Proposed and demonstrated is a novel computer modeling method for high power light emitting diodes(LEDs). It contains geometrical structure and optical property of high power LED as well as LED dies definition with it...Proposed and demonstrated is a novel computer modeling method for high power light emitting diodes(LEDs). It contains geometrical structure and optical property of high power LED as well as LED dies definition with its spatial and angular distribution. Merits and non-merits of traditional modeling methods when applied to high power LEDs based on secondary optical design are discussed. Two commercial high power LEDs are simulated using the proposed computer modeling method. Correlation coefficient is proposed to compare and analyze the simulation results and manufacturing specifications. The source model is precisely demonstrated by obtaining above 99% in correlation coefficient with different surface incident angle intervals.展开更多
Light emitting diode (LED) sources have been widely used for illumination. Optical design, especially freedom compact lens design is necessary to make LED sources applied in lighting industry, such as large-range in...Light emitting diode (LED) sources have been widely used for illumination. Optical design, especially freedom compact lens design is necessary to make LED sources applied in lighting industry, such as large-range interior lighting and small-range condensed lighting. For different lighting requirements, the size of target planes should be variable. In our paper we provide a method to design freedom lens according to the energy conservation law and Snell law through establishing energy mapping between the luminous flux emitted by a Lambertian LED source and a certain area of the target plane. The algorithm of our design can easily change the radius of each circular target plane, which makes the size of the target plane adjustable. Ray-tracing software Tracepro is used to validate the illuminance maps and polar-distribution maps. We design lenses for different sizes of target planes to meet specific lighting requirements.展开更多
A vertical edge Thomson scattering(ETS) diagnostic system on HL-2M tokamak has been designed.The ETS system collects the scattered light from Nd:YAG laser(1064 nm,2 J,30 Hz,15 ns).The laser beam propagates vertically ...A vertical edge Thomson scattering(ETS) diagnostic system on HL-2M tokamak has been designed.The ETS system collects the scattered light from Nd:YAG laser(1064 nm,2 J,30 Hz,15 ns).The laser beam propagates vertically through the plasma region and the polarization is parallel to the toroidal magnetic field.A special designed Galileo-type telescope with long Rayleigh length is applied to focus the laser size and ensure collimation.A group of doubleGaussian collection lenses image the 600 mm vertical scattered region onto rectangular fiber arrays with a spatial resolution of 10 mm.The 2.20 mm × 2.86 mm fiber optic bundle consists of 130 low hydroxyl(OH) 200/220 μm(core/cladding) diameter fibers with numerical aperture NA=0.22,carrying the light to remotely located multi-channel polychromators.Effect of oblique incidence on narrow band filter has been analyzed.The designed electron temperatures range from 5 to 1000 eV and electron densities from 5 × 10^(18) to 1×10^(20) m^(-3).展开更多
Electron cyclotron emission imaging system in the frequency range of 95 GHz -125 GHz is going to be constructed for a two-dimensional diagnosis of the electron temperature profiles and fluctuations on the HT-7 Tokamak...Electron cyclotron emission imaging system in the frequency range of 95 GHz -125 GHz is going to be constructed for a two-dimensional diagnosis of the electron temperature profiles and fluctuations on the HT-7 Tokamak. The optical design for the ECEI diagnostic system is completed. Because of the superconducting technology used in HT-7, the vacuum chamber is rather thick (630 mm), the height of the horizontal windows is limited (maximum 450 mm), which constrains greatly the ECE imaging Gaussian beam that passing through the windows. We here comes to make a design compromise between the number of the beams that can pass through the windows and the spatial resolution (around 1.1 cm). We also find that due to the field curvature of the optical system, the gaussian beams of edge channels are always overlapped. To flatten the field curvature, it is needed to insert a concave made of a material with a low refractive index (compared with the one used in the convex). But the suitable material has not been available so far, therefore the deterioration of the resolution in some channels (e.g. the edge channels) is acceptable.展开更多
This work proposes some optical merit figures useful for solar concentration in the phase of optical design. The examined systems are CSP (concentrated solar power) plants with heliostats fields. In order to charact...This work proposes some optical merit figures useful for solar concentration in the phase of optical design. The examined systems are CSP (concentrated solar power) plants with heliostats fields. In order to characterize them, it is suggested to use some optical merit figures, applicable to every CSP plant and synthetize its optical performance. The proposed merit figures have the aim of assessing mirrors field efficiency and receiver optical efficiency. In particular, they are identified using a new definition of the input flux on the mirrors field. The practical advantage of using the optical merit figures is illustrated by means of a simulation.展开更多
Wolter I collector is the best collector for extreme ultraviolet (EUV) lithography, which has a series of nested mirrors. It has high collection efficiency and can obtain more uniform intensity distribution at the i...Wolter I collector is the best collector for extreme ultraviolet (EUV) lithography, which has a series of nested mirrors. It has high collection efficiency and can obtain more uniform intensity distribution at the intermediate focus (IF). A new design with the calculation sequence from the outer mirror to the inner one on the premise of satisfying the requirements of the collector is introduced. Based on this concept, a computer program is established and the optical parameters of the collector using the program is calculated. The design results indicate that the collector satisfies all the requirements.展开更多
We propose an LED reshaping lens design for a handheld underwater wireless optical system to solve the problem of targeting the receiver. The simulation results shows that the designed lens can achieve 0.91 light inte...We propose an LED reshaping lens design for a handheld underwater wireless optical system to solve the problem of targeting the receiver. The simulation results shows that the designed lens can achieve 0.91 light intensity uniformity and 91.39% optical efficiency in hemisphere space, even with the actual LED model. After fabrication with computer numeric control, the work demonstrates the design to be effective.展开更多
Myopia has become a noteworthy issue due to the increasing use of our eyes. We propose a continuous power variation vision-training device based on Alvarez lenses with the power ranging from -10D to +2D. First, we in...Myopia has become a noteworthy issue due to the increasing use of our eyes. We propose a continuous power variation vision-training device based on Alvarez lenses with the power ranging from -10D to +2D. First, we introduce the principle of Alvarez lenses and the evaluation method of dioptric power and astigmatism. Then, we optimize the optical system described by Zernike polynomials. Finally, we analyze the distributions of dioptric power and astigmatism with the overall surface analysis and fields of view(FOVs) analysis. The results show that the optical performance of an optimized system can meet the requirement within a 40° FOV.展开更多
We present an optical design for a fingerprint scanner that addresses the challenges involved in capturing the prints of roiling fingers. A roiling fingerprint scanner requires a high performance distortion free syste...We present an optical design for a fingerprint scanner that addresses the challenges involved in capturing the prints of roiling fingers. A roiling fingerprint scanner requires a high performance distortion free system with big object space numerical aperture (0.022) and larger capture size (40 × 40 (mm)). We show how these requirements can be achieved with the approach of optical and computational hybrid distortion correction. In addition, dark background ilhmfination is utilized to increase fingerprint contrast.展开更多
This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical ...This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business.展开更多
Continuous phase plate(CPP),which has a function of beam shaping in laser systems,is one kind of important diffractive optics.Based on the Fourier transform of the Gerchberg-Saxton(G-S) algorithm for designing CPP...Continuous phase plate(CPP),which has a function of beam shaping in laser systems,is one kind of important diffractive optics.Based on the Fourier transform of the Gerchberg-Saxton(G-S) algorithm for designing CPP,we proposed an optical diffraction method according to the real system conditions.A thin lens can complete the Fourier transform of the input signal and the inverse propagation of light can be implemented in a program.Using both of the two functions can realize the iteration process to calculate the near-field distribution of light and the far-field repeatedly,which is similar to the G-S algorithm.The results show that using the optical diffraction method can design a CPP for a complicated laser system,and make the CPP have abilities of beam shaping and phase compensation for the phase aberration of the system.The method can improve the adaptation of the phase plate in systems with phase aberrations.展开更多
Exploiting new concepts for dense, fast, and nonvolatile random access memory with reduced energy consump- tion is a significant issue for information technology. Here we design an 'electrically written and optically...Exploiting new concepts for dense, fast, and nonvolatile random access memory with reduced energy consump- tion is a significant issue for information technology. Here we design an 'electrically written and optically read' information storage device employing BiFeO3/A u heterostruetures with strong absorption resonance. The electro- optic effect is the basis for the device design, which arises from the strong absorption resonance in BiFeO3/Au heterostructures and the electrically tunable significant birefringence of the BiFeO3 film. We first construct a sim- ulation calculation of the BiFeO3/Au structure spectrum and identify absorption resonance and electro-optical modulation characteristics. Following a micro scale partition, the surface reflected light intensity of different polarization units is calculated. The results depend on electric polarization states of the BiFeO3 film, thus BiFeO3/Au heterostructures can essentially be designed as a type of electrically written and optically read infor- mation storage device by utilizing the scanning near-field optical microscopy technology based on the conductive silicon cantilever tip with nanofabricated aperture. This work will shed light on information storage technology.展开更多
Wavelength selective switch(WSS)is the crucial component in the reconfigurable optical add/drop multiplexer(ROADM),which plays a pivotal role in the next-generation all-optical networks.We present a compact architectu...Wavelength selective switch(WSS)is the crucial component in the reconfigurable optical add/drop multiplexer(ROADM),which plays a pivotal role in the next-generation all-optical networks.We present a compact architecture of twin 1×40 liquid crystal on silicon(LCoS)-based WSS,which can be regarded as a 4f system in the wavelength direction and a 2f system in the switching direction.It is designed with theoretical analysis and simulation investigation.Polarization multiplexing is employed for two sources of twin WSS by polarization con-version before the common optical path.The WSS system attains a coupling efficacy exceeding 96%for 90%of the ports through simulation optimization.The 3 dB bandwidth can be achieved by more than 44 GHz at a 50 GHz grid for all 120 channels at all deflection ports.This work establishes a solid foundation for developing high-performance WSS with larger port counts.展开更多
In order to overcome the adverse effects of Doppler wavelength shift on data transmission in the optical satellite networks,a dynamic routing and wavelength assignment algorithm based on crosslayer design( CL-DRWA) is...In order to overcome the adverse effects of Doppler wavelength shift on data transmission in the optical satellite networks,a dynamic routing and wavelength assignment algorithm based on crosslayer design( CL-DRWA) is introduced which can improve robustness of the network. Above all,a cross-layer optimization model is designed,which considers transmission delay and wavelength-continuity constraint,as well as Doppler wavelength shift. Then CL-DRWA is applied to solve this model,resulting in finding an optimal light path satisfying the above constraints for every connection request. In CL-DRWA,Bellman-Ford method is used to find an optimal route and a distributed relative capacity loss method is implemented to get an optimal wavelength assignment result on the optimal route. Moreover,compared with the dynamic routing and wavelength assignment algorithm based on minimum delay strategy( MD-DRWA),CL-DRWA can make an improvement of 5. 3% on the communication success probability. Meanwhile,CL-DRWA can meet the requirement of transmission delay for real-time services.展开更多
Freeform optics has become the most prominent element of the optics industry. Advanced freeform optical designs supplementary to ultra-precision manufacturing and metrology techniques have upgraded the lifestyle, thin...Freeform optics has become the most prominent element of the optics industry. Advanced freeform optical designs supplementary to ultra-precision manufacturing and metrology techniques have upgraded the lifestyle, thinking, and observing power of existing humans.Imaginations related to space explorations, portability, accessibility have also witnessed sensible in today’s time with freeform optics. Present-day design methods and fabrications techniques applicable in the development of freeform optics and the market requirements are focussed and explained with the help of traditional and non-traditional optical applications. Over the years,significant research is performed in the emerging field of freeform optics, but no standards are established yet in terms of tolerances and definitions. We critically review the optical design methods for freeform optics considering the image forming and non-image forming applications. Numerous subtractive manufacturing technologies including figure correction methods and metrology have been developed to fabricate extreme modern freeform optics to satisfy the demands of various applications such as space, astronomy, earth science, defence,biomedical, material processing, surveillance, and many more. We described a variety of advanced technologies in manufacturing and metrology for novel freeform optics. Next, we also covered the manufacturing-oriented design scheme for advanced optics. We conclude this review with an outlook on the future of freeform optics design, manufacturing and metrology.展开更多
This paper describes the research on the materials and design methods for advanced smart radiator devices (SRDs) on large-area flexible substrates utilized on spacecraft. The functional material is thermochromic van...This paper describes the research on the materials and design methods for advanced smart radiator devices (SRDs) on large-area flexible substrates utilized on spacecraft. The functional material is thermochromic vanadium dioxide. The coating design of SRD is similar to the design of broadband filter coatings in a mid-infrared region. The multilayer coatings have complex structures. Coating materials must be highly transparent in a required spectrum region and also mechanically robust enough to endure the influence from the rigorous environments of outer space. The number of layers must be very small, suitable for the deposition on large-area flexible substrates. All the coatings are designed initially based on optical calculation and practical experience, and then optimized by the TFCALC software. Several designs are described and compared with each other. The results show that the emittance variability of the designed SRDs is great than 400%, more advanced than the reported ones.展开更多
This paper analyses the dynamic residual aberrations of a conformal optical system and introduces adaptive optics (AO) correction technology to this system. The image sharpening AO system is chosen as the correction...This paper analyses the dynamic residual aberrations of a conformal optical system and introduces adaptive optics (AO) correction technology to this system. The image sharpening AO system is chosen as the correction scheme.Communication between MATLAB and Code V is established via ActiveX technique in computer simulation.The SPGD algorithm is operated at seven zoom positions to calculate the optimized surface shape of the deformable mirror.After comparison of performance of the corrected system with the baseline system,AO technology is proved to be a good way of correcting the dynamic residual aberration in conformal optical design.展开更多
The segmented mirror telescope is widely used.The aberrations of segmented mirror systems are different from single mirror systems.This paper uses the Fourier optics theory to analyse the Zernike aberrations of segmen...The segmented mirror telescope is widely used.The aberrations of segmented mirror systems are different from single mirror systems.This paper uses the Fourier optics theory to analyse the Zernike aberrations of segmented mirror systems.It concludes that the Zernike aberrations of segmented mirror systems obey the linearity theorem.The design of a segmented space telescope and segmented schemes are discussed,and its optical model is constructed. The computer simulation experiment is performed with this optical model to verify the suppositions. The experimental results confirm the correctness of the model.展开更多
The high-power laser beam in the final optics assembly of high-power laser facilities is often modulated by contamina- tion particles, which may cause local high light intensity, thereby increasing the filamentary dam...The high-power laser beam in the final optics assembly of high-power laser facilities is often modulated by contamina- tion particles, which may cause local high light intensity, thereby increasing the filamentary damage probability for optical components. To study the general design basis for a final optics assembly to decrease the risk of filamentary damage, different-sized contamination particles deposited on a component surface are simulated to modulate a 351-nm laser beam based on the optical transmission theory, and the corresponding simulation results are analyzed statistically in terms of the propagation characteristic and the light field intensity distribution of the modulated laser beam. The statistical results show that component thickness and distance between components can to some extent be optimized to reduce the appearance of local high light intensity, and the general design basis of component thickness and arrangement are given for different control levels of particle sizes. Moreover, the statistical results can also predict the laser beam quality approximately under the existing optics design and environmental cleanliness. The optimized design for final optics assembly based on environmental cleanliness level is useful to prolong the lifetime of optics and enhance the output power of high-power laser facilities.展开更多
The inverse design of electron lens is realized by two different methods in this paper. One is damped least square method and the other is the artificial neural network method. Their merits and defects are discussed a...The inverse design of electron lens is realized by two different methods in this paper. One is damped least square method and the other is the artificial neural network method. Their merits and defects are discussed according to our calculation results in the paper. In the condition of selecting the learning samples properly, the artificial neural network has obvious advantages in the inverse design of electron lens. It is an effective method to solve the inverse design problem in the electron optic system.展开更多
基金The"863"Project of National Ministry of Science and Technology(2006AA03A175)
文摘Proposed and demonstrated is a novel computer modeling method for high power light emitting diodes(LEDs). It contains geometrical structure and optical property of high power LED as well as LED dies definition with its spatial and angular distribution. Merits and non-merits of traditional modeling methods when applied to high power LEDs based on secondary optical design are discussed. Two commercial high power LEDs are simulated using the proposed computer modeling method. Correlation coefficient is proposed to compare and analyze the simulation results and manufacturing specifications. The source model is precisely demonstrated by obtaining above 99% in correlation coefficient with different surface incident angle intervals.
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2011CB013101)
文摘Light emitting diode (LED) sources have been widely used for illumination. Optical design, especially freedom compact lens design is necessary to make LED sources applied in lighting industry, such as large-range interior lighting and small-range condensed lighting. For different lighting requirements, the size of target planes should be variable. In our paper we provide a method to design freedom lens according to the energy conservation law and Snell law through establishing energy mapping between the luminous flux emitted by a Lambertian LED source and a certain area of the target plane. The algorithm of our design can easily change the radius of each circular target plane, which makes the size of the target plane adjustable. Ray-tracing software Tracepro is used to validate the illuminance maps and polar-distribution maps. We design lenses for different sizes of target planes to meet specific lighting requirements.
基金supported by the National Key Research and Development Program of China (Nos. 2019YFE0302002, 2017YFE0301203 and 2017YFE0301202)National Natural Science Foundation of China (No. 12175055)。
文摘A vertical edge Thomson scattering(ETS) diagnostic system on HL-2M tokamak has been designed.The ETS system collects the scattered light from Nd:YAG laser(1064 nm,2 J,30 Hz,15 ns).The laser beam propagates vertically through the plasma region and the polarization is parallel to the toroidal magnetic field.A special designed Galileo-type telescope with long Rayleigh length is applied to focus the laser size and ensure collimation.A group of doubleGaussian collection lenses image the 600 mm vertical scattered region onto rectangular fiber arrays with a spatial resolution of 10 mm.The 2.20 mm × 2.86 mm fiber optic bundle consists of 130 low hydroxyl(OH) 200/220 μm(core/cladding) diameter fibers with numerical aperture NA=0.22,carrying the light to remotely located multi-channel polychromators.Effect of oblique incidence on narrow band filter has been analyzed.The designed electron temperatures range from 5 to 1000 eV and electron densities from 5 × 10^(18) to 1×10^(20) m^(-3).
基金National Nature Science Foundation of China (Nos. 10235010/ 10335000)
文摘Electron cyclotron emission imaging system in the frequency range of 95 GHz -125 GHz is going to be constructed for a two-dimensional diagnosis of the electron temperature profiles and fluctuations on the HT-7 Tokamak. The optical design for the ECEI diagnostic system is completed. Because of the superconducting technology used in HT-7, the vacuum chamber is rather thick (630 mm), the height of the horizontal windows is limited (maximum 450 mm), which constrains greatly the ECE imaging Gaussian beam that passing through the windows. We here comes to make a design compromise between the number of the beams that can pass through the windows and the spatial resolution (around 1.1 cm). We also find that due to the field curvature of the optical system, the gaussian beams of edge channels are always overlapped. To flatten the field curvature, it is needed to insert a concave made of a material with a low refractive index (compared with the one used in the convex). But the suitable material has not been available so far, therefore the deterioration of the resolution in some channels (e.g. the edge channels) is acceptable.
文摘This work proposes some optical merit figures useful for solar concentration in the phase of optical design. The examined systems are CSP (concentrated solar power) plants with heliostats fields. In order to characterize them, it is suggested to use some optical merit figures, applicable to every CSP plant and synthetize its optical performance. The proposed merit figures have the aim of assessing mirrors field efficiency and receiver optical efficiency. In particular, they are identified using a new definition of the input flux on the mirrors field. The practical advantage of using the optical merit figures is illustrated by means of a simulation.
基金supported by the State Key Program ofthe National Natural Science of China (No. 60838005)the Major National Science and Technology SpecialProjects (No. 2008ZX02501)
文摘Wolter I collector is the best collector for extreme ultraviolet (EUV) lithography, which has a series of nested mirrors. It has high collection efficiency and can obtain more uniform intensity distribution at the intermediate focus (IF). A new design with the calculation sequence from the outer mirror to the inner one on the premise of satisfying the requirements of the collector is introduced. Based on this concept, a computer program is established and the optical parameters of the collector using the program is calculated. The design results indicate that the collector satisfies all the requirements.
文摘We propose an LED reshaping lens design for a handheld underwater wireless optical system to solve the problem of targeting the receiver. The simulation results shows that the designed lens can achieve 0.91 light intensity uniformity and 91.39% optical efficiency in hemisphere space, even with the actual LED model. After fabrication with computer numeric control, the work demonstrates the design to be effective.
基金supported by the National Key Research and Development Program of China(No.2016YFB1001502)the National Natural Science Foundation of China(No.61727808)
文摘Myopia has become a noteworthy issue due to the increasing use of our eyes. We propose a continuous power variation vision-training device based on Alvarez lenses with the power ranging from -10D to +2D. First, we introduce the principle of Alvarez lenses and the evaluation method of dioptric power and astigmatism. Then, we optimize the optical system described by Zernike polynomials. Finally, we analyze the distributions of dioptric power and astigmatism with the overall surface analysis and fields of view(FOVs) analysis. The results show that the optical performance of an optimized system can meet the requirement within a 40° FOV.
文摘We present an optical design for a fingerprint scanner that addresses the challenges involved in capturing the prints of roiling fingers. A roiling fingerprint scanner requires a high performance distortion free system with big object space numerical aperture (0.022) and larger capture size (40 × 40 (mm)). We show how these requirements can be achieved with the approach of optical and computational hybrid distortion correction. In addition, dark background ilhmfination is utilized to increase fingerprint contrast.
基金supported by the National Natural Science Foundation of China(No.61675033,61575026,61675233)National High Technical Research and Development Program of China(No.2015AA015504)
文摘This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business.
文摘Continuous phase plate(CPP),which has a function of beam shaping in laser systems,is one kind of important diffractive optics.Based on the Fourier transform of the Gerchberg-Saxton(G-S) algorithm for designing CPP,we proposed an optical diffraction method according to the real system conditions.A thin lens can complete the Fourier transform of the input signal and the inverse propagation of light can be implemented in a program.Using both of the two functions can realize the iteration process to calculate the near-field distribution of light and the far-field repeatedly,which is similar to the G-S algorithm.The results show that using the optical diffraction method can design a CPP for a complicated laser system,and make the CPP have abilities of beam shaping and phase compensation for the phase aberration of the system.The method can improve the adaptation of the phase plate in systems with phase aberrations.
基金Supported by the National Natural Science Foundation of China under Grant No 11304384the Research Project of National University of Defense Technology under Grant No JC13-07-02
文摘Exploiting new concepts for dense, fast, and nonvolatile random access memory with reduced energy consump- tion is a significant issue for information technology. Here we design an 'electrically written and optically read' information storage device employing BiFeO3/A u heterostruetures with strong absorption resonance. The electro- optic effect is the basis for the device design, which arises from the strong absorption resonance in BiFeO3/Au heterostructures and the electrically tunable significant birefringence of the BiFeO3 film. We first construct a sim- ulation calculation of the BiFeO3/Au structure spectrum and identify absorption resonance and electro-optical modulation characteristics. Following a micro scale partition, the surface reflected light intensity of different polarization units is calculated. The results depend on electric polarization states of the BiFeO3 film, thus BiFeO3/Au heterostructures can essentially be designed as a type of electrically written and optically read infor- mation storage device by utilizing the scanning near-field optical microscopy technology based on the conductive silicon cantilever tip with nanofabricated aperture. This work will shed light on information storage technology.
基金This work was supported by ZTE Industry⁃University⁃Institute Coopera⁃tion Funds under Grant No.IA20230614004.
文摘Wavelength selective switch(WSS)is the crucial component in the reconfigurable optical add/drop multiplexer(ROADM),which plays a pivotal role in the next-generation all-optical networks.We present a compact architecture of twin 1×40 liquid crystal on silicon(LCoS)-based WSS,which can be regarded as a 4f system in the wavelength direction and a 2f system in the switching direction.It is designed with theoretical analysis and simulation investigation.Polarization multiplexing is employed for two sources of twin WSS by polarization con-version before the common optical path.The WSS system attains a coupling efficacy exceeding 96%for 90%of the ports through simulation optimization.The 3 dB bandwidth can be achieved by more than 44 GHz at a 50 GHz grid for all 120 channels at all deflection ports.This work establishes a solid foundation for developing high-performance WSS with larger port counts.
基金Supported by the National Natural Science Foundation of China(No.61675033,61575026,61675232,61571440)the National High Technology Research and Development Program of China(No.2015AA015504)
文摘In order to overcome the adverse effects of Doppler wavelength shift on data transmission in the optical satellite networks,a dynamic routing and wavelength assignment algorithm based on crosslayer design( CL-DRWA) is introduced which can improve robustness of the network. Above all,a cross-layer optimization model is designed,which considers transmission delay and wavelength-continuity constraint,as well as Doppler wavelength shift. Then CL-DRWA is applied to solve this model,resulting in finding an optimal light path satisfying the above constraints for every connection request. In CL-DRWA,Bellman-Ford method is used to find an optimal route and a distributed relative capacity loss method is implemented to get an optimal wavelength assignment result on the optimal route. Moreover,compared with the dynamic routing and wavelength assignment algorithm based on minimum delay strategy( MD-DRWA),CL-DRWA can make an improvement of 5. 3% on the communication success probability. Meanwhile,CL-DRWA can meet the requirement of transmission delay for real-time services.
基金the UK’s Engineering and Physical Sciences Research Council(EPSRC)funding of Future Metrology Hub(Ref.:EP/P006930/1)the UK’s Science and Technology Facilities Council(STFC)Innovation Partnership Scheme(IPS)project under Grant Agreement No.ST/V001280/1the European Union’s Horizon 2020research and innovation programme under Grant Agreement No.767589。
文摘Freeform optics has become the most prominent element of the optics industry. Advanced freeform optical designs supplementary to ultra-precision manufacturing and metrology techniques have upgraded the lifestyle, thinking, and observing power of existing humans.Imaginations related to space explorations, portability, accessibility have also witnessed sensible in today’s time with freeform optics. Present-day design methods and fabrications techniques applicable in the development of freeform optics and the market requirements are focussed and explained with the help of traditional and non-traditional optical applications. Over the years,significant research is performed in the emerging field of freeform optics, but no standards are established yet in terms of tolerances and definitions. We critically review the optical design methods for freeform optics considering the image forming and non-image forming applications. Numerous subtractive manufacturing technologies including figure correction methods and metrology have been developed to fabricate extreme modern freeform optics to satisfy the demands of various applications such as space, astronomy, earth science, defence,biomedical, material processing, surveillance, and many more. We described a variety of advanced technologies in manufacturing and metrology for novel freeform optics. Next, we also covered the manufacturing-oriented design scheme for advanced optics. We conclude this review with an outlook on the future of freeform optics design, manufacturing and metrology.
基金Project supported by the National Natural Science Foundation of China (Grant No 60676033).
文摘This paper describes the research on the materials and design methods for advanced smart radiator devices (SRDs) on large-area flexible substrates utilized on spacecraft. The functional material is thermochromic vanadium dioxide. The coating design of SRD is similar to the design of broadband filter coatings in a mid-infrared region. The multilayer coatings have complex structures. Coating materials must be highly transparent in a required spectrum region and also mechanically robust enough to endure the influence from the rigorous environments of outer space. The number of layers must be very small, suitable for the deposition on large-area flexible substrates. All the coatings are designed initially based on optical calculation and practical experience, and then optimized by the TFCALC software. Several designs are described and compared with each other. The results show that the emittance variability of the designed SRDs is great than 400%, more advanced than the reported ones.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 2006AA012339)
文摘This paper analyses the dynamic residual aberrations of a conformal optical system and introduces adaptive optics (AO) correction technology to this system. The image sharpening AO system is chosen as the correction scheme.Communication between MATLAB and Code V is established via ActiveX technique in computer simulation.The SPGD algorithm is operated at seven zoom positions to calculate the optimized surface shape of the deformable mirror.After comparison of performance of the corrected system with the baseline system,AO technology is proved to be a good way of correcting the dynamic residual aberration in conformal optical design.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 2006AA01Z339)
文摘The segmented mirror telescope is widely used.The aberrations of segmented mirror systems are different from single mirror systems.This paper uses the Fourier optics theory to analyse the Zernike aberrations of segmented mirror systems.It concludes that the Zernike aberrations of segmented mirror systems obey the linearity theorem.The design of a segmented space telescope and segmented schemes are discussed,and its optical model is constructed. The computer simulation experiment is performed with this optical model to verify the suppositions. The experimental results confirm the correctness of the model.
基金supported by the National Natural Science Foundation of China(Grant No.60707019)
文摘The high-power laser beam in the final optics assembly of high-power laser facilities is often modulated by contamina- tion particles, which may cause local high light intensity, thereby increasing the filamentary damage probability for optical components. To study the general design basis for a final optics assembly to decrease the risk of filamentary damage, different-sized contamination particles deposited on a component surface are simulated to modulate a 351-nm laser beam based on the optical transmission theory, and the corresponding simulation results are analyzed statistically in terms of the propagation characteristic and the light field intensity distribution of the modulated laser beam. The statistical results show that component thickness and distance between components can to some extent be optimized to reduce the appearance of local high light intensity, and the general design basis of component thickness and arrangement are given for different control levels of particle sizes. Moreover, the statistical results can also predict the laser beam quality approximately under the existing optics design and environmental cleanliness. The optimized design for final optics assembly based on environmental cleanliness level is useful to prolong the lifetime of optics and enhance the output power of high-power laser facilities.
基金the Scientific Research Foundation for Returned Overseas Chinese Scholars, State EducationCommission.
文摘The inverse design of electron lens is realized by two different methods in this paper. One is damped least square method and the other is the artificial neural network method. Their merits and defects are discussed according to our calculation results in the paper. In the condition of selecting the learning samples properly, the artificial neural network has obvious advantages in the inverse design of electron lens. It is an effective method to solve the inverse design problem in the electron optic system.