Let H denote the class of complex-valued harmonic functions f defined in the open unit disc D and normalized by f(0)=fz(0)-1=0.In this paper,we define a new generalized subclass of H associated with the(p,q)-Ruschewey...Let H denote the class of complex-valued harmonic functions f defined in the open unit disc D and normalized by f(0)=fz(0)-1=0.In this paper,we define a new generalized subclass of H associated with the(p,q)-Ruscheweyh-type harmonic differential operator in D.We first obtain a sufficient coefficient condition that guarantees that a function f in H is sense-preserving harmonic univalent in D and belongs to the aforementioned class.Using this coefficient condition,we then examine ratios of partial sums of f in H.In all cases the results are sharp.In addition,the results so obtained generalize the related works of some authors,and many other new results are obtained.展开更多
Consider a sequence of i.i.d.positive random variables.An universal result in almost sure limit theorem for products of sums of partial sums is established.We will show that the almost sure limit theorem holds under a...Consider a sequence of i.i.d.positive random variables.An universal result in almost sure limit theorem for products of sums of partial sums is established.We will show that the almost sure limit theorem holds under a fairly general condition on the weight dk= k-1 exp(lnβk),0≤β〈1.And in a sense,our results have reached the optimal form.展开更多
Let {Xni, 1 ≤ n,i 〈 ∞} be an an array of rowwise NA random variables and {an, n ≥ 1} a sequence of constants with 0 〈 an ↑∞ . The limiting behavior of maximum partial sums 1/an max 1≤k≤n|^k∑i=1 Xni| is inv...Let {Xni, 1 ≤ n,i 〈 ∞} be an an array of rowwise NA random variables and {an, n ≥ 1} a sequence of constants with 0 〈 an ↑∞ . The limiting behavior of maximum partial sums 1/an max 1≤k≤n|^k∑i=1 Xni| is investigated and some new results are obtained. The results extend and improve the corresponding theorems of rowwise independent random variable arrays by Hu and Taylor [1] and Hu and Chang [2].展开更多
Let {Xi}i=1^∞ be a standardized stationary Gaussian sequence with covariance function τ(n) =EX1Xn+1, Sn =∑i=1^nXi,and X^-n=Sn/n.And let Nn be the point process formed by the exceedances of random level (x/√2 l...Let {Xi}i=1^∞ be a standardized stationary Gaussian sequence with covariance function τ(n) =EX1Xn+1, Sn =∑i=1^nXi,and X^-n=Sn/n.And let Nn be the point process formed by the exceedances of random level (x/√2 log n+√2 log n-log(4π log n)/2√log n) √1-τ(n) + X^-n by X1,X2,…, Xn. Under some mild conditions, Nn and Sn are asymptotically independent, and Nn converges weakly to a Poisson process on (0,1].展开更多
Let {X n,n≥1} be a stationary LNQD or NA sequence satisfying EX 1=μ,EX 2 1<∞ and (Var S n)/n→σ 2 as n→∞.In this paper a class of self-normalized central limit theorems and estimators of Var S n are ...Let {X n,n≥1} be a stationary LNQD or NA sequence satisfying EX 1=μ,EX 2 1<∞ and (Var S n)/n→σ 2 as n→∞.In this paper a class of self-normalized central limit theorems and estimators of Var S n are studied.The weak and strong consistency of the estimators of Var S n are presented.展开更多
Let {Xn,n ≥ 1} be a sequence of identically distributed ρ^--mixing random variables and set Sn =∑i^n=1 Xi,n ≥ 1,the suffcient and necessary conditions for the existence of moments of supn≥1 |Sn/n^1/r|^p(0 〈 r...Let {Xn,n ≥ 1} be a sequence of identically distributed ρ^--mixing random variables and set Sn =∑i^n=1 Xi,n ≥ 1,the suffcient and necessary conditions for the existence of moments of supn≥1 |Sn/n^1/r|^p(0 〈 r 〈 2,p 〉 0) are given,which are the same as that in the independent case.展开更多
In this paper, we obtain the moment conditions for the supermun of normed sums of ρ^--mixing random variables by using the Rosenthal-type inequality for Maximum partial sums of ρ^--mixing random variables. The resul...In this paper, we obtain the moment conditions for the supermun of normed sums of ρ^--mixing random variables by using the Rosenthal-type inequality for Maximum partial sums of ρ^--mixing random variables. The result obtained generalize the results of Chen(2008) and extend those to negatively associated sequences and ρ^--mixing random variables.展开更多
Let {Xn, n≥1} be a martingale difference sequence and {a nk , 1?k?n,n?1} an array of constant real numbers. The limiting behavior of weighted partial sums ∑ k=1 n a nk X k is investigated and some new results are ob...Let {Xn, n≥1} be a martingale difference sequence and {a nk , 1?k?n,n?1} an array of constant real numbers. The limiting behavior of weighted partial sums ∑ k=1 n a nk X k is investigated and some new results are obtained.展开更多
In this paper,we discuss the suffcient condition for complete convergence of partial sums of squares of the ARCH sequence,at the same time a moment inequality of maximum partial sums for squares of the ARCH sequence i...In this paper,we discuss the suffcient condition for complete convergence of partial sums of squares of the ARCH sequence,at the same time a moment inequality of maximum partial sums for squares of the ARCH sequence is proved.展开更多
In this paper, we discuss the relation between the partial sums of Jacobi serier on an elliptic region and the corresponding partial sums of Fourier series. From this we derive a precise approximation formula by the p...In this paper, we discuss the relation between the partial sums of Jacobi serier on an elliptic region and the corresponding partial sums of Fourier series. From this we derive a precise approximation formula by the partial sums of Jacobi series on an elliptic region.展开更多
Let be a strictly stationary sequence of ρ?-mixing random variables. We proved the almost sure central limit theorem, containing the general weight sequences, for the partial sums , where , . The result generalizes a...Let be a strictly stationary sequence of ρ?-mixing random variables. We proved the almost sure central limit theorem, containing the general weight sequences, for the partial sums , where , . The result generalizes and improves the previous results.展开更多
This paper discusses the conditions under which Rosenthal type inequality is obtained from M-Z-B type inequality. And M-Z-B type inequality is proved for a wide class of random variables. Hence Rosenthal type inequali...This paper discusses the conditions under which Rosenthal type inequality is obtained from M-Z-B type inequality. And M-Z-B type inequality is proved for a wide class of random variables. Hence Rosenthal type inequalities for some classes of random variables are obtained.展开更多
In this paper, we study the joint limit distributions of point processes of exceedances and partial sums of multivariate Gaussian sequences and show that the point processes and partial sums are asymptotically indepen...In this paper, we study the joint limit distributions of point processes of exceedances and partial sums of multivariate Gaussian sequences and show that the point processes and partial sums are asymptotically independent under some mild conditions. As a result, for a sequence of standardized stationary Gaussian vectors, we obtain that the point process of exceedances formed by the sequence (centered at the sample mean) converges in distribution to a Poisson process and it is asymptotically independent of the partial sums. The asymptotic joint limit distributions of order statistics and partial sums are also investigated under different conditions.展开更多
Using suitable self-normalization for partial sums of i.i.d.random variables,Griffin and Kuelbs established the law of the iterated logarithm for all distributions in the domain of attraction of a normal law.We obtain...Using suitable self-normalization for partial sums of i.i.d.random variables,Griffin and Kuelbs established the law of the iterated logarithm for all distributions in the domain of attraction of a normal law.We obtain the corresponding results for Studentized increments of partial sums under thesame condition.展开更多
Abstract The authors prove an almost sure central limit theorem for partial sums based on an irreducible and positive recurrent Markov chain using logarithmic means, which realizes the extension of the almost sure cen...Abstract The authors prove an almost sure central limit theorem for partial sums based on an irreducible and positive recurrent Markov chain using logarithmic means, which realizes the extension of the almost sure central limit theorem for partial sums from an i.i.d, sequence of random variables to a Markov chain.展开更多
Consider a sequence of i.i.d.positive random variables with the underlying distribution in the domain of attraction of a stable distribution with an exponent in (1,2].A universal result in the almost sure limit theore...Consider a sequence of i.i.d.positive random variables with the underlying distribution in the domain of attraction of a stable distribution with an exponent in (1,2].A universal result in the almost sure limit theorem for products of partial sums is established. Our results significantly generalize and improve those on the almost sure central limit theory previously obtained by Gonchigdanzan and Rempale and by Gonchigdanzan.In a sense,our results reach the optimal form.展开更多
Csorgo and Revesz (1981) obtained an elegant result on how ismall the increments ofpartial sums of IID random variables are. But their proof seems some wrong. In this paperwe have not only corrected their proof, but a...Csorgo and Revesz (1981) obtained an elegant result on how ismall the increments ofpartial sums of IID random variables are. But their proof seems some wrong. In this paperwe have not only corrected their proof, but also established the corresponding result forindependent, not necessarily identically distributed random variables under more generaland weaker assumptions.展开更多
Binary digit representation of partial sums for random variables has been investigated, and a good upper bound of moments of maximum partial sums for random variables has been reduced by using this representation. As ...Binary digit representation of partial sums for random variables has been investigated, and a good upper bound of moments of maximum partial sums for random variables has been reduced by using this representation. As an applications, stability and strong law of large numbers have been discussed. Many known classical results have been refined.展开更多
We give a systematic account of results which assure positivity and boundedness of partial sums of cosine or sine series. New proofs of recent results are sketched.
文摘Let H denote the class of complex-valued harmonic functions f defined in the open unit disc D and normalized by f(0)=fz(0)-1=0.In this paper,we define a new generalized subclass of H associated with the(p,q)-Ruscheweyh-type harmonic differential operator in D.We first obtain a sufficient coefficient condition that guarantees that a function f in H is sense-preserving harmonic univalent in D and belongs to the aforementioned class.Using this coefficient condition,we then examine ratios of partial sums of f in H.In all cases the results are sharp.In addition,the results so obtained generalize the related works of some authors,and many other new results are obtained.
基金Supported by the National Natural Science Foundation of China(11061012)Project Supported by Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning([2011]47)the Guangxi Natural Science Foundation of China(2012GXNSFAA053010)
文摘Consider a sequence of i.i.d.positive random variables.An universal result in almost sure limit theorem for products of sums of partial sums is established.We will show that the almost sure limit theorem holds under a fairly general condition on the weight dk= k-1 exp(lnβk),0≤β〈1.And in a sense,our results have reached the optimal form.
文摘Let {Xni, 1 ≤ n,i 〈 ∞} be an an array of rowwise NA random variables and {an, n ≥ 1} a sequence of constants with 0 〈 an ↑∞ . The limiting behavior of maximum partial sums 1/an max 1≤k≤n|^k∑i=1 Xni| is investigated and some new results are obtained. The results extend and improve the corresponding theorems of rowwise independent random variable arrays by Hu and Taylor [1] and Hu and Chang [2].
基金Supported by the Program for Excellent Talents in Chongqing Higher Education Institutions (120060-20600204)
文摘Let {Xi}i=1^∞ be a standardized stationary Gaussian sequence with covariance function τ(n) =EX1Xn+1, Sn =∑i=1^nXi,and X^-n=Sn/n.And let Nn be the point process formed by the exceedances of random level (x/√2 log n+√2 log n-log(4π log n)/2√log n) √1-τ(n) + X^-n by X1,X2,…, Xn. Under some mild conditions, Nn and Sn are asymptotically independent, and Nn converges weakly to a Poisson process on (0,1].
基金the National Natural Science Foundation of China(1 0 0 71 0 72 )
文摘Let {X n,n≥1} be a stationary LNQD or NA sequence satisfying EX 1=μ,EX 2 1<∞ and (Var S n)/n→σ 2 as n→∞.In this paper a class of self-normalized central limit theorems and estimators of Var S n are studied.The weak and strong consistency of the estimators of Var S n are presented.
基金Supported by the National Natural Science Foundation of China (60874004)
文摘Let {Xn,n ≥ 1} be a sequence of identically distributed ρ^--mixing random variables and set Sn =∑i^n=1 Xi,n ≥ 1,the suffcient and necessary conditions for the existence of moments of supn≥1 |Sn/n^1/r|^p(0 〈 r 〈 2,p 〉 0) are given,which are the same as that in the independent case.
基金Supported by the National Science Foundation of China(10661006)Supported by Innovation Project of Guangxi Graduate Education(2007105960812M18)
文摘In this paper, we obtain the moment conditions for the supermun of normed sums of ρ^--mixing random variables by using the Rosenthal-type inequality for Maximum partial sums of ρ^--mixing random variables. The result obtained generalize the results of Chen(2008) and extend those to negatively associated sequences and ρ^--mixing random variables.
基金SupportedbytheNationalNaturalScienceFoundationofChina (No .10 0 710 5 8)and (No .10 0 710 19)
文摘Let {Xn, n≥1} be a martingale difference sequence and {a nk , 1?k?n,n?1} an array of constant real numbers. The limiting behavior of weighted partial sums ∑ k=1 n a nk X k is investigated and some new results are obtained.
基金Supported by Natural Science Foundation of Shanxi Province(2007011014) Supported by Science Foundation of Shanxi Datong Unversity(2007K06) Supported by 11-5 Program Fund of Shanxi Province(GH-09090)
文摘In this paper,we discuss the suffcient condition for complete convergence of partial sums of squares of the ARCH sequence,at the same time a moment inequality of maximum partial sums for squares of the ARCH sequence is proved.
文摘In this paper, we discuss the relation between the partial sums of Jacobi serier on an elliptic region and the corresponding partial sums of Fourier series. From this we derive a precise approximation formula by the partial sums of Jacobi series on an elliptic region.
基金supported by National Natural Science Foundation of China(11361019).
文摘Let be a strictly stationary sequence of ρ?-mixing random variables. We proved the almost sure central limit theorem, containing the general weight sequences, for the partial sums , where , . The result generalizes and improves the previous results.
基金This work was supported by the Natural Science Foundation of Guangxi (Grant No. 007014) College Science Foundation of Guangxi.
文摘This paper discusses the conditions under which Rosenthal type inequality is obtained from M-Z-B type inequality. And M-Z-B type inequality is proved for a wide class of random variables. Hence Rosenthal type inequalities for some classes of random variables are obtained.
基金Supported by National Natural Science Foundation of China(Grant No.11171275)the Program for Excellent Talents in Chongqing Higher Education Institutions(Grant No.120060-20600204)supported by the Swiss National Science Foundation Project(Grant No.200021-134785)
文摘In this paper, we study the joint limit distributions of point processes of exceedances and partial sums of multivariate Gaussian sequences and show that the point processes and partial sums are asymptotically independent under some mild conditions. As a result, for a sequence of standardized stationary Gaussian vectors, we obtain that the point process of exceedances formed by the sequence (centered at the sample mean) converges in distribution to a Poisson process and it is asymptotically independent of the partial sums. The asymptotic joint limit distributions of order statistics and partial sums are also investigated under different conditions.
基金Project supported by the National Natural Science Foundation of Chinaan NSERC Canada grant of M.Csorgo at Carletoa University of Canada+1 种基金the Fok Yingtung Education Foundationan NSERC Canada Scientific Exchange Award at Carleton University
文摘Using suitable self-normalization for partial sums of i.i.d.random variables,Griffin and Kuelbs established the law of the iterated logarithm for all distributions in the domain of attraction of a normal law.We obtain the corresponding results for Studentized increments of partial sums under thesame condition.
基金supported by the National Natural Science Foundation of China (No. 11171275)the Program for Excellent Talents in Chongqing Higher Education Institutions (No. 120060-20600204)Liaocheng University Foundation (No. X09005)
文摘Abstract The authors prove an almost sure central limit theorem for partial sums based on an irreducible and positive recurrent Markov chain using logarithmic means, which realizes the extension of the almost sure central limit theorem for partial sums from an i.i.d, sequence of random variables to a Markov chain.
基金Project supported by the National Natural Science Foundation of China(No.11061012)the NaturalScience Foundation of Guangxi Province(No.2012GXNSFAA053010)
文摘Consider a sequence of i.i.d.positive random variables with the underlying distribution in the domain of attraction of a stable distribution with an exponent in (1,2].A universal result in the almost sure limit theorem for products of partial sums is established. Our results significantly generalize and improve those on the almost sure central limit theory previously obtained by Gonchigdanzan and Rempale and by Gonchigdanzan.In a sense,our results reach the optimal form.
基金Project supported by the Fok Yingtung Education Foundation,and by the National Natural Science Foundation of China.
文摘Csorgo and Revesz (1981) obtained an elegant result on how ismall the increments ofpartial sums of IID random variables are. But their proof seems some wrong. In this paperwe have not only corrected their proof, but also established the corresponding result forindependent, not necessarily identically distributed random variables under more generaland weaker assumptions.
文摘Binary digit representation of partial sums for random variables has been investigated, and a good upper bound of moments of maximum partial sums for random variables has been reduced by using this representation. As an applications, stability and strong law of large numbers have been discussed. Many known classical results have been refined.
文摘We give a systematic account of results which assure positivity and boundedness of partial sums of cosine or sine series. New proofs of recent results are sketched.