The short-range order structures of Fe_xGe_(1-x) amorphous thin films,(x=8.7,19.1 and 28.5%)have been studied by means of X-ray absorption spectrum.The nearest neighbors around a Ge or an Fe atom are constituted by tw...The short-range order structures of Fe_xGe_(1-x) amorphous thin films,(x=8.7,19.1 and 28.5%)have been studied by means of X-ray absorption spectrum.The nearest neighbors around a Ge or an Fe atom are constituted by two coordinate sub-shells with a very short dis- tance,In two films with lower Fe content,structural parameters of the nearest neighbors around a Ge atom are very near to that in amorphous germanium,and the positions of Fe at- oms are randomly substitutional.But when x=28.5%,some great changes occur on the short-range order structure of a-Fe_xGe_(1-x) film:its structure deviates from continuous ran- dora network and tends toward dense random packing of atoms.Meanwhile,there is a strong- er interaction between near neighboring Fe-Ge atoms in a-Fe_xGe_(1-x) films.展开更多
In an effort to clarify the formation mechanism of LPSO structure in Mg-Y-Zn alloy,the chemical environment and structural ordering in liquid Mg-rich Mg-Y-Zn system are investigated with the aid of ab-initio molecular...In an effort to clarify the formation mechanism of LPSO structure in Mg-Y-Zn alloy,the chemical environment and structural ordering in liquid Mg-rich Mg-Y-Zn system are investigated with the aid of ab-initio molecular dynamics simulation.In liquid Mg-rich Mg-Y alloys,the strong Mg-Y interaction is determined,which promotes the formation of fivefold symmetric local structure.For Mg-Zn alloys,the weak Mg-Zn interaction results in the fivefold symmetry weakening in the liquid structure.Due to the coexistence of Y and Zn,the strong attractive interaction is introduced in liquid Mg-Y-Zn ternary alloy,and contributes to the clustering of Mg,Y,Zn launched from Zn.What is more,the distribution of local structures becomes closer to that in pure Mg compared with that in binary Mg-Y and Mg-Zn alloys.These results should relate to the origins of the Y/Zn segregation zone and close-packed stacking mode in LPSO structure,which provides a new insight into the formation mechanism of LPSO structure at atomic level.展开更多
The microstructure and mechanical properties of Mg94Zn2Y4 extruded alloy containing long-period stacking ordered structures were systematically investigated by SEM and TEM analyses. The results show that the 18R-LPSO ...The microstructure and mechanical properties of Mg94Zn2Y4 extruded alloy containing long-period stacking ordered structures were systematically investigated by SEM and TEM analyses. The results show that the 18R-LPSO structure and α-Mg phase are observed in cast Mg94Zn2Y4 alloy. After extrusion, the LPSO structures are delaminated and Mg-slices with width of 50-200 nm are generated. By ageing at 498 K for 36 h, the ageing peak is attained andβ′phase is precipitated. Due to this novel precipitation, the microhardness ofα-Mg matrix increases apparently from HV108.9 to HV129.7. While the microhardness for LPSO structure is stabilized at about HV145. TEM observations and SAED patterns indicate that the β′ phase has unique orientation relationships betweenα-Mg and LPSO structures, the direction in the close-packed planes ofβ′precipitates perpendicular to that ofα-Mg and LPSO structures. The ultimate tensile strength for the peak-aged alloy achieves 410.7 MPa and the significant strength originates from the coexistence ofβ′precipitates and 18R-LPSO structures.展开更多
14H, 18R and 24R long-period stacking ordered (LPSO) structures were observed in the as-cast Mg-3Cu-1Mn-2Zn-1Y damping alloy using transmission electron microscopy (TEM). These LPSO structures contained Mg, Y, Cu ...14H, 18R and 24R long-period stacking ordered (LPSO) structures were observed in the as-cast Mg-3Cu-1Mn-2Zn-1Y damping alloy using transmission electron microscopy (TEM). These LPSO structures contained Mg, Y, Cu and Zn and thus they were quaternary phases. Sharp diffraction pattern of the 24R structure was obtained and the angle between and g10024R was measured to be 5.03°. During high resolution TEM observations, lattice fringes with two characteristic spacings were observed within the 24R structure. Based on the experimental results, 6H, 7H and three 8H are suggested as the building blocks of 18R, 14H and 24R structures, respectively. The 24R unit cell can be interpreted as the stacking of 8H building blocks in the same shear direction with a shear angle of about 5.03°. The imperfect 24R structures are in order or disorder arrangements of principal 8H and minor 6H blocks. This double-block structure model is also applicable to other reported defects in LPSO structures.展开更多
It was revealed that an average energy of special boundaries is proportional to APB energy in the alloys with the L12 superstructure. This fact proves the appearance of the GAPBs in the planes of location of special b...It was revealed that an average energy of special boundaries is proportional to APB energy in the alloys with the L12 superstructure. This fact proves the appearance of the GAPBs in the planes of location of special boundaries in coincidence sites of ordered alloys. It was determined that the more energy of special boundaries in ordered alloys, the more energy of complex stacking fault. There is a correlation between the distribution of special boundaries as a function its relative energy and ordering energy: the more ordering energy, the more degree of washed away of distribution. The correlation between average relative energy of special boundaries and ordering energy was detected: the more ordering energy, the more average energy of special boundaries. The reverse dependence between ordering energy and average number of special boundaries in grains limited by boundaries of general type was discovered.展开更多
Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the c...Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the charge and discharge process(“shuttle effect”)results in fast capacity fading and inferior electrochemical performance.In this study,Mn_(2)O_(3)with an ordered mesoporous structure(OM-Mn_(2)O_(3))was designed as a cathode host for LSBs via KIT-6 hard templating,to effectively inhibit the polysulfide shuttle effect.OM-Mn_(2)O_(3)offers numerous pores to confine sulfur and tightly anchor the dissolved polysulfides through the combined effects of strong polar-polar interactions,polysulfides,and sulfur chain catenation.The OM-Mn_(2)O_(3)/S composite electrode delivered a discharge capacity of 561 mAh g^(-1) after 250 cycles at 0.5 C owing to the excellent performance of OM-Mn_(2)O_(3).Furthermore,it retained a discharge capacity of 628mA h g^(-1) even at a rate of 2 C,which was significantly higher than that of a pristine sulfur electrode(206mA h g^(-1)).These findings provide a prospective strategy for designing cathode materials for high-performance LSBs.展开更多
Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on th...Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on the crack behaviors of Mg alloys in a very high cycle fatigue(VHCF)regime.The LPSO lamellas lead to a facet-like cracking process along the basal planes at the crack initiation site and strongly prohibit the early crack propagation by deflecting the growth direction.The stress intensity factor at the periphery of the faceted area is much higher than the conventional LPSO-free Mg alloys,contributing higher fatigue crack propagation threshold of LPSO-containing Mg alloys.Microstructure observation at the facets reveals a layer of ultrafine grains at the fracture surface due to the cyclic contact of the crack surface,which supports the numerous cyclic pressing model describing the VHCF crack initiation behavior.展开更多
We measured the resonant Raman spectra of all-trans-β-carotene in solvents with different densities and concentrations at different temperatures. The results demonstrated that the Raman scattering cross section (RSC...We measured the resonant Raman spectra of all-trans-β-carotene in solvents with different densities and concentrations at different temperatures. The results demonstrated that the Raman scattering cross section (RSCS) of short-chain polymer all-trans-β-carotene is extremely high in liquid. Resonance and strong coherent weakly damped CC bond vibrating properties play important roles under these conditions. Coherent weakly damped CC bond vibration strength is associated with molecular ordered structure. All-trans-β-carotene has highly ordered structure and strong coherent weakly damped CC bond vibrating properties, which lead to large RSCS in the solvent with large density and low concentration at low temperature.展开更多
Molecular dynamics simulation was employed to investigate the dynamical and structural properties of Al−Mg melts with the Al concentration systematically changed.The results show that the viscosity of Al67Mg33 abnorma...Molecular dynamics simulation was employed to investigate the dynamical and structural properties of Al−Mg melts with the Al concentration systematically changed.The results show that the viscosity of Al67Mg33 abnormally surpasses that of Al85Mg15 below 550 K,inconsistent with the tendency at high temperatures.The evolution of the icosahedral order population is found to account for this dynamic behavior.Structural analysis shows a preferred bonding between Al and Mg atoms in the nearest neighbor shells,while a repelling tendency between them in the second shells,leading to the prepeak emergence in the partial static structure factors.The formation of icosahedral clusters is constrained in the Al-rich compositions because of the lack of sufficient Mg atoms to stabilize the clusters geometrically.These results demonstrate the structural consequence through the interplay between geometric packing and chemical interaction.These findings are crucial to understanding the structure−dynamic properties in Al−Mg melts.展开更多
Traditional heat conductive epoxy composites often fall short in meeting the escalating heat dissipation demands of large-power,high-frequency,and highvoltage insulating packaging applications,due to the challenge of ...Traditional heat conductive epoxy composites often fall short in meeting the escalating heat dissipation demands of large-power,high-frequency,and highvoltage insulating packaging applications,due to the challenge of achieving high thermal conductivity(k),desirable dielectric performance,and robust thermomechanical properties simultaneously.Liquid crystal epoxy(LCE)emerges as a unique epoxy,exhibiting inherently high k achieved through the self-assembly of mesogenic units into ordered structures.This characteristic enables liquid crystal epoxy to retain all the beneficial physical properties of pristine epoxy,while demonstrating a prominently enhanced k.As such,liquid crystal epoxy materials represent a promising solution for thermal management,with potential to tackle the critical issues and technical bottlenecks impeding the increasing miniaturization of microelectronic devices and electrical equipment.This article provides a comprehensive review on recent advances in liquid crystal epoxy,emphasizing the correlation between liquid crystal epoxy’s microscopic arrangement,organized mesoscopic domain,k,and relevant physical properties.The impacts of LC units and curing agents on the development of ordered structure are discussed,alongside the consequent effects on the k,dielectric,thermal,and other properties.External processing factors such as temperature and pressure and their influence on the formation and organization of structured domains are also evaluated.Finally,potential applications that could benefit from the emergence of liquid crystal epoxy are reviewed.展开更多
Magnetic fluids,also known as ferrofluids,are versatile functional materials with a wide range of applications.These applications span from industrial uses such as vacuum seals,actuators,and acoustic devices to medica...Magnetic fluids,also known as ferrofluids,are versatile functional materials with a wide range of applications.These applications span from industrial uses such as vacuum seals,actuators,and acoustic devices to medical uses,including serving as contrast agents for magnetic resonance imaging(MRI),delivering medications to specific locations within the body,and magnetic hyperthermia for cancer treatment.The use of a non-wettable immiscible liquid substrate to support a layer of magnetic fluid opens up new possibilities for studying various fluid flows and related instabilities in multi-phase systems with both a free surface and an interface.The presence of two deformable boundaries within a ferrofluid layer significantly reduces the critical magnetic field strength required to transform the layer into an organized system of drops or polygonal figures evolving according to the intensity,frequency and direction of the considered magnetic field.This paper experimentally investigates this problem by assuming a uniform magnetic field perpendicular to the surface.This specific subject has not been previously explored experimentally.The critical magnetic field intensity required to destabilize the ferrofluid layer is determined based on the layer’s thickness and the fluid’s initial magnetic susceptibility.It is demonstrated that the critical magnetic field strength needed to disrupt the initially continuous ferrofluid layer increases with the layer’s thickness.Conversely,an increase in the ferrofluid’s magnetic susceptibility results in a decrease in the critical magnetic field strength.The emerging droplet structures are analyzed in terms of the number of drops,their size,and the periodicity of their arrangement.The number of droplets formed depends on the initial thickness of the layer,the presence or absence of a stable rupture in the upper layer,and the rate at which the magnetic field strength is increased to the critical value.A characteristic viscous time is proposed to evaluate the decomposition of the ferrofluid layer,which depends on the duration of the magnetic field’s application.The experimental data on the instability of a ferrofluid layer on a liquid substrate are compared with the theoretical results from the study of“magnetic fluid sandwich structures”conducted by Rannacher and Engel.This comparison highlights the similarities and differences between experimental observations and theoretical predictions,providing a deeper understanding of the behavior of ferrofluid layers under the influence of magnetic fields.展开更多
A Mg-14.28Gd-2.44Zn-0.54Zr (mass fraction, %) alloy was prepared by conventional ingot metallurgy (I/M). The microstructure differences in as-cast and solution-treated alloys were investigated. Sliding tribologica...A Mg-14.28Gd-2.44Zn-0.54Zr (mass fraction, %) alloy was prepared by conventional ingot metallurgy (I/M). The microstructure differences in as-cast and solution-treated alloys were investigated. Sliding tribological behaviors of the as-cast and solution-treated alloys were investigated under oil lubricant condition by pin-on-disc configuration. The wear loss and friction coefficients were measured at a load of 40 N and sliding speeds of 30-300 mm/s with a sliding distance of 5000 m at room temperature. The results show that the as-cast alloy is mainly composed ofα-Mg solid solution, the lamellar 14H-type long period stacking ordered (LPSO) structure within matrix, andβ-[(Mg,Zn)3Gd] phase. However, most of theβ-phase transforms to X-phase with 14H-type LPSO structure after solution heat treatment at 773 K for 35 h (T4). The solution-treated alloy presents low wear-resistance, because the hard β-phase is converted into thermally-stable, ductile and soft X-Mg12GdZn phase with LPSO structure in the alloy.展开更多
In as-cast Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr(mole fraction,%)alloy,lamellar microstructures that extend from grain boundaries to the interior ofα-Mg grains are identified as clusters ofγ′using a scanning transmission ele...In as-cast Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr(mole fraction,%)alloy,lamellar microstructures that extend from grain boundaries to the interior ofα-Mg grains are identified as clusters ofγ′using a scanning transmission electron microscope equipped with a high-angle annular dark-field detector.Under a total strain-controlled low-cyclic loading at573K,the mechanical response and failure mechanism of Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr alloy(T6peak-aging heat treatment)were investigated.Results show that the alloy exhibits cyclic softening response at diverse total strain amplitudes and573K.The experimental observations using scanning electron microscopy show that the micro-cracks initiate preferentially at the interface between long-period stacking order structures andα-Mg matrix and extend along the basal plane ofα-Mg.The massive long-period stacking order structures distributed at grain boundaries impede the transgranular propagation of cracks.展开更多
The microstructure and phase composition of as-cast Mg-9Er-6Y-xZn-0.6Zr (x=1, 2, 3, 4; normal mass fraction in %) alloys were investigated. In low Zn content, aside from the major second phase of Mg24(Er, Y, Zn)5,...The microstructure and phase composition of as-cast Mg-9Er-6Y-xZn-0.6Zr (x=1, 2, 3, 4; normal mass fraction in %) alloys were investigated. In low Zn content, aside from the major second phase of Mg24(Er, Y, Zn)5, there are a few lamellar phases that grow parallel with each other from the grain boundaries to the grain interior. With Zn content increasing, the Mg24(Er, Y, Zn)5 phase decreases, but the Mg12Zn(Y, Er) phase and lamellar phases continuously increase. When Zn content reaches 4% (normal mass fraction), the Mg12Zn(Y, Er) phase mainly exists as large bulks, and some a-Mg grains are thoroughly penetrated by the lamellar phases. Moreover, the crystallography structures of the Mgl2Zn(Y, Er) and Mg24(Er, Y, Zn)5 phases are confirmed as 18R-type long-period stacking ordered structure and body-centred cubic structure, respectively.展开更多
Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in ...Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in the material research field.Herein,a kind of ultrafine zinc oxide(ZnO)nanoparticles(NPs)supported on three-dimensional(3D)ordered mesoporous carbon spheres(ZnO/OMCS)is prepared from silica inverse opal by using phenolic resol precursor as carbon source.The prepared lightweight ZnO/OMCS nanocomposites exhibit 3D ordered carbon sphere array and highly dispersed ultrafine ZnO NPs on the mesoporous cell walls of carbon spheres.ZnO/OMCS-30 shows microwave absorbing ability with a strong absorption(−39.3 dB at 10.4 GHz with a small thickness of 2 mm)and a broad effective absorption bandwidth(9.1 GHz).The outstanding microwave absorbing ability benefits to the well-dispersed ultrafine ZnO NPs and the 3D ordered mesoporous carbon spheres structure.This work opened up a unique way for developing lightweight and high-efficient carbon-based microwave absorbing materials.展开更多
Highly ordered mesoporous NiMoO4 material was successfully synthesized using mesoporous silica KIT-6 as hard template via vacuum nanocasting method. The structure was characterized by means of XRD, TEM, N2 adsorption-...Highly ordered mesoporous NiMoO4 material was successfully synthesized using mesoporous silica KIT-6 as hard template via vacuum nanocasting method. The structure was characterized by means of XRD, TEM, N2 adsorption-desorption, Raman and FT-IR. The mesoporous NiMoO4 with the coexistence of a-NiMoO4 and fl-NiMoO4 showed well-ordered mesoporous structure, a bimodal pore size distribution and crystalline framework. The catalytic performance of NiMoOa was investigated for oxidative dehydrogenation of propane. It is demonstrated that the mesoporous NiMoO4 catalyst with more surface active oxygen species showed better catalytic performance in oxidative dehydrogena- tion of propane in comparison with bulk NiMoO4.展开更多
Simultaneously enhancing the reaction kinetics,mass transport,and gas release during alkaline hydrogen evolution reaction(HER)is critical to minimizing the reaction polarization resistance,but remains a big challenge....Simultaneously enhancing the reaction kinetics,mass transport,and gas release during alkaline hydrogen evolution reaction(HER)is critical to minimizing the reaction polarization resistance,but remains a big challenge.Through rational design of a hierarchical multiheterogeneous three-dimensionally(3D)ordered macroporous Mo_(2)C-embedded nitrogen-doped carbon with ultrafine Ru nanoclusters anchored on its surface(OMS Mo_(2)C/NC-Ru),we realize both electronic and morphologic engineering of the catalyst to maximize the electrocatalysis performance.The formed Ru-NC heterostructure shows regulative electronic states and optimized adsorption energy with the intermediate H*,and the Mo_(2)C-NC heterostructure accelerates the Volmer reaction due to the strong water dissociation ability as confirmed by theoretical calculations.Consequently,superior HER activity in alkaline solution with an extremely low overpotential of 15.5 mV at 10 mAcm^(−2)with the mass activity more than 17 times higher than that of the benchmark Pt/C,an ultrasmall Tafel slope of 22.7 mV dec−1,and excellent electrocatalytic durability were achieved,attributing to the enhanced mass transport and favorable gas release process endowed from the unique OMS Mo_(2)C/NC-Ru structure.By oxidizing OMS Mo_(2)C/NC-Ru into OMS MoO_(3)-RuO_(2)catalyst,it can also be applied as efficient oxygen evolution electrocatalyst,enabling the construction of a quasi-symmetric electrolyzer for overall water splitting.Such a device's performance surpassed the state-of-the-art Pt/C||RuO2 electrolyzer.This study provides instructive guidance for designing 3D-ordered macroporous multicomponent catalysts for efficient catalytic applications.展开更多
The morphology and crystal structure of the precipitates in Mg-7Gd-3Y-1Nd-1Zn-0.5Zr(wt.%)alloy with fine plate-like 14H-LPSO structures aged at 240℃were investigated using transmission electron microscopy(TEM)and hig...The morphology and crystal structure of the precipitates in Mg-7Gd-3Y-1Nd-1Zn-0.5Zr(wt.%)alloy with fine plate-like 14H-LPSO structures aged at 240℃were investigated using transmission electron microscopy(TEM)and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).Fine plate-like 14H-LPSO structures precipitate after heat treatment at 500℃for 2 h,andβ-type phases precipitate after the alloy is aged at 240℃.The long-period atomic stacking sequence of 14H-LPSO structures along the[0001]αdirection is ABABCACACACBABA.After being aged at 240℃for 2 h,theβ-type phases are the ordered solution clusters,zig-zag GP zones,and a small number ofβ′phases.The peak hardness is obtained at 240℃for 18 h with a Brinell hardness of 112,theβ-type phases areβ’phases and local RE-rich structures.After being aged at 240℃for 100 h,theβ-type phases areβ’,β1 andβ’F phases.β′phases nucleate from the zig-zag GP zones directly withoutβ″phases,and then transform intoβ1 phase byβ’→β’F→β1 transformations.The Zn not only can form LPSO structure,but also is the constituent element ofβ1 phases.LPSO structures have a certain hindrance to the coarsening ofβ’andβ1 along<0001>α.展开更多
Formation of β’ phase in long-period stacking ordered(LPSO) structures in an Mg;Co;Y;(at.%) alloy after aging at 200 °C for 24 h or electron beam(EB) irradiation has been studied by high-angle annular dark-fiel...Formation of β’ phase in long-period stacking ordered(LPSO) structures in an Mg;Co;Y;(at.%) alloy after aging at 200 °C for 24 h or electron beam(EB) irradiation has been studied by high-angle annular dark-field scanning transmission electron microscopy(HAADFSTEM). β’ phase was precipitated only in the Mg matrix but not in LPSO structures after aging at 200 °C for 24 h. LPSO structure containing stacking defects transforms into the β’-long phase during EB irradiation, which plays a key role in accelerating solute atoms’ diffusion. New complex β’(LPSO) structures formed in the alloy after EB irradiation, such as β’(12 H) structure with an orthorhombic lattice(Mg;Y, Cmcm,a = 2 _(a0)= 0.642 nm, b=4√3_(a0), c = 6 _(c0)= 3.12 nm).展开更多
Sodium-ion hybrid capacitor(SIHC)is one of the most promising alternatives for large-scale energy storage due to its high energy and power densities,natural abundance,and low cost.However,overcoming the imbalance betw...Sodium-ion hybrid capacitor(SIHC)is one of the most promising alternatives for large-scale energy storage due to its high energy and power densities,natural abundance,and low cost.However,overcoming the imbalance between slow Na^(+)reaction kinetics of battery-type anodes and rapid ion adsorption/desorption of capacitive cathodes is a significant challenge.Here,we propose the high-rate-performance NiS_(2)@OMGC anode material composed of monodispersed NiS_(2) nanocrystals(8.8±1.7 nm in size)and N,S-co-doped graphenic carbon(GC).The NiS_(2)@OMGC material has a three-dimensionally ordered macroporous(3DOM)morphology,and numerous NiS_(2) nanocrystals are uniformly embedded in GC,forming a core-shell structure in the local area.Ultrafine NiS_(2) nanocrystals and their nano-microstructure demonstrate high pseudocapacitive Na-storage capability and thus excellent rate performance(355.7 mAh/g at 20.0 A/g).A SIHC device fabricated using NiS_(2)@OMGC and commercial activated carbon(AC)cathode exhibits ultrahigh energy densities(197.4 Wh/kg at 398.8 W/kg)and power densities(43.9 kW/kg at 41.3 Wh/kg),together with a long life span.This outcome exemplifies the rational architecture and composition design of this type of anode material.This strategy can be extended to the design and synthesis of a wide range of high-performance electrode materials for energy storage applications.展开更多
文摘The short-range order structures of Fe_xGe_(1-x) amorphous thin films,(x=8.7,19.1 and 28.5%)have been studied by means of X-ray absorption spectrum.The nearest neighbors around a Ge or an Fe atom are constituted by two coordinate sub-shells with a very short dis- tance,In two films with lower Fe content,structural parameters of the nearest neighbors around a Ge atom are very near to that in amorphous germanium,and the positions of Fe at- oms are randomly substitutional.But when x=28.5%,some great changes occur on the short-range order structure of a-Fe_xGe_(1-x) film:its structure deviates from continuous ran- dora network and tends toward dense random packing of atoms.Meanwhile,there is a strong- er interaction between near neighboring Fe-Ge atoms in a-Fe_xGe_(1-x) films.
基金supported by National Natural Science Foundation of China,China(No.51901117,51801116)Youth Innovation and Technology Support Program of Shandong Provincial Colleges and Universities,China(No.2020KJA002)+2 种基金Youth Fund of Shandong Academy of Sciences,China(2020QN0021)Innovation Pilot Project for Fusion of Science,Education and Industry(International Cooperation)from Qilu University of Technology(Shandong Academy of Sciences),China(No.2020KJC-GH03)Several Policies on Promoting Collaborative Innovation and Industrialization of Achievements in Universities and Research Institutes,China(No.2019GXRC030)。
文摘In an effort to clarify the formation mechanism of LPSO structure in Mg-Y-Zn alloy,the chemical environment and structural ordering in liquid Mg-rich Mg-Y-Zn system are investigated with the aid of ab-initio molecular dynamics simulation.In liquid Mg-rich Mg-Y alloys,the strong Mg-Y interaction is determined,which promotes the formation of fivefold symmetric local structure.For Mg-Zn alloys,the weak Mg-Zn interaction results in the fivefold symmetry weakening in the liquid structure.Due to the coexistence of Y and Zn,the strong attractive interaction is introduced in liquid Mg-Y-Zn ternary alloy,and contributes to the clustering of Mg,Y,Zn launched from Zn.What is more,the distribution of local structures becomes closer to that in pure Mg compared with that in binary Mg-Y and Mg-Zn alloys.These results should relate to the origins of the Y/Zn segregation zone and close-packed stacking mode in LPSO structure,which provides a new insight into the formation mechanism of LPSO structure at atomic level.
基金Project (BK2010392) supported by the Natural Science Foundation of Jiangsu Province of ChinaProject (3212000502) supported by the Innovation Foundation of Southeast University,China
文摘The microstructure and mechanical properties of Mg94Zn2Y4 extruded alloy containing long-period stacking ordered structures were systematically investigated by SEM and TEM analyses. The results show that the 18R-LPSO structure and α-Mg phase are observed in cast Mg94Zn2Y4 alloy. After extrusion, the LPSO structures are delaminated and Mg-slices with width of 50-200 nm are generated. By ageing at 498 K for 36 h, the ageing peak is attained andβ′phase is precipitated. Due to this novel precipitation, the microhardness ofα-Mg matrix increases apparently from HV108.9 to HV129.7. While the microhardness for LPSO structure is stabilized at about HV145. TEM observations and SAED patterns indicate that the β′ phase has unique orientation relationships betweenα-Mg and LPSO structures, the direction in the close-packed planes ofβ′precipitates perpendicular to that ofα-Mg and LPSO structures. The ultimate tensile strength for the peak-aged alloy achieves 410.7 MPa and the significant strength originates from the coexistence ofβ′precipitates and 18R-LPSO structures.
基金Project (2009CB623704) supported by the National Basic Research Program of ChinaProject (50971076) supported by the National Natural Science Foundation of China
文摘14H, 18R and 24R long-period stacking ordered (LPSO) structures were observed in the as-cast Mg-3Cu-1Mn-2Zn-1Y damping alloy using transmission electron microscopy (TEM). These LPSO structures contained Mg, Y, Cu and Zn and thus they were quaternary phases. Sharp diffraction pattern of the 24R structure was obtained and the angle between and g10024R was measured to be 5.03°. During high resolution TEM observations, lattice fringes with two characteristic spacings were observed within the 24R structure. Based on the experimental results, 6H, 7H and three 8H are suggested as the building blocks of 18R, 14H and 24R structures, respectively. The 24R unit cell can be interpreted as the stacking of 8H building blocks in the same shear direction with a shear angle of about 5.03°. The imperfect 24R structures are in order or disorder arrangements of principal 8H and minor 6H blocks. This double-block structure model is also applicable to other reported defects in LPSO structures.
基金B.V.Konovalova., N.A. Koneva and E.V.Kozlov acknowledge the INTAS for the partial support of this research under INTAS97-319
文摘It was revealed that an average energy of special boundaries is proportional to APB energy in the alloys with the L12 superstructure. This fact proves the appearance of the GAPBs in the planes of location of special boundaries in coincidence sites of ordered alloys. It was determined that the more energy of special boundaries in ordered alloys, the more energy of complex stacking fault. There is a correlation between the distribution of special boundaries as a function its relative energy and ordering energy: the more ordering energy, the more degree of washed away of distribution. The correlation between average relative energy of special boundaries and ordering energy was detected: the more ordering energy, the more average energy of special boundaries. The reverse dependence between ordering energy and average number of special boundaries in grains limited by boundaries of general type was discovered.
基金Ministry of Trade,Industry and Energy,Grant/Award Number:20010095Korea Evaluation Institute of Industrial Technology,Grant/Award Number:20012341。
文摘Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the charge and discharge process(“shuttle effect”)results in fast capacity fading and inferior electrochemical performance.In this study,Mn_(2)O_(3)with an ordered mesoporous structure(OM-Mn_(2)O_(3))was designed as a cathode host for LSBs via KIT-6 hard templating,to effectively inhibit the polysulfide shuttle effect.OM-Mn_(2)O_(3)offers numerous pores to confine sulfur and tightly anchor the dissolved polysulfides through the combined effects of strong polar-polar interactions,polysulfides,and sulfur chain catenation.The OM-Mn_(2)O_(3)/S composite electrode delivered a discharge capacity of 561 mAh g^(-1) after 250 cycles at 0.5 C owing to the excellent performance of OM-Mn_(2)O_(3).Furthermore,it retained a discharge capacity of 628mA h g^(-1) even at a rate of 2 C,which was significantly higher than that of a pristine sulfur electrode(206mA h g^(-1)).These findings provide a prospective strategy for designing cathode materials for high-performance LSBs.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Nos.12072212 and 11832007)the National Key Research and Development Program of China(No.2018YFE0307104)the Applied Basic Research Programs of Sichuan Province(No.2021YJ0071).We also highly appreciate the help of Dr.Yan Li from the Department of Mechanics,Sichuan University.
文摘Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on the crack behaviors of Mg alloys in a very high cycle fatigue(VHCF)regime.The LPSO lamellas lead to a facet-like cracking process along the basal planes at the crack initiation site and strongly prohibit the early crack propagation by deflecting the growth direction.The stress intensity factor at the periphery of the faceted area is much higher than the conventional LPSO-free Mg alloys,contributing higher fatigue crack propagation threshold of LPSO-containing Mg alloys.Microstructure observation at the facets reveals a layer of ultrafine grains at the fracture surface due to the cyclic contact of the crack surface,which supports the numerous cyclic pressing model describing the VHCF crack initiation behavior.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10774057 and 10974067)the Graduate Innovation Fund of Jilin University,China (Grant No. 20101046)
文摘We measured the resonant Raman spectra of all-trans-β-carotene in solvents with different densities and concentrations at different temperatures. The results demonstrated that the Raman scattering cross section (RSCS) of short-chain polymer all-trans-β-carotene is extremely high in liquid. Resonance and strong coherent weakly damped CC bond vibrating properties play important roles under these conditions. Coherent weakly damped CC bond vibration strength is associated with molecular ordered structure. All-trans-β-carotene has highly ordered structure and strong coherent weakly damped CC bond vibrating properties, which lead to large RSCS in the solvent with large density and low concentration at low temperature.
基金supported by the Open Research Fund of Songshan Lake Materials Laboratory,China (No.2022SLABFN14)Guangdong Basic and Applied Basic Research Foundation,China (No.2021A1515110108)the National Natural Science Foundation of China (No.52371168)。
文摘Molecular dynamics simulation was employed to investigate the dynamical and structural properties of Al−Mg melts with the Al concentration systematically changed.The results show that the viscosity of Al67Mg33 abnormally surpasses that of Al85Mg15 below 550 K,inconsistent with the tendency at high temperatures.The evolution of the icosahedral order population is found to account for this dynamic behavior.Structural analysis shows a preferred bonding between Al and Mg atoms in the nearest neighbor shells,while a repelling tendency between them in the second shells,leading to the prepeak emergence in the partial static structure factors.The formation of icosahedral clusters is constrained in the Al-rich compositions because of the lack of sufficient Mg atoms to stabilize the clusters geometrically.These results demonstrate the structural consequence through the interplay between geometric packing and chemical interaction.These findings are crucial to understanding the structure−dynamic properties in Al−Mg melts.
基金supported by funding from the National Natural Science Foundation of China(No.52277028,51577154,U1903133)
文摘Traditional heat conductive epoxy composites often fall short in meeting the escalating heat dissipation demands of large-power,high-frequency,and highvoltage insulating packaging applications,due to the challenge of achieving high thermal conductivity(k),desirable dielectric performance,and robust thermomechanical properties simultaneously.Liquid crystal epoxy(LCE)emerges as a unique epoxy,exhibiting inherently high k achieved through the self-assembly of mesogenic units into ordered structures.This characteristic enables liquid crystal epoxy to retain all the beneficial physical properties of pristine epoxy,while demonstrating a prominently enhanced k.As such,liquid crystal epoxy materials represent a promising solution for thermal management,with potential to tackle the critical issues and technical bottlenecks impeding the increasing miniaturization of microelectronic devices and electrical equipment.This article provides a comprehensive review on recent advances in liquid crystal epoxy,emphasizing the correlation between liquid crystal epoxy’s microscopic arrangement,organized mesoscopic domain,k,and relevant physical properties.The impacts of LC units and curing agents on the development of ordered structure are discussed,alongside the consequent effects on the k,dielectric,thermal,and other properties.External processing factors such as temperature and pressure and their influence on the formation and organization of structured domains are also evaluated.Finally,potential applications that could benefit from the emergence of liquid crystal epoxy are reviewed.
基金the framework of the State Program AAAA-A20-120020690030-5.
文摘Magnetic fluids,also known as ferrofluids,are versatile functional materials with a wide range of applications.These applications span from industrial uses such as vacuum seals,actuators,and acoustic devices to medical uses,including serving as contrast agents for magnetic resonance imaging(MRI),delivering medications to specific locations within the body,and magnetic hyperthermia for cancer treatment.The use of a non-wettable immiscible liquid substrate to support a layer of magnetic fluid opens up new possibilities for studying various fluid flows and related instabilities in multi-phase systems with both a free surface and an interface.The presence of two deformable boundaries within a ferrofluid layer significantly reduces the critical magnetic field strength required to transform the layer into an organized system of drops or polygonal figures evolving according to the intensity,frequency and direction of the considered magnetic field.This paper experimentally investigates this problem by assuming a uniform magnetic field perpendicular to the surface.This specific subject has not been previously explored experimentally.The critical magnetic field intensity required to destabilize the ferrofluid layer is determined based on the layer’s thickness and the fluid’s initial magnetic susceptibility.It is demonstrated that the critical magnetic field strength needed to disrupt the initially continuous ferrofluid layer increases with the layer’s thickness.Conversely,an increase in the ferrofluid’s magnetic susceptibility results in a decrease in the critical magnetic field strength.The emerging droplet structures are analyzed in terms of the number of drops,their size,and the periodicity of their arrangement.The number of droplets formed depends on the initial thickness of the layer,the presence or absence of a stable rupture in the upper layer,and the rate at which the magnetic field strength is increased to the critical value.A characteristic viscous time is proposed to evaluate the decomposition of the ferrofluid layer,which depends on the duration of the magnetic field’s application.The experimental data on the instability of a ferrofluid layer on a liquid substrate are compared with the theoretical results from the study of“magnetic fluid sandwich structures”conducted by Rannacher and Engel.This comparison highlights the similarities and differences between experimental observations and theoretical predictions,providing a deeper understanding of the behavior of ferrofluid layers under the influence of magnetic fields.
基金Projects(51304135,50971089)supported by the National Natural Science Foundation of ChinaProject(A1420110045)supported by National Defense Basic Research Plan,China+1 种基金Project(11QH1401200)supported by the Shanghai Phospherus Program,ChinaProject(NCET-11-0329)supported by the New Century Excellent Talents in University of Ministry of Education of China
文摘A Mg-14.28Gd-2.44Zn-0.54Zr (mass fraction, %) alloy was prepared by conventional ingot metallurgy (I/M). The microstructure differences in as-cast and solution-treated alloys were investigated. Sliding tribological behaviors of the as-cast and solution-treated alloys were investigated under oil lubricant condition by pin-on-disc configuration. The wear loss and friction coefficients were measured at a load of 40 N and sliding speeds of 30-300 mm/s with a sliding distance of 5000 m at room temperature. The results show that the as-cast alloy is mainly composed ofα-Mg solid solution, the lamellar 14H-type long period stacking ordered (LPSO) structure within matrix, andβ-[(Mg,Zn)3Gd] phase. However, most of theβ-phase transforms to X-phase with 14H-type LPSO structure after solution heat treatment at 773 K for 35 h (T4). The solution-treated alloy presents low wear-resistance, because the hard β-phase is converted into thermally-stable, ductile and soft X-Mg12GdZn phase with LPSO structure in the alloy.
基金Project(2015TP1035)supported by the Science and Technology Planning Project of Hunan Province,ChinaProject(531107040183)supported by the Fundamental Research Funds for the Central Universities,China
文摘In as-cast Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr(mole fraction,%)alloy,lamellar microstructures that extend from grain boundaries to the interior ofα-Mg grains are identified as clusters ofγ′using a scanning transmission electron microscope equipped with a high-angle annular dark-field detector.Under a total strain-controlled low-cyclic loading at573K,the mechanical response and failure mechanism of Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr alloy(T6peak-aging heat treatment)were investigated.Results show that the alloy exhibits cyclic softening response at diverse total strain amplitudes and573K.The experimental observations using scanning electron microscopy show that the micro-cracks initiate preferentially at the interface between long-period stacking order structures andα-Mg matrix and extend along the basal plane ofα-Mg.The massive long-period stacking order structures distributed at grain boundaries impede the transgranular propagation of cracks.
基金Project(NCET-11-0554) supported by the Program for New Century Excellent Talents in University,ChinaProject(2011BAE22B04) supported by the National Key Technology R&D Program,ChinaProject(51271206) supported by the National Natural Science Foundation of China
文摘The microstructure and phase composition of as-cast Mg-9Er-6Y-xZn-0.6Zr (x=1, 2, 3, 4; normal mass fraction in %) alloys were investigated. In low Zn content, aside from the major second phase of Mg24(Er, Y, Zn)5, there are a few lamellar phases that grow parallel with each other from the grain boundaries to the grain interior. With Zn content increasing, the Mg24(Er, Y, Zn)5 phase decreases, but the Mg12Zn(Y, Er) phase and lamellar phases continuously increase. When Zn content reaches 4% (normal mass fraction), the Mg12Zn(Y, Er) phase mainly exists as large bulks, and some a-Mg grains are thoroughly penetrated by the lamellar phases. Moreover, the crystallography structures of the Mgl2Zn(Y, Er) and Mg24(Er, Y, Zn)5 phases are confirmed as 18R-type long-period stacking ordered structure and body-centred cubic structure, respectively.
基金The authors are grateful of the financial support by the National Natural Science Foundation of China(51902083 and 21606068)the Foundation Strengthening Program(2019-JCJQ-142-00)the Higher Education Science and Technology Research Project of Hebei Province(ZD2019087).
文摘Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in the material research field.Herein,a kind of ultrafine zinc oxide(ZnO)nanoparticles(NPs)supported on three-dimensional(3D)ordered mesoporous carbon spheres(ZnO/OMCS)is prepared from silica inverse opal by using phenolic resol precursor as carbon source.The prepared lightweight ZnO/OMCS nanocomposites exhibit 3D ordered carbon sphere array and highly dispersed ultrafine ZnO NPs on the mesoporous cell walls of carbon spheres.ZnO/OMCS-30 shows microwave absorbing ability with a strong absorption(−39.3 dB at 10.4 GHz with a small thickness of 2 mm)and a broad effective absorption bandwidth(9.1 GHz).The outstanding microwave absorbing ability benefits to the well-dispersed ultrafine ZnO NPs and the 3D ordered mesoporous carbon spheres structure.This work opened up a unique way for developing lightweight and high-efficient carbon-based microwave absorbing materials.
基金supported by NSFC(21073235,21173270,21177160,21376261)863 Program(2013AA065302)PetroChina Innovation Foundation(2011D-5006-0403)
文摘Highly ordered mesoporous NiMoO4 material was successfully synthesized using mesoporous silica KIT-6 as hard template via vacuum nanocasting method. The structure was characterized by means of XRD, TEM, N2 adsorption-desorption, Raman and FT-IR. The mesoporous NiMoO4 with the coexistence of a-NiMoO4 and fl-NiMoO4 showed well-ordered mesoporous structure, a bimodal pore size distribution and crystalline framework. The catalytic performance of NiMoOa was investigated for oxidative dehydrogenation of propane. It is demonstrated that the mesoporous NiMoO4 catalyst with more surface active oxygen species showed better catalytic performance in oxidative dehydrogena- tion of propane in comparison with bulk NiMoO4.
基金University of Macao,Grant/Award Numbers:MYRG2018-00192-IAPME,MYRG2020-00187-IAPMEScience and Technology Development Fund,Macao SAR,Grant/Award Numbers:0021/2019/AIR,0041/2019/A1,0046/2019/AFJ,0191/2017/A3UEA funding。
文摘Simultaneously enhancing the reaction kinetics,mass transport,and gas release during alkaline hydrogen evolution reaction(HER)is critical to minimizing the reaction polarization resistance,but remains a big challenge.Through rational design of a hierarchical multiheterogeneous three-dimensionally(3D)ordered macroporous Mo_(2)C-embedded nitrogen-doped carbon with ultrafine Ru nanoclusters anchored on its surface(OMS Mo_(2)C/NC-Ru),we realize both electronic and morphologic engineering of the catalyst to maximize the electrocatalysis performance.The formed Ru-NC heterostructure shows regulative electronic states and optimized adsorption energy with the intermediate H*,and the Mo_(2)C-NC heterostructure accelerates the Volmer reaction due to the strong water dissociation ability as confirmed by theoretical calculations.Consequently,superior HER activity in alkaline solution with an extremely low overpotential of 15.5 mV at 10 mAcm^(−2)with the mass activity more than 17 times higher than that of the benchmark Pt/C,an ultrasmall Tafel slope of 22.7 mV dec−1,and excellent electrocatalytic durability were achieved,attributing to the enhanced mass transport and favorable gas release process endowed from the unique OMS Mo_(2)C/NC-Ru structure.By oxidizing OMS Mo_(2)C/NC-Ru into OMS MoO_(3)-RuO_(2)catalyst,it can also be applied as efficient oxygen evolution electrocatalyst,enabling the construction of a quasi-symmetric electrolyzer for overall water splitting.Such a device's performance surpassed the state-of-the-art Pt/C||RuO2 electrolyzer.This study provides instructive guidance for designing 3D-ordered macroporous multicomponent catalysts for efficient catalytic applications.
基金Projects(51871195,51501015)supported by the National Natural Science Foundation of ChinaProject(TC170A5SU-1)supported by Ministry of Industry and Information Technology of China。
文摘The morphology and crystal structure of the precipitates in Mg-7Gd-3Y-1Nd-1Zn-0.5Zr(wt.%)alloy with fine plate-like 14H-LPSO structures aged at 240℃were investigated using transmission electron microscopy(TEM)and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).Fine plate-like 14H-LPSO structures precipitate after heat treatment at 500℃for 2 h,andβ-type phases precipitate after the alloy is aged at 240℃.The long-period atomic stacking sequence of 14H-LPSO structures along the[0001]αdirection is ABABCACACACBABA.After being aged at 240℃for 2 h,theβ-type phases are the ordered solution clusters,zig-zag GP zones,and a small number ofβ′phases.The peak hardness is obtained at 240℃for 18 h with a Brinell hardness of 112,theβ-type phases areβ’phases and local RE-rich structures.After being aged at 240℃for 100 h,theβ-type phases areβ’,β1 andβ’F phases.β′phases nucleate from the zig-zag GP zones directly withoutβ″phases,and then transform intoβ1 phase byβ’→β’F→β1 transformations.The Zn not only can form LPSO structure,but also is the constituent element ofβ1 phases.LPSO structures have a certain hindrance to the coarsening ofβ’andβ1 along<0001>α.
基金supported by the National Natural Science Foundation of China(Grant No.51801214 and 51871222)。
文摘Formation of β’ phase in long-period stacking ordered(LPSO) structures in an Mg;Co;Y;(at.%) alloy after aging at 200 °C for 24 h or electron beam(EB) irradiation has been studied by high-angle annular dark-field scanning transmission electron microscopy(HAADFSTEM). β’ phase was precipitated only in the Mg matrix but not in LPSO structures after aging at 200 °C for 24 h. LPSO structure containing stacking defects transforms into the β’-long phase during EB irradiation, which plays a key role in accelerating solute atoms’ diffusion. New complex β’(LPSO) structures formed in the alloy after EB irradiation, such as β’(12 H) structure with an orthorhombic lattice(Mg;Y, Cmcm,a = 2 _(a0)= 0.642 nm, b=4√3_(a0), c = 6 _(c0)= 3.12 nm).
基金supported by the National Natural Science Foundation of Tianjin(No.20JCQNJC01280)the National Natural Science Foundation of China(No.21905201)+1 种基金the support of the scientifi c research project from China Three Gorges Corporation(No.202103406)supported by Tohoku University and JSPS KAKENHI(No.JP16J06828).
文摘Sodium-ion hybrid capacitor(SIHC)is one of the most promising alternatives for large-scale energy storage due to its high energy and power densities,natural abundance,and low cost.However,overcoming the imbalance between slow Na^(+)reaction kinetics of battery-type anodes and rapid ion adsorption/desorption of capacitive cathodes is a significant challenge.Here,we propose the high-rate-performance NiS_(2)@OMGC anode material composed of monodispersed NiS_(2) nanocrystals(8.8±1.7 nm in size)and N,S-co-doped graphenic carbon(GC).The NiS_(2)@OMGC material has a three-dimensionally ordered macroporous(3DOM)morphology,and numerous NiS_(2) nanocrystals are uniformly embedded in GC,forming a core-shell structure in the local area.Ultrafine NiS_(2) nanocrystals and their nano-microstructure demonstrate high pseudocapacitive Na-storage capability and thus excellent rate performance(355.7 mAh/g at 20.0 A/g).A SIHC device fabricated using NiS_(2)@OMGC and commercial activated carbon(AC)cathode exhibits ultrahigh energy densities(197.4 Wh/kg at 398.8 W/kg)and power densities(43.9 kW/kg at 41.3 Wh/kg),together with a long life span.This outcome exemplifies the rational architecture and composition design of this type of anode material.This strategy can be extended to the design and synthesis of a wide range of high-performance electrode materials for energy storage applications.