A path following control algorithm for an unmanned underwater vehicle(UUV) using temporary path generation guidance was proposed in this paper.Owing to different initial states of the vehicle,such as position and or...A path following control algorithm for an unmanned underwater vehicle(UUV) using temporary path generation guidance was proposed in this paper.Owing to different initial states of the vehicle,such as position and orientation,the path following control in the horizontal plane may yield a poor performance.To deal with the negative effect induced by initial states,a temporary path generation was presented based on the relationship between the original reference path and the vehicle’s initial states.With different relative positions between the vehicle and reference path,including out of straight lines,as well as inside and outside a circle,the related temporary paths guiding the vehicle to the reference path were able to be generated in real time.The vehicle was guided to steer along the temporary path until it reached the tangent point at the reference path,where the controller was designed using the input-output feedback linearization method.Simulation results demonstrated that the proposed algorithm is effective under the three different situations mentioned above.展开更多
With the increasing market demand for optical complex surface parts,the application of multi-axis ultraprecision single-point diamond turning is increasing.A tool path generation method is very important to decrease m...With the increasing market demand for optical complex surface parts,the application of multi-axis ultraprecision single-point diamond turning is increasing.A tool path generation method is very important to decrease manufacturing time,enhance surface quality,and reduce cost.Compared with the tool path generation of the traditional multi-axis milling,that of the ultra-precision single-point diamond turning requires higher calculation accuracy and efficiency.This paper reviews the tool path generation of ultra-precision diamond turning,considering several key issues:cutter location(CL)points calculation,the topological form of tool path,interpolation mode,and G code optimization.展开更多
This paper presents a strategy to generate interference-free tool paths for machining sculptured surfaces. The strategy proposed here is first to determine the tool path topology. The values of the step length and the...This paper presents a strategy to generate interference-free tool paths for machining sculptured surfaces. The strategy proposed here is first to determine the tool path topology. The values of the step length and the path interval are then calculated based on the machining tolerance requirements. After detecting and eliminating the tool interference, the interference-free tool path is generated. The effectiveness of the developed algorithm is demonstrated through simulation and actual cutting tests.展开更多
We theoretically investigate the high-order-harmonic generation from the H2^+ molecular ion exposed to the combi- nation of an intense trapezoidal laser and a static field. The results show that the harmonic spectrum...We theoretically investigate the high-order-harmonic generation from the H2^+ molecular ion exposed to the combi- nation of an intense trapezoidal laser and a static field. The results show that the harmonic spectrum is obviously extended and the short quantum path is selected to contribute to the spectrum, because the corresponding long path is seriously suppressed. Then the combined Coulomb and laser field potentials and the time-dependent electron wave packet distributions are applied to illustrate the physical mechanism of high-order harmonic gen- eration. Finally, by adjusting the intensity of the static field and superposing a properly selected range of the HHG spectrum, a 90-as isolated attosecond pulse is straightforwardly obtained.展开更多
This paper presents a new approach for designing the tool paths in the machining of sculptured surfaces for computer nu- merical controlled end milling. In the proposed method, the tool paths are determined so that th...This paper presents a new approach for designing the tool paths in the machining of sculptured surfaces for computer nu- merical controlled end milling. In the proposed method, the tool paths are determined so that the scallop height formed by two adja- cent machining paths is maintained constant across the machined surface. Unlike previous work on iso-scallop height milling, the present work considers the true 3D configuration of the milling procedure and can be used to generate better results, which is shown by examoles.展开更多
Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the...Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the OLP system. A new type of grinding robot and a novel robotic belt grinding workcell are forwarded, and their features are briefly introduced. An open and object-oriented off-line programming system is developed for this robotic belt grinding system. The parameters of the trimmed surface are read from the initial graphics exchange specification (IGES) file of the CAD model of the workpiece. The deBoor-Cox basis function is used to sample the grinding target with local contact frame on the workpiece. The numerical formula of inverse kinematics is set up based on Newton's iterative procedure, to calculate the grinding robot configurations corresponding to the grinding targets. After the grinding path is obtained, the OLP system turns to be more effective than the teach-by-showing system. In order to improve the grinding workspace, an optimization algorithm for dynamic tool frame is proposed and performed on the special robotic belt grinding system. The initial tool frame and the interval of neighboring tool frames are defined as the preparation of the algorithm. An optimized tool local frame can be selected to grind the complex surface for a maximum dexterity index of the robot. Under the optimization algorithm, a simulation of grinding a vane is included and comparison of grinding workspace is done before and after the tool frame optimization. By the algorithm, the grinding workspace can be enlarged. Moreover the dynamic tool frame can be considered to add one degree-of-freedom to the grinding kinematical chain, which provides the theoretical support for the improvement of robotic dexterity for the complex surface grinding.展开更多
A new method for generating tool paths for rough machining of sculpturedsurface is presented in this paper. The sculptured surface is approximated by a regular mesh ofquadrangular facets. A set of equidistant horizont...A new method for generating tool paths for rough machining of sculpturedsurface is presented in this paper. The sculptured surface is approximated by a regular mesh ofquadrangular facets. A set of equidistant horizontal planes are assigned to intersect the blank ofmachined part and surface model , resulting in a series of contours, which demarcate the feasiblecutting regions of each layer of material removal. The desired cutter path is computed through NCprogramming and any gouging between the cutter and the part being machined is detected and correctedautomatically. The proposed algorithm successfully solves the problem of layered milling forsculptured surface with nested islands.展开更多
The methodology of 5-axis cutter selection to avert collision for free-form surface machining by flat-end cutters is presented. The combination of different cutters is adopt aiming at short machining time and high pre...The methodology of 5-axis cutter selection to avert collision for free-form surface machining by flat-end cutters is presented. The combination of different cutters is adopt aiming at short machining time and high precision. The optimal small cutter is determined based on the geometric information of the points where a cutter most probably collide with the machined surface. Several larger cutters are selected to machine the surface in order to find the interference-free area. The difference of machining time for this area between the optimal small cutter and the large cutters is calculated. The functional relationship between the machining time and the radius of a cutter is established, by which the optimal number of cutters is obtained. The combination of cutters, which possesses the minimum overall machining time, is selected as the optimal cutter sizes. A case study has demonstrated the validity of the proposed methodology and algorithms.展开更多
The paper discussed cutter-work engagement situation hidden behind the mechanical and thermal load effect on cutting edges during high speed hard machining process. The engagement situation was investigated in great d...The paper discussed cutter-work engagement situation hidden behind the mechanical and thermal load effect on cutting edges during high speed hard machining process. The engagement situation was investigated in great detail using experimental and geometrical analytic measures. Experiments were conducted using A1TiN-coated micro-grain carbide end mill cutters to cut hardened die steel. On the basis, a general high speed hard machining strategy, which aimed at eliminating excessive engagement situation during high-speed machining (HSM) hard machining, was proposed. The strategy includes the procedures to identify prone-to-overload areas where excessive engagement situation occurs and then to create a reliable tool path, which has the effect of cutting load reduction to remove the prone-to-overload areas.展开更多
Based on the principles of differential geometry,the basic equations are derived for generating gouging free tool path in 5-axis NC face milling,the influence of surface's local geometry is discussed,and the condi...Based on the principles of differential geometry,the basic equations are derived for generating gouging free tool path in 5-axis NC face milling,the influence of surface's local geometry is discussed,and the conditions of using cutter with reasonable diameter are presented.展开更多
It is known that critical path test generation method is not a complete algorithm for combinational circuits with reconvergent-fanout.In order to make it a complete algorithm,we put forward a reconvergent-fanout- orie...It is known that critical path test generation method is not a complete algorithm for combinational circuits with reconvergent-fanout.In order to make it a complete algorithm,we put forward a reconvergent-fanout- oriented technique,the principal critical path algorithm,propagating the critical value back to primary inputs along a single path,the principal critical path,and allowing multiple path sensitization if needed.Relationship among test patterns is also discussed to accelerate test generation.展开更多
Power generators and chemical engineering compressors include heavy and large centrifugal impellers. To produce these impellers in high-speed machining, a 4?-axis milling machine(or a 4-axis machine plus an indexing t...Power generators and chemical engineering compressors include heavy and large centrifugal impellers. To produce these impellers in high-speed machining, a 4?-axis milling machine(or a 4-axis machine plus an indexing table) is often used in the industry, which is more rigid than a5-axis milling machine. Since impeller blades are designed with complex B-spline surfaces and impeller channels spaces vary significantly, it is more efficient to use multiple cutters as large as possible to cut a channel in sections and a blade surface in patches, instead of only using a small cutter to machine a whole blade and a channel. Unfortunately, no approach has been established to automatically calculate the largest diameters of cutters and their paths, which include the indexing table angles. To address this problem, an automated and optimization approach is proposed. Based on the structure of a 4?-axis machine, a geometric model for a cutter gouging/interfering the impeller is formulated, and an optimization model of the cutter diameter in terms of the indexing table angle is established at a cutter contact(CC) point on a blade surface. Then, the diameters of the tools,their orientations, and the indexing table angles are optimized, and each tool's paths are generated for machining its corresponding impeller section. As a test, an impeller is efficiently machined with these tools section by section; thus, this approach is valid. It can be directly used in the industry to improve efficiency of machining centrifugal impellers.展开更多
This study aims to make an objective comparative analysis between the relative significance of three crucial modelling aspects involved in the probabilistic analysis of transport networks. The first question to addres...This study aims to make an objective comparative analysis between the relative significance of three crucial modelling aspects involved in the probabilistic analysis of transport networks. The first question to address is the extent to which the size of generated path sets can affect the prediction of the static flow in the path-based traffic assignment paradigm. The importance of this question arises from the fact that the need to generate a large quantity of paths may be perceived by analysts as a preventative reason as to the application of path-based stochastic traffic assignment (STA) models for large-scale networks. A simulated path generation algorithm, which allows the number of generated paths to be under modeller's control, is applied. Findings show that the size of the generated path sets does not substantially affect the flow prediction outcome in this case study. Further investigations with respect to the relative importance of STA model estimation (or equivalently, parameter calibration) and model specification (or equivalently, error term formulation) are also conducted. A paired combinatorial logit (PCL) assignment model with an origin-destination-specific-parameter, along with a heuristic method of model estimation (calibration), is proposed. The proposed model cannot only accommodate the correlation between path utilities, but also accounts for the fact that travelling between different origin-destination (O-D) pairs can correspond to different levels of stochasticity and choice randomness. Results suggest that the estimation of the stochastic user equilibrium (SUE) models can affect the outcome of the flow prediction far more meaningfuUy than the complexitv of the choice model (i.e.. model specification).展开更多
In this work, a novel morphing machining strategy (MMS) is proposed. In the method, the workpiece is progressively carved out from the stock. Pitfalls in conventional iso-height strategy, such as sharp edges and une...In this work, a novel morphing machining strategy (MMS) is proposed. In the method, the workpiece is progressively carved out from the stock. Pitfalls in conventional iso-height strategy, such as sharp edges and unevenly distributed left-over materials, are overcome. Moreover, to calculate different levels in the MMS, an energy-based morphing algorithm is proposed. Finally, the proposed strategy is employed in the machining of artificial bone represented by a T-spline surface. The excellent properties of T-spline, such as expressing complex shapes with a single surface, have been well adopted to artificial bone fabri- cation. Computer simulation and the actual machining of the middle finger bone show the feasibility of the proposed strategy.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.51179038the Program of New Century Excellent Talents in University under Grant No. NCET-10-0053
文摘A path following control algorithm for an unmanned underwater vehicle(UUV) using temporary path generation guidance was proposed in this paper.Owing to different initial states of the vehicle,such as position and orientation,the path following control in the horizontal plane may yield a poor performance.To deal with the negative effect induced by initial states,a temporary path generation was presented based on the relationship between the original reference path and the vehicle’s initial states.With different relative positions between the vehicle and reference path,including out of straight lines,as well as inside and outside a circle,the related temporary paths guiding the vehicle to the reference path were able to be generated in real time.The vehicle was guided to steer along the temporary path until it reached the tangent point at the reference path,where the controller was designed using the input-output feedback linearization method.Simulation results demonstrated that the proposed algorithm is effective under the three different situations mentioned above.
基金supports of the Funds for the National Natural Science Foundation of China [grant numbers 51575386,51275344]
文摘With the increasing market demand for optical complex surface parts,the application of multi-axis ultraprecision single-point diamond turning is increasing.A tool path generation method is very important to decrease manufacturing time,enhance surface quality,and reduce cost.Compared with the tool path generation of the traditional multi-axis milling,that of the ultra-precision single-point diamond turning requires higher calculation accuracy and efficiency.This paper reviews the tool path generation of ultra-precision diamond turning,considering several key issues:cutter location(CL)points calculation,the topological form of tool path,interpolation mode,and G code optimization.
文摘This paper presents a strategy to generate interference-free tool paths for machining sculptured surfaces. The strategy proposed here is first to determine the tool path topology. The values of the step length and the path interval are then calculated based on the machining tolerance requirements. After detecting and eliminating the tool interference, the interference-free tool path is generated. The effectiveness of the developed algorithm is demonstrated through simulation and actual cutting tests.
基金Supported by the National Natural Science Foundation of China under Grant No 11404204the Key Project of the Ministry of Education of China under Grant No 211025+1 种基金the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20111404120004the Natural Science Foundation for Young Scientists of Shanxi Province of China under Grant No2009021005
文摘We theoretically investigate the high-order-harmonic generation from the H2^+ molecular ion exposed to the combi- nation of an intense trapezoidal laser and a static field. The results show that the harmonic spectrum is obviously extended and the short quantum path is selected to contribute to the spectrum, because the corresponding long path is seriously suppressed. Then the combined Coulomb and laser field potentials and the time-dependent electron wave packet distributions are applied to illustrate the physical mechanism of high-order harmonic gen- eration. Finally, by adjusting the intensity of the static field and superposing a properly selected range of the HHG spectrum, a 90-as isolated attosecond pulse is straightforwardly obtained.
基金Partially supported by a grant from NSFC (60821002)
文摘This paper presents a new approach for designing the tool paths in the machining of sculptured surfaces for computer nu- merical controlled end milling. In the proposed method, the tool paths are determined so that the scallop height formed by two adja- cent machining paths is maintained constant across the machined surface. Unlike previous work on iso-scallop height milling, the present work considers the true 3D configuration of the milling procedure and can be used to generate better results, which is shown by examoles.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z2443)State Key Laboratory for Man ufacturing Systems Engineering of Xi’an Jiaotong University of China
文摘Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the OLP system. A new type of grinding robot and a novel robotic belt grinding workcell are forwarded, and their features are briefly introduced. An open and object-oriented off-line programming system is developed for this robotic belt grinding system. The parameters of the trimmed surface are read from the initial graphics exchange specification (IGES) file of the CAD model of the workpiece. The deBoor-Cox basis function is used to sample the grinding target with local contact frame on the workpiece. The numerical formula of inverse kinematics is set up based on Newton's iterative procedure, to calculate the grinding robot configurations corresponding to the grinding targets. After the grinding path is obtained, the OLP system turns to be more effective than the teach-by-showing system. In order to improve the grinding workspace, an optimization algorithm for dynamic tool frame is proposed and performed on the special robotic belt grinding system. The initial tool frame and the interval of neighboring tool frames are defined as the preparation of the algorithm. An optimized tool local frame can be selected to grind the complex surface for a maximum dexterity index of the robot. Under the optimization algorithm, a simulation of grinding a vane is included and comparison of grinding workspace is done before and after the tool frame optimization. By the algorithm, the grinding workspace can be enlarged. Moreover the dynamic tool frame can be considered to add one degree-of-freedom to the grinding kinematical chain, which provides the theoretical support for the improvement of robotic dexterity for the complex surface grinding.
文摘A new method for generating tool paths for rough machining of sculpturedsurface is presented in this paper. The sculptured surface is approximated by a regular mesh ofquadrangular facets. A set of equidistant horizontal planes are assigned to intersect the blank ofmachined part and surface model , resulting in a series of contours, which demarcate the feasiblecutting regions of each layer of material removal. The desired cutter path is computed through NCprogramming and any gouging between the cutter and the part being machined is detected and correctedautomatically. The proposed algorithm successfully solves the problem of layered milling forsculptured surface with nested islands.
基金Funded by the Doctorate Degree Program Foundation of the Ministry of Education (No. 2000061120)
文摘The methodology of 5-axis cutter selection to avert collision for free-form surface machining by flat-end cutters is presented. The combination of different cutters is adopt aiming at short machining time and high precision. The optimal small cutter is determined based on the geometric information of the points where a cutter most probably collide with the machined surface. Several larger cutters are selected to machine the surface in order to find the interference-free area. The difference of machining time for this area between the optimal small cutter and the large cutters is calculated. The functional relationship between the machining time and the radius of a cutter is established, by which the optimal number of cutters is obtained. The combination of cutters, which possesses the minimum overall machining time, is selected as the optimal cutter sizes. A case study has demonstrated the validity of the proposed methodology and algorithms.
文摘The paper discussed cutter-work engagement situation hidden behind the mechanical and thermal load effect on cutting edges during high speed hard machining process. The engagement situation was investigated in great detail using experimental and geometrical analytic measures. Experiments were conducted using A1TiN-coated micro-grain carbide end mill cutters to cut hardened die steel. On the basis, a general high speed hard machining strategy, which aimed at eliminating excessive engagement situation during high-speed machining (HSM) hard machining, was proposed. The strategy includes the procedures to identify prone-to-overload areas where excessive engagement situation occurs and then to create a reliable tool path, which has the effect of cutting load reduction to remove the prone-to-overload areas.
文摘Based on the principles of differential geometry,the basic equations are derived for generating gouging free tool path in 5-axis NC face milling,the influence of surface's local geometry is discussed,and the conditions of using cutter with reasonable diameter are presented.
文摘It is known that critical path test generation method is not a complete algorithm for combinational circuits with reconvergent-fanout.In order to make it a complete algorithm,we put forward a reconvergent-fanout- oriented technique,the principal critical path algorithm,propagating the critical value back to primary inputs along a single path,the principal critical path,and allowing multiple path sensitization if needed.Relationship among test patterns is also discussed to accelerate test generation.
基金supported by the National Natural Science Foundation of China(No.51475328)the National Science and Technology Major Project of China(No.2015ZX04001202)
文摘Power generators and chemical engineering compressors include heavy and large centrifugal impellers. To produce these impellers in high-speed machining, a 4?-axis milling machine(or a 4-axis machine plus an indexing table) is often used in the industry, which is more rigid than a5-axis milling machine. Since impeller blades are designed with complex B-spline surfaces and impeller channels spaces vary significantly, it is more efficient to use multiple cutters as large as possible to cut a channel in sections and a blade surface in patches, instead of only using a small cutter to machine a whole blade and a channel. Unfortunately, no approach has been established to automatically calculate the largest diameters of cutters and their paths, which include the indexing table angles. To address this problem, an automated and optimization approach is proposed. Based on the structure of a 4?-axis machine, a geometric model for a cutter gouging/interfering the impeller is formulated, and an optimization model of the cutter diameter in terms of the indexing table angle is established at a cutter contact(CC) point on a blade surface. Then, the diameters of the tools,their orientations, and the indexing table angles are optimized, and each tool's paths are generated for machining its corresponding impeller section. As a test, an impeller is efficiently machined with these tools section by section; thus, this approach is valid. It can be directly used in the industry to improve efficiency of machining centrifugal impellers.
文摘This study aims to make an objective comparative analysis between the relative significance of three crucial modelling aspects involved in the probabilistic analysis of transport networks. The first question to address is the extent to which the size of generated path sets can affect the prediction of the static flow in the path-based traffic assignment paradigm. The importance of this question arises from the fact that the need to generate a large quantity of paths may be perceived by analysts as a preventative reason as to the application of path-based stochastic traffic assignment (STA) models for large-scale networks. A simulated path generation algorithm, which allows the number of generated paths to be under modeller's control, is applied. Findings show that the size of the generated path sets does not substantially affect the flow prediction outcome in this case study. Further investigations with respect to the relative importance of STA model estimation (or equivalently, parameter calibration) and model specification (or equivalently, error term formulation) are also conducted. A paired combinatorial logit (PCL) assignment model with an origin-destination-specific-parameter, along with a heuristic method of model estimation (calibration), is proposed. The proposed model cannot only accommodate the correlation between path utilities, but also accounts for the fact that travelling between different origin-destination (O-D) pairs can correspond to different levels of stochasticity and choice randomness. Results suggest that the estimation of the stochastic user equilibrium (SUE) models can affect the outcome of the flow prediction far more meaningfuUy than the complexitv of the choice model (i.e.. model specification).
基金Project supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China (No. 51221004), and the National Natural Science Foundation of Chi:na (Nos. 51175461 and 51105335)
文摘In this work, a novel morphing machining strategy (MMS) is proposed. In the method, the workpiece is progressively carved out from the stock. Pitfalls in conventional iso-height strategy, such as sharp edges and unevenly distributed left-over materials, are overcome. Moreover, to calculate different levels in the MMS, an energy-based morphing algorithm is proposed. Finally, the proposed strategy is employed in the machining of artificial bone represented by a T-spline surface. The excellent properties of T-spline, such as expressing complex shapes with a single surface, have been well adopted to artificial bone fabri- cation. Computer simulation and the actual machining of the middle finger bone show the feasibility of the proposed strategy.