Objective:To analyze the different clinical features of patients with early-onset(EO-NMOSDs)and late-onset neuromyelitis optica spectrum diseases(LO-NMOSDs).Methods:A total of 51patients with neuromyelitis optica spec...Objective:To analyze the different clinical features of patients with early-onset(EO-NMOSDs)and late-onset neuromyelitis optica spectrum diseases(LO-NMOSDs).Methods:A total of 51patients with neuromyelitis optica spectrum disease who were diagnosed in our hospital for the first time from January 2015 to December 2022 were included in the First Affiliated Hospital of Hainan Medical College and divided into 22 cases in the EO-NMOSDs group and 29 cases in the LO-NMOSDs group according to whether the age of onset was 50 years old.The basic data,Extended Disability Status Scale(EDSS)score,blood and cerebrospinal fluid test indicators of the two groups were statistically analyzed.Results:There were no significant differences in demographic characteristics,clinical features and serum AQP-4 antibody positivity rate between the two groups(all P>0.05),and there were significant differences in triglycerides(TG),low-density lipoprotein(LDL),apolipoprotein A(APOA),apolipoprotein B(APOB)and lipoprotein a(P=0.010,P=0.048,P=0.014,P=0.061,P=0.001,respectively),and cerebrospinal fluid LDH,There were significant differences between microprotein quantification and EDSS score(P=0.018,P=0.034,P=0.025,respectively),and the level of microprotein quantification in cerebrospinal fluid of LO-NMOSDs had a certain correlation with the degree of disability(r=0.52,P<0.03).Conclusion:LO-NMOSDs and EO-NMOSDs group patients have similar demographic characteristics,serum AQP-4 antibody positive rate and clinical features,but compared with EO-NMOSDs,patients in LO-NMOSDs group are prone to abnormal lipid metabolism,higher trace proteins in cerebrospinal fluid and more likely to be disabled,and among LO-NMOSDs,the higher the trace protein in the cerebrospinal fluid,the more severe the disability status of patients.展开更多
This letter describes a novel optical method for wavelength fine-selection in the optical spectrum analysers (OSAs) for dense wavelength division multiplexing (DWDM) applications. The proposed new method employs a ...This letter describes a novel optical method for wavelength fine-selection in the optical spectrum analysers (OSAs) for dense wavelength division multiplexing (DWDM) applications. The proposed new method employs a 'refractive optical lever' system consisting of a rotating optical wedge prism. A new OSA system based on Littman-type monochromator is proposed and the wavelength selection accuracy and resolution of OSA that has included such an optical lever system have been improved by a factor of 20 to 100 depending on the wedge angle and offset orientation angle of the optical wedge prism. This proposed 'refractive optical lever' may also simplify the rotation mechanism of the mirror in the commercially available OSAs.展开更多
We theoretically study the broadband near-field optical spectrum of twisted bilayer graphene(TBG)at various twist angles near the magic angle using two different models.The spectrum at low Fermi energy is characterize...We theoretically study the broadband near-field optical spectrum of twisted bilayer graphene(TBG)at various twist angles near the magic angle using two different models.The spectrum at low Fermi energy is characterized by a series of peaks that are almost at the same energies as the peaks in the far-field optical conductivity of TBG.When the Fermi energy is near a van Hove singularity,an additional strong peak appears at finite energy in the near-field spectrum,which has no counterpart in the optical conductivity.Based on a detailed calculation of the plasmon dispersion,we show that these spectroscopic features are associated with interband and intraband plasmons,which can provide critical information about the local band structure and plasmonic excitations in TBG.The near-field peaks evolve systematically with the twist angle,so they can serve as fingerprints for identifying the spatial dependent twist angle in TBG samples.Our findings pave the way for future experimental studies of the novel optical properties of TBG in the nanoscale.展开更多
Theβ-LiGaO_(2)with an orthorhombic wurtzite-derived structure is a candidate ultrawide direct-bandgap semiconductor.In this work,using the non-adiabatic Allen-Heine-Cardona approach,we investigate the bandgap renorma...Theβ-LiGaO_(2)with an orthorhombic wurtzite-derived structure is a candidate ultrawide direct-bandgap semiconductor.In this work,using the non-adiabatic Allen-Heine-Cardona approach,we investigate the bandgap renormalization arising from electron-phonon coupling.We find a sizable zero-point motion correction of-0.362 eV to the gap atΓ,which is dominated by the contributions of long-wavelength longitudinal optical phonons.The bandgap ofβ-LiGaO_(2)decreases monotonically with increasing temperature.We investigate the optical spectra by comparing the model Bethe-Salpether equation method with the independent-particle approximation.The calculated optical spectra including electron-hole interactions exhibit strong excitonic effects,in qualitative agreement with the experiment.The contributing interband transitions and the binding energy for the excitonic states are analyzed.展开更多
The ab initio calculation methods have been used to calculate the spectral and electronic characteristics of difluorocarbene in the ground electronic state(~1A_1),the lowest-lying singlet(~1B_1)and triplet(~3B_1)state...The ab initio calculation methods have been used to calculate the spectral and electronic characteristics of difluorocarbene in the ground electronic state(~1A_1),the lowest-lying singlet(~1B_1)and triplet(~3B_1)states,The optimized equilibrium geometries,rotational constants,harmonic vibrational frequencies and energy gaps,electronic charges,dipole moments of these states have been computed with different basis sets.The calculated vibrational frequency of ~3B_1 state(v_2=522 cm^(-1))and the energy separation(2.26eV)between ~3B_1 and ~1A_1 states are in good agreement with the experimental re- sults(519 cm^(-1),2.46 eV respectively).According to the calculations the previous assignment of vibrational symmetries of ~1B_1 state was corrected,and some experimentally undetermined vibrational frequencies were predicted.展开更多
The optical Ramsey spectrum is experimentally realized in an ^(87)Sr optical lattice clock, and the measured linewidth agrees well with theoretical expectation. The coherence time between the clock laser and the atoms...The optical Ramsey spectrum is experimentally realized in an ^(87)Sr optical lattice clock, and the measured linewidth agrees well with theoretical expectation. The coherence time between the clock laser and the atoms, which indicates the maximum free evolution period of using Ramsey detection to measure the atom-laser phase information, is determined as 340(23) ms by measuring the fringe contrasts of the Ramsey spectrum as a function of the free evolution period. Furthermore, with the same clock duty cycle of about 0.1, the clock stability is measured by using the Ramsey and Rabi spectra,respectively. The experimental and theoretical results show approximately the same stability as the two detection methods, which indicates that Ramsey detection cannot obviously improve the clock stability until the clock duty cycle is large enough. Thus, it is of great significance to choose the detection method of a specific clock.展开更多
With the rapid deployment of Next-Generation Networks(NGN),the research community has initiated discussions on an entirely new suite of optical enabling techniques.To pave the way for the development of future wireles...With the rapid deployment of Next-Generation Networks(NGN),the research community has initiated discussions on an entirely new suite of optical enabling techniques.To pave the way for the development of future wireless networks,this article aims to unify the existing infrared,visible light,and ultraviolet subbands while also exploring the potential of the Petahertz(PHz)band to support extremely bandwidth-thirsfy telepresence style applications.Our focus is on the emerging Petahertz Communication(PetaCom)framework,scenario-dependent propagation channels,modulation schemes,system performance,multiple access techniques,and networking.We conclude with a range of PetaCom challenges and open research issues.展开更多
A remote plasma,also referred to as a plasma plume(diffuse or filamentary),is normally formed downstream of an atmospheric pressure plasma jet.In this study,a diffuse plume is formed by increasing the bias voltage(U_(...A remote plasma,also referred to as a plasma plume(diffuse or filamentary),is normally formed downstream of an atmospheric pressure plasma jet.In this study,a diffuse plume is formed by increasing the bias voltage(U_(b))applied to the downstream electrode of an argon plasma jet excited by a negatively pulsed voltage.The results indicate that the plume is filamentary when U_(b)is low,which transits to the diffuse plume with increasing U_(b).The discharge initiated at the rising edge of the pulsed voltage is attributed to the diffuse plume,while that at the falling edge contributes to the filament in the plume.For the diffuse plume,the discharge intensity decreases with the increasing oxygen content(C_o).Fast photography reveals that the diffuse plume results from a negative streamer,which has a dark region near the nozzle with C_o=0%.However,the dark region is absent with C_o=0.5%.From the optical emission spectrum,the electron density,electron excitation temperature,gas temperature,and oxygen atom concentration are investigated.展开更多
An approach for solving the excitonic absorption in a semiconductor quantum well driven by an intense terahertz field is presented.The formalism relies on the stationary single-photon Schro¨dinger equation in the...An approach for solving the excitonic absorption in a semiconductor quantum well driven by an intense terahertz field is presented.The formalism relies on the stationary single-photon Schro¨dinger equation in the full quantum mechanical framework.The optical absorption dynamics in both weak and strong couplings are discussed and compared.The excitonic absorption spectra show the Autler-Townes doublets for the resonance terahertz field,a replica peak for the non-resonance terahertz field,and the electromagnetically induced transparency phenomenon for modulating the decay rate of the second electron state in the weak coupling.In particular,the electromagnetically induced transparency phenomenon window range is discussed.In the strong coupling region,the multi-order energy level resonance splitting due to the strong optical field is found.There are three(non-resonance terahertz field) or four(resonance terahertz field) peaks in the optical absorption spectra.This work provides a simple and convenient approach to deal with the optical absorption in the exciton system.展开更多
For several types of the applied electric field configuration on the normal-zigzag black phosphorus nanoribbon(nZZ-BPNR)we investigate the band structure and the linear optical absorption spectrum,especially for the e...For several types of the applied electric field configuration on the normal-zigzag black phosphorus nanoribbon(nZZ-BPNR)we investigate the band structure and the linear optical absorption spectrum,especially for the edge states and the corresponding low-energy absorption peaks.The obtained results show that the applied electric field can not only open another band gap at k=0.5 point,but also can change completely the spacial probabilities of edge states in the two edge bands.The strength of electric field can tune the two band gaps at the Γ point and 0.5 point.Further,one remarkable feature is that the forbidden transitionallowed.The lowest-excited-energy linear absorption peakfrom the transition between two edge bands at the Γ point.Finally,in comparison with the lowest-excited-energy peaks among various configurations,the second type of electric field configuration can move this peak blue-shift larger than other configurations.展开更多
Single mode-multimode-single mode (SMS) sensor is widely used for parameters measurement, such as bending, dis-placement, temperature, strain, refractive index, etc. Generally, SMS sensor has advantages of simpl...Single mode-multimode-single mode (SMS) sensor is widely used for parameters measurement, such as bending, dis-placement, temperature, strain, refractive index, etc. Generally, SMS sensor has advantages of simple structure, low cost and easy layout, therefore it has become a research hotspot in recent years. In this paper, the multimode fiber with large core is used for manufacturing SMS structure with high sensitivity. Firstly, the multimode fiber with core/cladding diameters of 105/ 125 jitm has access to the system by means of single mode optical fiber. Secondly, SMS device structure is manufactured by welding the eccentric shaft of multimode optical fiber. Afterwards, mode interference effect and spectral response characteristics of the structure of single mode-multimode-single mode optical fiber are analyzed theoretically. Finally, with the help of a wide spectrum light source and a spectrum analyzer, the transmission spectra characteristics of SMS optical fiber with strain is tested. By observing the curve that the wave changes with stress, the sensitivity is calculated and it is consistent with theoretical value .展开更多
Target detection is one of the key technology of precision chemical application.Previously the digital coding modulation technique was commonly used to emit and receive the optical signal in the target detection syste...Target detection is one of the key technology of precision chemical application.Previously the digital coding modulation technique was commonly used to emit and receive the optical signal in the target detection systems previously in China.It was difficult to adjust the output power,and the anti-interference ability was weak in these systems.In order to resolve these problems,the target detection method based on analog sine-wave modulation was studied.The spectral detecting system was set up in the aspects of working principle,electric circuit,and optical path.Lab testing was performed.The results showed that the reflected signal from the target varied inversely with detection distances.It indicated that it was feasible to establish the target detection system using analog sine-wave modulation technology.Furthermore,quantitative measurement of the reflected optical signal for near-infrared and visible light could be achieved by using this system.The research laid the foundation for the future development of the corresponding instrument.展开更多
A neon plasma jet was generated in air, driven by a 9 kHz sinusoidal power supply. The characteristics of the plasma plume and the optical spectra with plasma propagation for different applied voltages were investigat...A neon plasma jet was generated in air, driven by a 9 kHz sinusoidal power supply. The characteristics of the plasma plume and the optical spectra with plasma propagation for different applied voltages were investigated. By increasing the applied voltage, the plasma plume first increases and then retracts to become short and bulky. The shortened effect of Ne plasma plume (about 10 mm) for the further voltage increasing is more apparent than that of He (about 3 mm) and Ar (about 1 mm). Emission intensity of the N2 (337 am) increases with the applied voltage, gradually substituting the emission intensity of Ne (702 nm and 585 am) as the noticeable radiation. At the nozzle opening, the Ne (702 am) emission dominates, while the Ne (585 nm) emission is most noticeable around the tip of the plasma plume. The spatial distribution of the three spectral lines indicates that Ne (702 nm) emission decreases dramatically with plasma propagation while Ne (585 am) and N2 (337 nm) emissions reach their maxima at the middle of the plasma plume. The results indicate that the Ne (702 nm) emission is much more sensitive to the average electron temperature and the density of the high-energy electrons, so it changes greatly at the tube nozzle and little at the tip region as the voltage increases. The population of high-energy electrons, the average electron temperature, the collision with air molecules and the Penning effect between Ne metastables and air molecules may explain their different variations with plasma propagating and voltage increasing.展开更多
A large-gap uniform discharge is ignited by a coaxial dielectric barrier discharge and burns between a needle anode and a plate cathode under a low sustaining voltage by feeding with flowing argon. The basic aspects o...A large-gap uniform discharge is ignited by a coaxial dielectric barrier discharge and burns between a needle anode and a plate cathode under a low sustaining voltage by feeding with flowing argon. The basic aspects of the large-gap uniform discharge are investigated by optical and spectroscopic methods. From the discharge images, it can be found that this discharge has similar regions with glow discharge at low pressure except a plasma plume region. Light emission signals from the discharge indicate that the plasma column is invariant with time, while there are some stochastic pulses in the plasma plume region. The optical emission spectra scanning from 300 nm to 800 nm are used to calculate the excited electron temperature and vibrational temperature of the large-gap uniform discharge. It has been found that the excited electron temperature almost keeps constant and the vibrational temperature increases with increasing discharge current. Both of them decreases with increasing gas flow rate.展开更多
We have performed a full numerical calculation of the Franz-Keldysh (FK) effect on magnetoexcitons in a bulk GaAs semiconductor. By employing an initial wlue method in combination with the application of a perfect m...We have performed a full numerical calculation of the Franz-Keldysh (FK) effect on magnetoexcitons in a bulk GaAs semiconductor. By employing an initial wlue method in combination with the application of a perfect matched layer, the numerical effort and storage size are dramatically reduced due to a significant reduction in both computed domain and number of base functions. In the absence of an electric field, the higher magnetoexcitonic peaks show distinct Fano lineshape due to the degeneracy with continuum states of the lower Landau levels. The magnetoexcitons that belong to the zeroth Landau level remain in bound states and lead to Lorentzian lineshape, because they are not degenerated with continuum states. In the presence of an electric field, the FK effect on each magnetoexcitonic resonance can be identified for high magnetic fields. However, for low magnetic fields, the FK oscillations dominate the spectrum structure in the vicinity of the bandgap edge and the magnetoexcitonic resonances dominate the spectrum structure of higher energies. In the moderate electric fields, the interplay of FK effect and magnetoexcitonic resonance leads to a complex and rich structure in the absorption spectrum.展开更多
The electric and plasma characteristics of RF discharge plasma actuation under varying pressure have been inves- tigated experimentally. As the pressure increases, the shapes of charge-voltage Lissajous curves vary, a...The electric and plasma characteristics of RF discharge plasma actuation under varying pressure have been inves- tigated experimentally. As the pressure increases, the shapes of charge-voltage Lissajous curves vary, and the discharge energy increases. The emission spectra show significant difference as the pressure varies. When the pressure is 1000 Pa, the electron temperature is estimated to be 4.139 eV, the electron density and the vibrational temperature of plasma are /peak /lPeak which describes the electron temper- 4.71 x 10^11 cm-3 and 1.27 eV, respectively. The ratio of spectral lines "391.4/'380.5 ature hardly changes when the pressure varies between 5000-30000 Pa, while it increases remarkably with the pressure below 5000 Pa, indicating a transition from filamentary discharge to glow discharge. The characteristics of emission spec- trum are obviously influenced by the loading power. With more loading power, both of the illumination and emission spectrum intensity increase at 10000 Pa. The pin-pin electrode RF discharge is arc-like at power higher than 33 W, which results in a macroscopic air temperature increase.展开更多
A new iodoplumbate polymer incorporating copper iodide complex cation {[Cu(Ⅱ)(bipy)2I][PbI3](H2O)2}n 1(bipy = 2,2'-bipyridine) has been synthesized and structurally determined.It crystallizes in the triclini...A new iodoplumbate polymer incorporating copper iodide complex cation {[Cu(Ⅱ)(bipy)2I][PbI3](H2O)2}n 1(bipy = 2,2'-bipyridine) has been synthesized and structurally determined.It crystallizes in the triclinic system,space group P1 with a = 7.979(4),b = 14.538(11),c = 15.853(8),α = 110.77(2),β = 97.955(18),γ = 104.88(2)°,V = 1607.3(17)3,Z = 2,C20H16CuI4N4O2Pb,Mr = 1122.72,Dc = 2.320 g/cm3,F(000) = 1006,μ(MoKα) = 9.753,the final R = 0.0627 and wR = 0.1741 for 4846 observed reflections with Ⅰ 〉 2σ(Ⅰ).Structural analysis indicates that 1 consists of 2-D {[Cu(Ⅱ)(bipy)2I]}nn+ cation layers(based on π-π interaction and hydrogen bonds) and [PbI3]nn-polyanions.The C-H···I hydrogen bonds between {[Cu(Ⅱ)(bipy)2I]}nn+ cation layers and [PbI3]nn-polyanions lead to the formation of an interesting 3-D network.Optical absorp-tion spectrum indicates that 1 is a semiconductor,which is further validated by DFT calculation.Its electronic structure is also discussed.展开更多
The performance of an optical time domain reflectometer(OTDR) is significantly improved using spread spectrum technology. The concept of spread spectrum OTDR(SSOTDR) is proposed, the theoretical basis and simulation r...The performance of an optical time domain reflectometer(OTDR) is significantly improved using spread spectrum technology. The concept of spread spectrum OTDR(SSOTDR) is proposed, the theoretical basis and simulation results of the new method are given, and the problem of direct application of bipolar spread spectrum codes to OTDR and despreading in the optical domain are solved. The simulation results show the feasibility of the SSOTDR, which exhibits better dynamic range reported to date for a practical long-haul OTDR system without using conventional average technique.展开更多
Studying orbital angular momentum(OAM) spectra is important for analyzing crosstalk in free-space optical(FSO)communication systems. This work offers a new method of simplifying the expressions for the OAM spectra...Studying orbital angular momentum(OAM) spectra is important for analyzing crosstalk in free-space optical(FSO)communication systems. This work offers a new method of simplifying the expressions for the OAM spectra of Laguerre-Gaussian(LG) beams under both weak/medium and strong atmospheric turbulences. We propose fixing the radius to the extreme point of the intensity distribution, review the expression for the OAM spectrum under weak/medium turbulence,derive the OAM spectrum expression for an LG beam under strong turbulence, and simplify both of them to concise forms.Then, we investigate the accuracy of the simplified expressions through simulations. We find that the simplified expressions permit accurate calculation of the OAM spectrum for large transmitted OAM numbers under any type of turbulence. Finally,we use the simplified expressions to analytically address the broadening of the OAM spectrum caused by atmospheric turbulence. This work should contribute to the concise theoretical derivation of analytical expressions for OAM channel matrices for FSO-OAM communications and the analytical study of the laws governing OAM spectra.展开更多
Non-thermal plasma at atmospheric pressure was explored for the preparation of polysilicon from SiCl4. The power supply sources of positive pulse and alternating current (8 kHz and 100 kHz) were compared for polysil...Non-thermal plasma at atmospheric pressure was explored for the preparation of polysilicon from SiCl4. The power supply sources of positive pulse and alternating current (8 kHz and 100 kHz) were compared for polysilicon preparation. The samples prepared by using the 100 kHz power source were crystalline silicon. The effects of H2 and SiCl4 volume fractions were investigated. The optical emission spectra showed that silicon species played an important role in polysilicon deposition展开更多
基金Hainan Clinical Medicine Center Construction Project(2021)Hainan Provincial Excellent Talent Team(QRCBT202121)Key R&D Plan of Hainan Province(ZDYF2022SHFZ109)。
文摘Objective:To analyze the different clinical features of patients with early-onset(EO-NMOSDs)and late-onset neuromyelitis optica spectrum diseases(LO-NMOSDs).Methods:A total of 51patients with neuromyelitis optica spectrum disease who were diagnosed in our hospital for the first time from January 2015 to December 2022 were included in the First Affiliated Hospital of Hainan Medical College and divided into 22 cases in the EO-NMOSDs group and 29 cases in the LO-NMOSDs group according to whether the age of onset was 50 years old.The basic data,Extended Disability Status Scale(EDSS)score,blood and cerebrospinal fluid test indicators of the two groups were statistically analyzed.Results:There were no significant differences in demographic characteristics,clinical features and serum AQP-4 antibody positivity rate between the two groups(all P>0.05),and there were significant differences in triglycerides(TG),low-density lipoprotein(LDL),apolipoprotein A(APOA),apolipoprotein B(APOB)and lipoprotein a(P=0.010,P=0.048,P=0.014,P=0.061,P=0.001,respectively),and cerebrospinal fluid LDH,There were significant differences between microprotein quantification and EDSS score(P=0.018,P=0.034,P=0.025,respectively),and the level of microprotein quantification in cerebrospinal fluid of LO-NMOSDs had a certain correlation with the degree of disability(r=0.52,P<0.03).Conclusion:LO-NMOSDs and EO-NMOSDs group patients have similar demographic characteristics,serum AQP-4 antibody positive rate and clinical features,but compared with EO-NMOSDs,patients in LO-NMOSDs group are prone to abnormal lipid metabolism,higher trace proteins in cerebrospinal fluid and more likely to be disabled,and among LO-NMOSDs,the higher the trace protein in the cerebrospinal fluid,the more severe the disability status of patients.
文摘This letter describes a novel optical method for wavelength fine-selection in the optical spectrum analysers (OSAs) for dense wavelength division multiplexing (DWDM) applications. The proposed new method employs a 'refractive optical lever' system consisting of a rotating optical wedge prism. A new OSA system based on Littman-type monochromator is proposed and the wavelength selection accuracy and resolution of OSA that has included such an optical lever system have been improved by a factor of 20 to 100 depending on the wedge angle and offset orientation angle of the optical wedge prism. This proposed 'refractive optical lever' may also simplify the rotation mechanism of the mirror in the commercially available OSAs.
基金support from the National Natural Science Foundation of China(Grant No.11874271).
文摘We theoretically study the broadband near-field optical spectrum of twisted bilayer graphene(TBG)at various twist angles near the magic angle using two different models.The spectrum at low Fermi energy is characterized by a series of peaks that are almost at the same energies as the peaks in the far-field optical conductivity of TBG.When the Fermi energy is near a van Hove singularity,an additional strong peak appears at finite energy in the near-field spectrum,which has no counterpart in the optical conductivity.Based on a detailed calculation of the plasmon dispersion,we show that these spectroscopic features are associated with interband and intraband plasmons,which can provide critical information about the local band structure and plasmonic excitations in TBG.The near-field peaks evolve systematically with the twist angle,so they can serve as fingerprints for identifying the spatial dependent twist angle in TBG samples.Our findings pave the way for future experimental studies of the novel optical properties of TBG in the nanoscale.
基金Project support from the National Natural Science Foundation of China(Grant No.11604254)the Natural Science Foundation of Shaanxi ProvinceChina(Grant No.2019JQ-240)。
文摘Theβ-LiGaO_(2)with an orthorhombic wurtzite-derived structure is a candidate ultrawide direct-bandgap semiconductor.In this work,using the non-adiabatic Allen-Heine-Cardona approach,we investigate the bandgap renormalization arising from electron-phonon coupling.We find a sizable zero-point motion correction of-0.362 eV to the gap atΓ,which is dominated by the contributions of long-wavelength longitudinal optical phonons.The bandgap ofβ-LiGaO_(2)decreases monotonically with increasing temperature.We investigate the optical spectra by comparing the model Bethe-Salpether equation method with the independent-particle approximation.The calculated optical spectra including electron-hole interactions exhibit strong excitonic effects,in qualitative agreement with the experiment.The contributing interband transitions and the binding energy for the excitonic states are analyzed.
文摘The ab initio calculation methods have been used to calculate the spectral and electronic characteristics of difluorocarbene in the ground electronic state(~1A_1),the lowest-lying singlet(~1B_1)and triplet(~3B_1)states,The optimized equilibrium geometries,rotational constants,harmonic vibrational frequencies and energy gaps,electronic charges,dipole moments of these states have been computed with different basis sets.The calculated vibrational frequency of ~3B_1 state(v_2=522 cm^(-1))and the energy separation(2.26eV)between ~3B_1 and ~1A_1 states are in good agreement with the experimental re- sults(519 cm^(-1),2.46 eV respectively).According to the calculations the previous assignment of vibrational symmetries of ~1B_1 state was corrected,and some experimentally undetermined vibrational frequencies were predicted.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61775220)the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100)。
文摘The optical Ramsey spectrum is experimentally realized in an ^(87)Sr optical lattice clock, and the measured linewidth agrees well with theoretical expectation. The coherence time between the clock laser and the atoms, which indicates the maximum free evolution period of using Ramsey detection to measure the atom-laser phase information, is determined as 340(23) ms by measuring the fringe contrasts of the Ramsey spectrum as a function of the free evolution period. Furthermore, with the same clock duty cycle of about 0.1, the clock stability is measured by using the Ramsey and Rabi spectra,respectively. The experimental and theoretical results show approximately the same stability as the two detection methods, which indicates that Ramsey detection cannot obviously improve the clock stability until the clock duty cycle is large enough. Thus, it is of great significance to choose the detection method of a specific clock.
基金supported by the Key Program of the National Natural Science Foundation of China(No.61631018),Key Research Program of Frontier Sciences of CAS(No.QYZDY-SSW-JSC003)Strategic Priority Research Program of CAS(No.XDA22000000).L.Hanzo would like to acknowledge the financial support of the Engineering and Physical Sciences Research Council projects EP/P034284/1 and EP/P003990/1(COALESCE)as well as of the European Research Council’s Advanced Fellow Grant QuantCom(Grant No.789028).
文摘With the rapid deployment of Next-Generation Networks(NGN),the research community has initiated discussions on an entirely new suite of optical enabling techniques.To pave the way for the development of future wireless networks,this article aims to unify the existing infrared,visible light,and ultraviolet subbands while also exploring the potential of the Petahertz(PHz)band to support extremely bandwidth-thirsfy telepresence style applications.Our focus is on the emerging Petahertz Communication(PetaCom)framework,scenario-dependent propagation channels,modulation schemes,system performance,multiple access techniques,and networking.We conclude with a range of PetaCom challenges and open research issues.
基金supported by National Natural Science Foundation of China(Nos.12375250,11875121,51977057 and 11805013)the Natural Science Foundation of Hebei Province(Nos.A2020201025 and A2022201036)+3 种基金Hebei Province Optoelectronic Information Materials Laboratory Performance Subsidy Fund Project(No.22567634H)Funds for Distinguished Young Scientists of Hebei Province(No.A2012201045)the Natural Science Interdisciplinary Research Program of Hebei University(Nos.DXK201908 and DXK202011)the Post-graduate’s Innovation Fund Project of Hebei University(No.HBU2022bs004)。
文摘A remote plasma,also referred to as a plasma plume(diffuse or filamentary),is normally formed downstream of an atmospheric pressure plasma jet.In this study,a diffuse plume is formed by increasing the bias voltage(U_(b))applied to the downstream electrode of an argon plasma jet excited by a negatively pulsed voltage.The results indicate that the plume is filamentary when U_(b)is low,which transits to the diffuse plume with increasing U_(b).The discharge initiated at the rising edge of the pulsed voltage is attributed to the diffuse plume,while that at the falling edge contributes to the filament in the plume.For the diffuse plume,the discharge intensity decreases with the increasing oxygen content(C_o).Fast photography reveals that the diffuse plume results from a negative streamer,which has a dark region near the nozzle with C_o=0%.However,the dark region is absent with C_o=0.5%.From the optical emission spectrum,the electron density,electron excitation temperature,gas temperature,and oxygen atom concentration are investigated.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10647132)the Science Foundation from the Education Department of Hunan Province,China (Grant No. 10A100)
文摘An approach for solving the excitonic absorption in a semiconductor quantum well driven by an intense terahertz field is presented.The formalism relies on the stationary single-photon Schro¨dinger equation in the full quantum mechanical framework.The optical absorption dynamics in both weak and strong couplings are discussed and compared.The excitonic absorption spectra show the Autler-Townes doublets for the resonance terahertz field,a replica peak for the non-resonance terahertz field,and the electromagnetically induced transparency phenomenon for modulating the decay rate of the second electron state in the weak coupling.In particular,the electromagnetically induced transparency phenomenon window range is discussed.In the strong coupling region,the multi-order energy level resonance splitting due to the strong optical field is found.There are three(non-resonance terahertz field) or four(resonance terahertz field) peaks in the optical absorption spectra.This work provides a simple and convenient approach to deal with the optical absorption in the exciton system.
基金Project supported by the National Natural Science Foundation of China(Grant No.10947004)the Jiangsu Government Scholarship for Overseas Studies
文摘For several types of the applied electric field configuration on the normal-zigzag black phosphorus nanoribbon(nZZ-BPNR)we investigate the band structure and the linear optical absorption spectrum,especially for the edge states and the corresponding low-energy absorption peaks.The obtained results show that the applied electric field can not only open another band gap at k=0.5 point,but also can change completely the spacial probabilities of edge states in the two edge bands.The strength of electric field can tune the two band gaps at the Γ point and 0.5 point.Further,one remarkable feature is that the forbidden transitionallowed.The lowest-excited-energy linear absorption peakfrom the transition between two edge bands at the Γ point.Finally,in comparison with the lowest-excited-energy peaks among various configurations,the second type of electric field configuration can move this peak blue-shift larger than other configurations.
基金National Natural Science Foundation of China(No.61405127)Shanxi Province Science Foundation for Youths(No.2014021023-1)+1 种基金Scientific and Technologial Innovation Programs of Higher Education Institutions in ShanxiProgram for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi
文摘Single mode-multimode-single mode (SMS) sensor is widely used for parameters measurement, such as bending, dis-placement, temperature, strain, refractive index, etc. Generally, SMS sensor has advantages of simple structure, low cost and easy layout, therefore it has become a research hotspot in recent years. In this paper, the multimode fiber with large core is used for manufacturing SMS structure with high sensitivity. Firstly, the multimode fiber with core/cladding diameters of 105/ 125 jitm has access to the system by means of single mode optical fiber. Secondly, SMS device structure is manufactured by welding the eccentric shaft of multimode optical fiber. Afterwards, mode interference effect and spectral response characteristics of the structure of single mode-multimode-single mode optical fiber are analyzed theoretically. Finally, with the help of a wide spectrum light source and a spectrum analyzer, the transmission spectra characteristics of SMS optical fiber with strain is tested. By observing the curve that the wave changes with stress, the sensitivity is calculated and it is consistent with theoretical value .
基金Supported by the National“863”Project of China(2010AA10A301)National Technology Support Project for the 12th Five-year Plan(2011BAD20B07)
文摘Target detection is one of the key technology of precision chemical application.Previously the digital coding modulation technique was commonly used to emit and receive the optical signal in the target detection systems previously in China.It was difficult to adjust the output power,and the anti-interference ability was weak in these systems.In order to resolve these problems,the target detection method based on analog sine-wave modulation was studied.The spectral detecting system was set up in the aspects of working principle,electric circuit,and optical path.Lab testing was performed.The results showed that the reflected signal from the target varied inversely with detection distances.It indicated that it was feasible to establish the target detection system using analog sine-wave modulation technology.Furthermore,quantitative measurement of the reflected optical signal for near-infrared and visible light could be achieved by using this system.The research laid the foundation for the future development of the corresponding instrument.
基金supported by National Natural Science Fundation of China(No.61271053)the Natural Science Foundation of Jiangsu Province of China(No.BK2012737)the Foundation for Excellent Youth Scholars of Southeast University,China
文摘A neon plasma jet was generated in air, driven by a 9 kHz sinusoidal power supply. The characteristics of the plasma plume and the optical spectra with plasma propagation for different applied voltages were investigated. By increasing the applied voltage, the plasma plume first increases and then retracts to become short and bulky. The shortened effect of Ne plasma plume (about 10 mm) for the further voltage increasing is more apparent than that of He (about 3 mm) and Ar (about 1 mm). Emission intensity of the N2 (337 am) increases with the applied voltage, gradually substituting the emission intensity of Ne (702 nm and 585 am) as the noticeable radiation. At the nozzle opening, the Ne (702 am) emission dominates, while the Ne (585 nm) emission is most noticeable around the tip of the plasma plume. The spatial distribution of the three spectral lines indicates that Ne (702 nm) emission decreases dramatically with plasma propagation while Ne (585 am) and N2 (337 nm) emissions reach their maxima at the middle of the plasma plume. The results indicate that the Ne (702 nm) emission is much more sensitive to the average electron temperature and the density of the high-energy electrons, so it changes greatly at the tube nozzle and little at the tip region as the voltage increases. The population of high-energy electrons, the average electron temperature, the collision with air molecules and the Penning effect between Ne metastables and air molecules may explain their different variations with plasma propagating and voltage increasing.
基金supported by the National Natural Science Foundation of China(Grant Nos.10805013 and 51077035)the Funds for Distinguished Young Scientists of Hebei Province of China(Grant No.A2012201045)+4 种基金the Natural Science Foundation of Hebei Province of China(Grant No.A2011201132)the Department of Education for Outstanding Youth Project of China(Grant No.Y2011120)the Funds for Distinguished Young Scientists of Hebei University of China(Grant No.2010J02)the Doctor Program of Hebei University of China(Grant No.2012-241)the Youth Project of Hebei University of China(GrantNo.2011Q14)
文摘A large-gap uniform discharge is ignited by a coaxial dielectric barrier discharge and burns between a needle anode and a plate cathode under a low sustaining voltage by feeding with flowing argon. The basic aspects of the large-gap uniform discharge are investigated by optical and spectroscopic methods. From the discharge images, it can be found that this discharge has similar regions with glow discharge at low pressure except a plasma plume region. Light emission signals from the discharge indicate that the plasma column is invariant with time, while there are some stochastic pulses in the plasma plume region. The optical emission spectra scanning from 300 nm to 800 nm are used to calculate the excited electron temperature and vibrational temperature of the large-gap uniform discharge. It has been found that the excited electron temperature almost keeps constant and the vibrational temperature increases with increasing discharge current. Both of them decreases with increasing gas flow rate.
基金Project supported by the Major Program of the National Natural Science Foundation of China (Grant No 10390160), and the National Natural Science Foundation of China (Grant No 30370420).
文摘We have performed a full numerical calculation of the Franz-Keldysh (FK) effect on magnetoexcitons in a bulk GaAs semiconductor. By employing an initial wlue method in combination with the application of a perfect matched layer, the numerical effort and storage size are dramatically reduced due to a significant reduction in both computed domain and number of base functions. In the absence of an electric field, the higher magnetoexcitonic peaks show distinct Fano lineshape due to the degeneracy with continuum states of the lower Landau levels. The magnetoexcitons that belong to the zeroth Landau level remain in bound states and lead to Lorentzian lineshape, because they are not degenerated with continuum states. In the presence of an electric field, the FK effect on each magnetoexcitonic resonance can be identified for high magnetic fields. However, for low magnetic fields, the FK oscillations dominate the spectrum structure in the vicinity of the bandgap edge and the magnetoexcitonic resonances dominate the spectrum structure of higher energies. In the moderate electric fields, the interplay of FK effect and magnetoexcitonic resonance leads to a complex and rich structure in the absorption spectrum.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11472306,51336011,and 51407197)
文摘The electric and plasma characteristics of RF discharge plasma actuation under varying pressure have been inves- tigated experimentally. As the pressure increases, the shapes of charge-voltage Lissajous curves vary, and the discharge energy increases. The emission spectra show significant difference as the pressure varies. When the pressure is 1000 Pa, the electron temperature is estimated to be 4.139 eV, the electron density and the vibrational temperature of plasma are /peak /lPeak which describes the electron temper- 4.71 x 10^11 cm-3 and 1.27 eV, respectively. The ratio of spectral lines "391.4/'380.5 ature hardly changes when the pressure varies between 5000-30000 Pa, while it increases remarkably with the pressure below 5000 Pa, indicating a transition from filamentary discharge to glow discharge. The characteristics of emission spec- trum are obviously influenced by the loading power. With more loading power, both of the illumination and emission spectrum intensity increase at 10000 Pa. The pin-pin electrode RF discharge is arc-like at power higher than 33 W, which results in a macroscopic air temperature increase.
基金Supported by the National Natural Science Foundation of China (No. 20901017)Innovation Fund for Young Scientist of Fujian Province (2007F3049)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education of China (20093514120003)Sci. & Tech. Promotion Foundation of Fuzhou University (2009-XQ-08)
文摘A new iodoplumbate polymer incorporating copper iodide complex cation {[Cu(Ⅱ)(bipy)2I][PbI3](H2O)2}n 1(bipy = 2,2'-bipyridine) has been synthesized and structurally determined.It crystallizes in the triclinic system,space group P1 with a = 7.979(4),b = 14.538(11),c = 15.853(8),α = 110.77(2),β = 97.955(18),γ = 104.88(2)°,V = 1607.3(17)3,Z = 2,C20H16CuI4N4O2Pb,Mr = 1122.72,Dc = 2.320 g/cm3,F(000) = 1006,μ(MoKα) = 9.753,the final R = 0.0627 and wR = 0.1741 for 4846 observed reflections with Ⅰ 〉 2σ(Ⅰ).Structural analysis indicates that 1 consists of 2-D {[Cu(Ⅱ)(bipy)2I]}nn+ cation layers(based on π-π interaction and hydrogen bonds) and [PbI3]nn-polyanions.The C-H···I hydrogen bonds between {[Cu(Ⅱ)(bipy)2I]}nn+ cation layers and [PbI3]nn-polyanions lead to the formation of an interesting 3-D network.Optical absorp-tion spectrum indicates that 1 is a semiconductor,which is further validated by DFT calculation.Its electronic structure is also discussed.
基金supported by the National Natural Science Foundation of China (No.61735011)the Science and Technology Research Project of Hebei University (No.QN2017141)the Key Research and Development Program of Hebei Province (No.19251703D)。
文摘The performance of an optical time domain reflectometer(OTDR) is significantly improved using spread spectrum technology. The concept of spread spectrum OTDR(SSOTDR) is proposed, the theoretical basis and simulation results of the new method are given, and the problem of direct application of bipolar spread spectrum codes to OTDR and despreading in the optical domain are solved. The simulation results show the feasibility of the SSOTDR, which exhibits better dynamic range reported to date for a practical long-haul OTDR system without using conventional average technique.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61575027 and 61471051)
文摘Studying orbital angular momentum(OAM) spectra is important for analyzing crosstalk in free-space optical(FSO)communication systems. This work offers a new method of simplifying the expressions for the OAM spectra of Laguerre-Gaussian(LG) beams under both weak/medium and strong atmospheric turbulences. We propose fixing the radius to the extreme point of the intensity distribution, review the expression for the OAM spectrum under weak/medium turbulence,derive the OAM spectrum expression for an LG beam under strong turbulence, and simplify both of them to concise forms.Then, we investigate the accuracy of the simplified expressions through simulations. We find that the simplified expressions permit accurate calculation of the OAM spectrum for large transmitted OAM numbers under any type of turbulence. Finally,we use the simplified expressions to analytically address the broadening of the OAM spectrum caused by atmospheric turbulence. This work should contribute to the concise theoretical derivation of analytical expressions for OAM channel matrices for FSO-OAM communications and the analytical study of the laws governing OAM spectra.
基金support from the Scientific Research Fund of Liaoning Provincial Education Department for Colleges and Universities of China (No. 2008T229)
文摘Non-thermal plasma at atmospheric pressure was explored for the preparation of polysilicon from SiCl4. The power supply sources of positive pulse and alternating current (8 kHz and 100 kHz) were compared for polysilicon preparation. The samples prepared by using the 100 kHz power source were crystalline silicon. The effects of H2 and SiCl4 volume fractions were investigated. The optical emission spectra showed that silicon species played an important role in polysilicon deposition