In this paper,we investigate vehicular fog computing system and develop an effective parallel offloading scheme.The service time,that addresses task offloading delay,task decomposition and handover cost,is adopted as ...In this paper,we investigate vehicular fog computing system and develop an effective parallel offloading scheme.The service time,that addresses task offloading delay,task decomposition and handover cost,is adopted as the metric of offloading performance.We propose an available resource-aware based parallel offloading scheme,which decides target fog nodes by RSU for computation offloading jointly considering effect of vehicles mobility and time-varying computation capability.Based on Hidden Markov model and Markov chain theories,proposed scheme effectively handles the imperfect system state information for fog nodes selection by jointly achieving mobility awareness and computation perception.Simulation results are presented to corroborate the theoretical analysis and validate the effectiveness of the proposed algorithm.展开更多
Genetic algorithm has been proposed to solve the problem of task assignment. However, it has some drawbacks, e.g., it often takes a long time to find an optimal solution, and the success rate is low. To overcome these...Genetic algorithm has been proposed to solve the problem of task assignment. However, it has some drawbacks, e.g., it often takes a long time to find an optimal solution, and the success rate is low. To overcome these problems, a new coarse grained parallel genetic algorithm with the scheme of central migration is presented, which exploits isolated sub populations. The new approach has been implemented in the PVM environment and has been evaluated on a workstation network for solving the task assignment problem. The results show that it not only significantly improves the result quality but also increases the speed for getting best solution.展开更多
We propose a content-based parallel image retrieval system to achieve high responding ability. Our system is developed on cluster architectures. It has several retrieval. servers to supply the service of content-based...We propose a content-based parallel image retrieval system to achieve high responding ability. Our system is developed on cluster architectures. It has several retrieval. servers to supply the service of content-based image retrieval. It adopts the Browser/Server (B/S) mode. The users could visit our system though web pages. It uses the symmetrical color-spatial features (SCSF) to represent the content of an image. The SCSF is effective and efficient for image matching because it is independent of image distortion such as rotation and flip as well as it increases the matching accuracy. The SCSF was organized by M-tree, which could speedup the searching procedure. Our experiments show that the image matching is quickly and efficiently with the use of SCSF. And with the support of several retrieval servers, the system could respond to many users at mean time. Key words content-based image retrieval - cluster architecture - color-spatial feature - B/S mode - task parallel - WWW - Internet CLC number TP391 Foundation item: Supported by the National Natural Science Foundation of China (60173058)Biography: ZHOU Bing (1975-), male, Ph. D candidate, reseach direction: data mining, content-based image retrieval.展开更多
Heterogeneous computing is one effective method of high performance computing with many advantages. Task scheduling is a critical issue in heterogeneous environments as well as in homogeneous environments. A number of...Heterogeneous computing is one effective method of high performance computing with many advantages. Task scheduling is a critical issue in heterogeneous environments as well as in homogeneous environments. A number of task scheduling algorithms for homogeneous environments have been proposed, whereas, a few for heterogeneous environments can be found in the literature. A novel task scheduling algorithm for heterogeneous environments, called the heterogeneous critical task (HCT) scheduling algorithm is presented. By means of the directed acyclic graph and the gantt graph, the HCT algorithm defines the critical task and the idle time slot. After determining the critical tasks of a given task, the HCT algorithm tentatively duplicates the critical tasks onto the processor that has the given task in the idle time slot, to reduce the start time of the given task. To compare the performance of the HCT algorithm with several recently proposed algorithms, a large set of randomly generated applications and the Gaussian elimination application are randomly generated. The experimental result has shown that the HCT algorithm outperforms the other algorithm.展开更多
An optimal algorithmic approach to task scheduling for, triplet based architecture(TriBA), is proposed in this paper. TriBA is considered to be a high performance, distributed parallel computing architecture. TriBA ...An optimal algorithmic approach to task scheduling for, triplet based architecture(TriBA), is proposed in this paper. TriBA is considered to be a high performance, distributed parallel computing architecture. TriBA consists of a 2D grid of small, programmable processing units, each physically connected to its three neighbors. In parallel or distributed environment an efficient assignment of tasks to the processing elements is imperative to achieve fast job turnaround time. Moreover, the sojourn time experienced by each individual job should be minimized. The arriving jobs are comprised of parallel applications, each consisting of multiple-independent tasks that must be instantaneously assigned to processor queues, as they arrive. The processors independently and concurrently service these tasks. The key scheduling issues is, when some queue backlogs are small, an incoming job should first spread its tasks to those lightly loaded queues in order to take advantage of the parallel processing gain. Our algorithmic approach achieves optimality in task scheduling by assigning consecutive tasks to a triplet of processors exploiting locality in tasks. The experimental results show that tasks allocation to triplets of processing elements is efficient and optimal. Comparison to well accepted interconnection strategy, 2D mesh, is shown to prove the effectiveness of our algorithmic approach for TriBA. Finally we conclude that TriBA can be an efficient interconnection strategy for computations intensive applications, if tasks assignment is carried out optimally using algorithmic approach.展开更多
The real problem in cluster of workstations is the changes in workstation power or number of workstations or dynmaic changes in the run time behavior of the application hamper the efficient use of resources. Dynamic l...The real problem in cluster of workstations is the changes in workstation power or number of workstations or dynmaic changes in the run time behavior of the application hamper the efficient use of resources. Dynamic load balancing is a technique for the parallel implementation of problems, which generate unpredictable workloads by migration work units from heavily loaded processor to lightly loaded processors at run time. This paper proposed an efficient load balancing method in which parallel tree computations depth first search (DFS) generates unpredictable, highly imbalance workloads and moves through different phases detectable at run time, where dynamic load balancing strategy is applicable in each phase running under the MPI(message passing interface) and Unix operating system on cluster of workstations parallel platform computing.展开更多
基金Manuscript received March 5, 2010 accepted March 2, 2011 Supported by National Natural Science Foundation of China (61004103), National Research Foundation for the Doctoral Program of Higher Education of China (20100111110005), China Postdoctoral Science Foundation (20090460742), and Natural Science Foundation of Anhui Province of China (090412058, 11040606Q44)
基金supported in part by the National Natural Science Foundation of China under Grant 61971077,Grant 61901066in part by the Chongqing Science and Technology Commission under Grant cstc2019jcyj-msxmX0575in part by the Program for Innovation Team Building at colleges and universities in Chongqing,China under Grant CXTDX201601006
文摘In this paper,we investigate vehicular fog computing system and develop an effective parallel offloading scheme.The service time,that addresses task offloading delay,task decomposition and handover cost,is adopted as the metric of offloading performance.We propose an available resource-aware based parallel offloading scheme,which decides target fog nodes by RSU for computation offloading jointly considering effect of vehicles mobility and time-varying computation capability.Based on Hidden Markov model and Markov chain theories,proposed scheme effectively handles the imperfect system state information for fog nodes selection by jointly achieving mobility awareness and computation perception.Simulation results are presented to corroborate the theoretical analysis and validate the effectiveness of the proposed algorithm.
基金Supported by National Natural Science Foundation of China(60474035),National Research Foundation for the Doctoral Program of Higher Education of China(20050359004),Natural Science Foundation of Anhui Province(070412035)
基金Supported by the Nation"86 3"Hi-Tech Development Program of China(86 3-30 6 -ZD11-0 1-8)
文摘Genetic algorithm has been proposed to solve the problem of task assignment. However, it has some drawbacks, e.g., it often takes a long time to find an optimal solution, and the success rate is low. To overcome these problems, a new coarse grained parallel genetic algorithm with the scheme of central migration is presented, which exploits isolated sub populations. The new approach has been implemented in the PVM environment and has been evaluated on a workstation network for solving the task assignment problem. The results show that it not only significantly improves the result quality but also increases the speed for getting best solution.
文摘We propose a content-based parallel image retrieval system to achieve high responding ability. Our system is developed on cluster architectures. It has several retrieval. servers to supply the service of content-based image retrieval. It adopts the Browser/Server (B/S) mode. The users could visit our system though web pages. It uses the symmetrical color-spatial features (SCSF) to represent the content of an image. The SCSF is effective and efficient for image matching because it is independent of image distortion such as rotation and flip as well as it increases the matching accuracy. The SCSF was organized by M-tree, which could speedup the searching procedure. Our experiments show that the image matching is quickly and efficiently with the use of SCSF. And with the support of several retrieval servers, the system could respond to many users at mean time. Key words content-based image retrieval - cluster architecture - color-spatial feature - B/S mode - task parallel - WWW - Internet CLC number TP391 Foundation item: Supported by the National Natural Science Foundation of China (60173058)Biography: ZHOU Bing (1975-), male, Ph. D candidate, reseach direction: data mining, content-based image retrieval.
文摘Heterogeneous computing is one effective method of high performance computing with many advantages. Task scheduling is a critical issue in heterogeneous environments as well as in homogeneous environments. A number of task scheduling algorithms for homogeneous environments have been proposed, whereas, a few for heterogeneous environments can be found in the literature. A novel task scheduling algorithm for heterogeneous environments, called the heterogeneous critical task (HCT) scheduling algorithm is presented. By means of the directed acyclic graph and the gantt graph, the HCT algorithm defines the critical task and the idle time slot. After determining the critical tasks of a given task, the HCT algorithm tentatively duplicates the critical tasks onto the processor that has the given task in the idle time slot, to reduce the start time of the given task. To compare the performance of the HCT algorithm with several recently proposed algorithms, a large set of randomly generated applications and the Gaussian elimination application are randomly generated. The experimental result has shown that the HCT algorithm outperforms the other algorithm.
文摘An optimal algorithmic approach to task scheduling for, triplet based architecture(TriBA), is proposed in this paper. TriBA is considered to be a high performance, distributed parallel computing architecture. TriBA consists of a 2D grid of small, programmable processing units, each physically connected to its three neighbors. In parallel or distributed environment an efficient assignment of tasks to the processing elements is imperative to achieve fast job turnaround time. Moreover, the sojourn time experienced by each individual job should be minimized. The arriving jobs are comprised of parallel applications, each consisting of multiple-independent tasks that must be instantaneously assigned to processor queues, as they arrive. The processors independently and concurrently service these tasks. The key scheduling issues is, when some queue backlogs are small, an incoming job should first spread its tasks to those lightly loaded queues in order to take advantage of the parallel processing gain. Our algorithmic approach achieves optimality in task scheduling by assigning consecutive tasks to a triplet of processors exploiting locality in tasks. The experimental results show that tasks allocation to triplets of processing elements is efficient and optimal. Comparison to well accepted interconnection strategy, 2D mesh, is shown to prove the effectiveness of our algorithmic approach for TriBA. Finally we conclude that TriBA can be an efficient interconnection strategy for computations intensive applications, if tasks assignment is carried out optimally using algorithmic approach.
基金Natural Science Foundation of China (No.60 173 0 3 1)
文摘The real problem in cluster of workstations is the changes in workstation power or number of workstations or dynmaic changes in the run time behavior of the application hamper the efficient use of resources. Dynamic load balancing is a technique for the parallel implementation of problems, which generate unpredictable workloads by migration work units from heavily loaded processor to lightly loaded processors at run time. This paper proposed an efficient load balancing method in which parallel tree computations depth first search (DFS) generates unpredictable, highly imbalance workloads and moves through different phases detectable at run time, where dynamic load balancing strategy is applicable in each phase running under the MPI(message passing interface) and Unix operating system on cluster of workstations parallel platform computing.