Efficient coupling from the silicon waveguide to the GeSi layer is the key to success in the GeSi electro-absorption (EA) modulator based on evanescent coupling. A lateral taper in the upper GeSi layer has room for ...Efficient coupling from the silicon waveguide to the GeSi layer is the key to success in the GeSi electro-absorption (EA) modulator based on evanescent coupling. A lateral taper in the upper GeSi layer has room for increasing the modulating efficiency and alleviating the sensitivity of the extinction ratio (ER) and insertion loss (IL) to the length of the active region. The light behavior and the effect of the taper are explored in detail using the beam propagation method (BPM). After optimization, the light can nearly be totally confined in the GeSi layer without any oscillation. The modulator with the designed taper can achieve low IL and high ER.展开更多
Micro-nano-level photonic waveguide regulation is essential for future on-chip photonic integrated systems and is still of great challenges.We report a molecular design strategy,changing the position of the methyl sub...Micro-nano-level photonic waveguide regulation is essential for future on-chip photonic integrated systems and is still of great challenges.We report a molecular design strategy,changing the position of the methyl substituent makes the arrangement of the three isomer molecules different in their respective crystals.Based on this strategy,three sheet-like crystals with different polygonal morphologies were prepared via solution self-assembly approach.The in-depth optical measurements demonstrated that these three microsheet crystals have different 2D optical waveguide performances related to the shapes.Our work provides a feasible design strategy and material preparation method for realizing precise 2D optical waveguide modulation,which lays the foundation for complex photonic integrated systems in the future.展开更多
文摘Efficient coupling from the silicon waveguide to the GeSi layer is the key to success in the GeSi electro-absorption (EA) modulator based on evanescent coupling. A lateral taper in the upper GeSi layer has room for increasing the modulating efficiency and alleviating the sensitivity of the extinction ratio (ER) and insertion loss (IL) to the length of the active region. The light behavior and the effect of the taper are explored in detail using the beam propagation method (BPM). After optimization, the light can nearly be totally confined in the GeSi layer without any oscillation. The modulator with the designed taper can achieve low IL and high ER.
基金the National Natural Science Foundation of China(Nos.21971185,52173177)this project is also funded by the Collaborative Innovation center of Suzhou Nano Science and Technology(CIC-Nano)by the"111"Project of the State Administration of Foreign Experts Affairs of China。
文摘Micro-nano-level photonic waveguide regulation is essential for future on-chip photonic integrated systems and is still of great challenges.We report a molecular design strategy,changing the position of the methyl substituent makes the arrangement of the three isomer molecules different in their respective crystals.Based on this strategy,three sheet-like crystals with different polygonal morphologies were prepared via solution self-assembly approach.The in-depth optical measurements demonstrated that these three microsheet crystals have different 2D optical waveguide performances related to the shapes.Our work provides a feasible design strategy and material preparation method for realizing precise 2D optical waveguide modulation,which lays the foundation for complex photonic integrated systems in the future.