The Birimian Baguiomo formations are located in the northern part of the Boromo greenstone belt. In this belt, the volcanic rocks (tholeiitic basalt, calcalkaline basalt, andesite) hosting the gold mineralization are ...The Birimian Baguiomo formations are located in the northern part of the Boromo greenstone belt. In this belt, the volcanic rocks (tholeiitic basalt, calcalkaline basalt, andesite) hosting the gold mineralization are located in the Kwademen-Baguiomo shear zone. This mineralization, located only a few kilometers from the Kwademen gold deposit, is uncharacterized and, together with the latter, could constitute a gold potential capable of being economically exploitable. It is in this sense that this work is carried out with a view to characterizing the gold mineralization of the Baguiomo gold panning site. To carry out this work, we have made direct field measurements, combined with microstructures, and combined all this with data from geochemical rock analysis of the basalts that are the main host formations. Geochemical data show that tholeitic basalts formed from a mantle plume that was emplaced in an oceanic plateau context. Calc-alkaline basalts and andesites are comparable to Paleoproterozoic tholeitic basalts (PTH3), which are slightly enriched in light rare earths. Fertility tests show that these basalts concentrate between 3 and 6 ppb of gold at the time of accretion, which is sufficient for remobilization of this primary gold during the Eburnian orogeny to yield a deposit of around 4 - 5 Moz. Gold mineralization is associated with pyrite crystals when the latter are disseminated in the rock mass, whereas it is associated with hematite in quartz veins concordant with S1 shear deformation. It is mainly the pyrite crystals in the pressure shadows that contain the gold grains, whose development would be synchronous with micro-shear zone reactivation during the first phase of D1<sub>B</sub> deformation. The second phase of D2<sub>B</sub> deformation, which is a crenulation or fracture schistosity, does not significantly affect the shear deformation that controls mineralization.展开更多
Epithelial attachment via the basal lamina on the tooth surface provides an important structural defence mechanism against bacterial invasion in combating periodontal disease. However, when considering dental implants...Epithelial attachment via the basal lamina on the tooth surface provides an important structural defence mechanism against bacterial invasion in combating periodontal disease. However, when considering dental implants, strong epithelial attachment does not exist throughout the titanium-soft tissue interface, making soft tissues more susceptible to peri-implant disease. This study introduced a novel synthetic peptide(A10) to enhance epithelial attachment. A10 was identified from a bacterial peptide display library and synthesized. A10 and protease-activated receptor 4-activating peptide(PAR4-AP, positive control) were immobilized on commercially pure titanium. The peptide-treated titanium showed high epithelial cell migration ability during incubation in platelet-rich plasma. We confirmed the development of dense and expanded BL(stained by Ln5) with pericellular junctions(stained by ZO1) on the peptide-treated titanium surface. In an adhesion assay of epithelial cells on A10-treated titanium, PAR4-AP-treated titanium, bovine root and non-treated titanium, A10-treated titanium and PAR4-AP-treated titanium showed significantly stronger adhesion than non-treated titanium. PAR4-AP-treated titanium showed significantly higher inflammatory cytokine release than non-treated titanium. There was no significant difference in inflammatory cytokine release between A10-treated and non-treated titanium. These results indicated that A10 could induce the adhesion and migration of epithelial cells with low inflammatory cytokine release. This novel peptide has a potentially useful application that could improve clinical outcomes with titanium implants and abutments by reducing or preventing peri-implant disease.展开更多
The sediments collected respectively from the Etó, Kacumvi, Kimbi, Lubichako, Makungu, Kuwa, Mandje, Misisi and Kimuti Rivers draining the gold panning sites in the Fizi territory were studied during a 16-month c...The sediments collected respectively from the Etó, Kacumvi, Kimbi, Lubichako, Makungu, Kuwa, Mandje, Misisi and Kimuti Rivers draining the gold panning sites in the Fizi territory were studied during a 16-month cycle (August and December 2016 to August and December 2017) in order to assess their degree of mercury pollution in the dry season as well as in the rainy season. The assessment of the degree of pollution of the said sediments focused on six parameters including the total mercury content (THg) and the indices of mercury pollution such as the mercury enrichment factor (EF), the mercury contamination factor (CF), the mercury geoaccumulation index (Igeo), the mercury potential ecological risk factor (PERF) and the mercury ecological risk index (ERI). Total mercury was determined by atomic absorption spectrophotometry (AAS) while the mercury pollution indices were successively calculated using the appropriate formulas. The results thus obtained revealed that all the sediments of the rivers studied are considerably polluted by mercury according to the values relative to their total mercury content and mercury pollution indices, including the mercury enrichment factor (EF), the mercury contamination factor (CF), the mercury geoaccumulation index (Igeo), the mercury potential ecological risk factor (PERF) and the mercury ecological risk index (ERI), which greatly exceed the standards recommended by the Canadian Council of Ministers of the Environment. In particular, the sediments of the Kimbi River are highly polluted by mercury compared to those of other rivers studied. This reported pollution is the result of anthropogenic gold panning activities that generate effluents and elemental mercury that pollute the streams.展开更多
针对现有分级多PAN太赫兹无线网络MAC(Medium Access Control)协议中存在的子网形成方案不合理以及私有CTA(Channel Time Allocation)与子网内实际负载不匹配等问题,提出了一种高效低时延的MAC层优化协议.该协议采用基于泛听的按需形成...针对现有分级多PAN太赫兹无线网络MAC(Medium Access Control)协议中存在的子网形成方案不合理以及私有CTA(Channel Time Allocation)与子网内实际负载不匹配等问题,提出了一种高效低时延的MAC层优化协议.该协议采用基于泛听的按需形成子网机制避免了子网分布不均匀以及因子网形成后没有节点加入而造成的私有CTA资源浪费的问题.在子网形成后,子微微网协调器(Piconet Coordinator,PNC)根据子网内实际负载情况自适应选择私有CTA时隙资源优化机制,让有数据传输需求的节点及时将数据发出.仿真结果表明,所提出的方案能有效地降低数据帧平均接入时延,提高吞吐量以及数据帧的传输成功率.展开更多
Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant im...Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant impact on the environment due to inappropriate practices and the use of various chemical substances. This study aims to assess the impact of artisanal gold mining on the quality of water resources in a rural community at Méguet, Burkina Faso. To this end, surface and groundwater samples were collected and analyzed at the BUMIGEB laboratory. Field results show that the waters are slightly alkaline (6.97 < pH < 8.1), weakly mineralized and conductive (124 < EC < 543 μS/cm), with temperatures ranging from 24.6˚C to 31.6˚C. In addition, trace metals (TMEs) analyzed from surface and subsurface waters show very high levels, generally deviating from the levels recommended by WHO guidelines for Burkina Faso. Trace metals contamination of water resources in the commune of Méguet is mainly due to Fe (3.78 - 11.12 mg/kg), Hg (0.03 - 0.29 mg/kg), As (0.01- 6.31 mg/kg) and Pb (0.01 - 3.8 mg/kg). This study can serve as a basis for guiding national environmental policies to protect the water resources of the Méguet mine.展开更多
文摘The Birimian Baguiomo formations are located in the northern part of the Boromo greenstone belt. In this belt, the volcanic rocks (tholeiitic basalt, calcalkaline basalt, andesite) hosting the gold mineralization are located in the Kwademen-Baguiomo shear zone. This mineralization, located only a few kilometers from the Kwademen gold deposit, is uncharacterized and, together with the latter, could constitute a gold potential capable of being economically exploitable. It is in this sense that this work is carried out with a view to characterizing the gold mineralization of the Baguiomo gold panning site. To carry out this work, we have made direct field measurements, combined with microstructures, and combined all this with data from geochemical rock analysis of the basalts that are the main host formations. Geochemical data show that tholeitic basalts formed from a mantle plume that was emplaced in an oceanic plateau context. Calc-alkaline basalts and andesites are comparable to Paleoproterozoic tholeitic basalts (PTH3), which are slightly enriched in light rare earths. Fertility tests show that these basalts concentrate between 3 and 6 ppb of gold at the time of accretion, which is sufficient for remobilization of this primary gold during the Eburnian orogeny to yield a deposit of around 4 - 5 Moz. Gold mineralization is associated with pyrite crystals when the latter are disseminated in the rock mass, whereas it is associated with hematite in quartz veins concordant with S1 shear deformation. It is mainly the pyrite crystals in the pressure shadows that contain the gold grains, whose development would be synchronous with micro-shear zone reactivation during the first phase of D1<sub>B</sub> deformation. The second phase of D2<sub>B</sub> deformation, which is a crenulation or fracture schistosity, does not significantly affect the shear deformation that controls mineralization.
基金supported by an International Team for Implantology(ITI)grant(grant number:1119_2015)
文摘Epithelial attachment via the basal lamina on the tooth surface provides an important structural defence mechanism against bacterial invasion in combating periodontal disease. However, when considering dental implants, strong epithelial attachment does not exist throughout the titanium-soft tissue interface, making soft tissues more susceptible to peri-implant disease. This study introduced a novel synthetic peptide(A10) to enhance epithelial attachment. A10 was identified from a bacterial peptide display library and synthesized. A10 and protease-activated receptor 4-activating peptide(PAR4-AP, positive control) were immobilized on commercially pure titanium. The peptide-treated titanium showed high epithelial cell migration ability during incubation in platelet-rich plasma. We confirmed the development of dense and expanded BL(stained by Ln5) with pericellular junctions(stained by ZO1) on the peptide-treated titanium surface. In an adhesion assay of epithelial cells on A10-treated titanium, PAR4-AP-treated titanium, bovine root and non-treated titanium, A10-treated titanium and PAR4-AP-treated titanium showed significantly stronger adhesion than non-treated titanium. PAR4-AP-treated titanium showed significantly higher inflammatory cytokine release than non-treated titanium. There was no significant difference in inflammatory cytokine release between A10-treated and non-treated titanium. These results indicated that A10 could induce the adhesion and migration of epithelial cells with low inflammatory cytokine release. This novel peptide has a potentially useful application that could improve clinical outcomes with titanium implants and abutments by reducing or preventing peri-implant disease.
文摘The sediments collected respectively from the Etó, Kacumvi, Kimbi, Lubichako, Makungu, Kuwa, Mandje, Misisi and Kimuti Rivers draining the gold panning sites in the Fizi territory were studied during a 16-month cycle (August and December 2016 to August and December 2017) in order to assess their degree of mercury pollution in the dry season as well as in the rainy season. The assessment of the degree of pollution of the said sediments focused on six parameters including the total mercury content (THg) and the indices of mercury pollution such as the mercury enrichment factor (EF), the mercury contamination factor (CF), the mercury geoaccumulation index (Igeo), the mercury potential ecological risk factor (PERF) and the mercury ecological risk index (ERI). Total mercury was determined by atomic absorption spectrophotometry (AAS) while the mercury pollution indices were successively calculated using the appropriate formulas. The results thus obtained revealed that all the sediments of the rivers studied are considerably polluted by mercury according to the values relative to their total mercury content and mercury pollution indices, including the mercury enrichment factor (EF), the mercury contamination factor (CF), the mercury geoaccumulation index (Igeo), the mercury potential ecological risk factor (PERF) and the mercury ecological risk index (ERI), which greatly exceed the standards recommended by the Canadian Council of Ministers of the Environment. In particular, the sediments of the Kimbi River are highly polluted by mercury compared to those of other rivers studied. This reported pollution is the result of anthropogenic gold panning activities that generate effluents and elemental mercury that pollute the streams.
文摘Despite its often illegal nature, artisanal gold mining in Burkina Faso contributes to the economic and social development of the country. However, the rudimentary techniques used in gold panning have a significant impact on the environment due to inappropriate practices and the use of various chemical substances. This study aims to assess the impact of artisanal gold mining on the quality of water resources in a rural community at Méguet, Burkina Faso. To this end, surface and groundwater samples were collected and analyzed at the BUMIGEB laboratory. Field results show that the waters are slightly alkaline (6.97 < pH < 8.1), weakly mineralized and conductive (124 < EC < 543 μS/cm), with temperatures ranging from 24.6˚C to 31.6˚C. In addition, trace metals (TMEs) analyzed from surface and subsurface waters show very high levels, generally deviating from the levels recommended by WHO guidelines for Burkina Faso. Trace metals contamination of water resources in the commune of Méguet is mainly due to Fe (3.78 - 11.12 mg/kg), Hg (0.03 - 0.29 mg/kg), As (0.01- 6.31 mg/kg) and Pb (0.01 - 3.8 mg/kg). This study can serve as a basis for guiding national environmental policies to protect the water resources of the Méguet mine.