcome the temperature/pressure mismatch in the traditional reactive distillation, the column operates at temperature/pressure favorable for vapor-liquid separation, while the reactors operate at temperatures/pressures favorable for reaction kinetics. According to the smooth operation and automatic control problem of the distillation column with side reactors (SRC), the design, simulation calculation and dynamic control of the SCR process for chlorobenzene production are discussed in the paper. Firstly, the mechanism models, the integrated structure optimal design and process simulation systems are established, respectively. And then multivariable control schemes are designed, the controllability of SRC process based on the optimal steady-state integrated structure is explored. The dynamic response performances of closed-loop system against several disturbances are discussed to verify the effectiveness of control schemes for the SRC process. The simulating results show that the control structure using conventional control strategies can effectively overcome feeding disturbances in a specific range.
基金Project supported by the National Natural Science Foundation of China(Grant No.11105002)the Open-end Fund of State Key Laboratory of Structural Analysis for Industrial Equipment,China(Grant No.GZ1215)+1 种基金the Natural Science Foundation for University in Anhui Province of China(Grant No.KJ2013A106)the Doctoral Scientific Research Funds of Anhui University of Science and Technology,China
文摘We analyze the electromagnetic interaction between local surface plasmon polaritons (SPPs) and an atmospheric surface wave plasma jet (ASWPJ) in combination with our designed discharge device. Before discharge, the excitation of the SPPs and the spatial distribution of the enhanced electric field are analyzed. During discharge, the critical breakdown electric field of the gases at atmospheric gas pressure and the surface wave of the SPPs converted into electron plasma waves at resonant points are studied. After discharge, the ionization development process of the ASWPJ is simulated using a two- dimensional fluid model. Our results suggest that the local enhanced electric field of SPPs is merely the precondition of gas breakdown, and the key mechanism in maintaining the discharge development of a low-power ASWPJ is the wave-mode conversion of the local enhanced electric field at the resonant point.
基金The work presented in this paper has been supported by the science foundation(YT20-01-02)of Nanjing Vocational University of Industry Technology and the National Science Foundation of China under NO.11802141.
文摘The formation mechanism of an EFP(explosively formed projectile)using a double curvature liner under the overpressure effect generated by a regular oblique reflection was investigated in this paper.Based on the detonation wave propagation theory,the change of the incident angle of the detonation wave collision at different positions and the distribution area of the overpressure on the surface of the liner were calculated.Three dimensional numerical simulations of the formation process of the EFP with tail.as well as the ability to penetrate 45#steel were performed using LS-DYNA software,and the EFP ve locity,the penetration ability,and the forming were assessed via experiments and x_ray photographs.The experimental results coincides with those of the simulations.Results indicate that the collision of the detonation wave was controlled to be a regular oblique reflection acting on the liner by setting the di-mensions of the unit charge and maintai ning the pressure at the collision point region at more than 2.4 times the CJ detonation when the incident angle approached the cnitical angle.The distance from the liner midline to the boundary of the area within which the pressure ratio of the regular oblique reflection pressure to the qJ detonation pressure was greater than 2.5,2,and 15was approximately 0.66 mm,132 mm,and 3.3 mm,respectively.Itis noted that pressure gradient caused the liner to turn inside out in the middle to form the head of the EFP and close the two tails of the EFP at approximately 120μs.The penetration depth of the EFP into a 45#steel target exceeded 30 mm,and there was radial expansion between the head and tail of the EFP,increasing the penetration resistance of the EFP.Therefore,the structural size of the unit charge and the liner can be further optimized to reduce resist ance to increase the penetration ability of the EFP.