This paper discusses design and comparison of Simulated Annealing Algorithm and Greedy Randomized Adaptive Search Procedure (GRASP) to minimize the makespan in scheduling n single operation independent jobs on m unrel...This paper discusses design and comparison of Simulated Annealing Algorithm and Greedy Randomized Adaptive Search Procedure (GRASP) to minimize the makespan in scheduling n single operation independent jobs on m unrelated parallel machines. This problem of minimizing the makespan in single machine scheduling problem with uniform parallel machines is NP hard. Hence, heuristic development for such problem is highly inevitable. In this paper, two different Meta-heuristics to minimize the makespan of the assumed problem are designed and they are compared in terms of their solutions. In the first phase, the simulated annealing algorithm is presented and then GRASP (Greedy Randomized Adaptive Search procedure) is presented to minimize the makespan in the single machine scheduling problem with unrelated parallel machines. It is found that the simulated annealing algorithm performs better than GRASP.展开更多
A high-level control technology will be revealed that can dynamically establish overwhelming dominance over distributed networked systems with embedded electronic devices and any communications between them. It is bas...A high-level control technology will be revealed that can dynamically establish overwhelming dominance over distributed networked systems with embedded electronic devices and any communications between them. It is based on implanting of universal control modules (that may be concealed) into key system points which collectively interpret complex but compact mission scenarios in a special high-level Distributed Scenario language (DSL). Self-evolving and self-spreading in networks, matching them in a super-virus mode, DSL scenarios can analyze their structures and states and set up any behavior needed, including creation of benign or elimination of unwanted infrastructures. The scalable technology allows us to convert any distributed networked systems into a sort of integral spatial brain capable of analyzing and withstanding unpredictable situations in a variety of important domains.展开更多
A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damag...A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damages. Integral mission scenarios in Distributed Scenario Language (DSL) can be injected from any point, runtime covering & grasping the whole system or its parts, setting operational infrastructures, and orienting local and global behavior in the way needed. Many operational scenarios can be simultaneously injected into this spatial machine from different points, cooperating or competing over the shared distributed knowledge as overlapping fields of solutions. Distributed DSL interpreter organization and benefits of using this technology for integrated air and missile defense are discussed along with programming examples in this and other fields.展开更多
文摘This paper discusses design and comparison of Simulated Annealing Algorithm and Greedy Randomized Adaptive Search Procedure (GRASP) to minimize the makespan in scheduling n single operation independent jobs on m unrelated parallel machines. This problem of minimizing the makespan in single machine scheduling problem with uniform parallel machines is NP hard. Hence, heuristic development for such problem is highly inevitable. In this paper, two different Meta-heuristics to minimize the makespan of the assumed problem are designed and they are compared in terms of their solutions. In the first phase, the simulated annealing algorithm is presented and then GRASP (Greedy Randomized Adaptive Search procedure) is presented to minimize the makespan in the single machine scheduling problem with unrelated parallel machines. It is found that the simulated annealing algorithm performs better than GRASP.
文摘A high-level control technology will be revealed that can dynamically establish overwhelming dominance over distributed networked systems with embedded electronic devices and any communications between them. It is based on implanting of universal control modules (that may be concealed) into key system points which collectively interpret complex but compact mission scenarios in a special high-level Distributed Scenario language (DSL). Self-evolving and self-spreading in networks, matching them in a super-virus mode, DSL scenarios can analyze their structures and states and set up any behavior needed, including creation of benign or elimination of unwanted infrastructures. The scalable technology allows us to convert any distributed networked systems into a sort of integral spatial brain capable of analyzing and withstanding unpredictable situations in a variety of important domains.
文摘A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damages. Integral mission scenarios in Distributed Scenario Language (DSL) can be injected from any point, runtime covering & grasping the whole system or its parts, setting operational infrastructures, and orienting local and global behavior in the way needed. Many operational scenarios can be simultaneously injected into this spatial machine from different points, cooperating or competing over the shared distributed knowledge as overlapping fields of solutions. Distributed DSL interpreter organization and benefits of using this technology for integrated air and missile defense are discussed along with programming examples in this and other fields.