Performance-based design in earthquake engineering is a structural optimization problem that has, as the objective, the determination of design parameters for the minimization of total costs, while at the same time sa...Performance-based design in earthquake engineering is a structural optimization problem that has, as the objective, the determination of design parameters for the minimization of total costs, while at the same time satisfying minimum reliability levels for the specifi ed performance criteria. Total costs include those for construction and structural damage repairs, those associated with non-structural components and the social costs of economic losses, injuries and fatalities. This paper presents a general framework to approach this problem, using a numerical optimization strategy and incorporating the use of neural networks for the evaluation of dynamic responses and the reliability levels achieved for a given set of design parameters. The strategy is applied to an example of a three-story offi ce building. The results show the importance of considering the social costs, and the optimum failure probabilities when minimum reliability constraints are not taken into account.展开更多
This paper investigates a simple approach proposed towards performance-based earthquake engineering (PBEE) which has potential applications to the performance-based design (PBD) and performance-based assessment (PBA) ...This paper investigates a simple approach proposed towards performance-based earthquake engineering (PBEE) which has potential applications to the performance-based design (PBD) and performance-based assessment (PBA) fields. The simple method of PBEE encompasses three areas of seismic risk which include seismic hazard, structural analysis, and loss models. The aim of the PBEE process, entitled as FEMA P-58, is to present essential data needed to make a rational decision regarding predicted performance, where various sources of uncertainties are involved. In developing countries, the lack of suitable real ground motions corresponding to site characteristics and seismicity particularly for larger intensities and the scarcity of demands, which makes it hard to identify the seismic capacity of a structure, is the main our motivation of using the FEMA method. In this paper, the method of FEMA P-58 is investigated, in terms of available tools and required data, in such a way that it will be applicable for developing countries which are located in high seismic hazard zones. To achieve this goal, three steel moment-resisting buildings with low and high ductility, and three steel braced-frame buildings are selected as case studies. The mean annual loss is estimated by the available software, Performance Assessment Calculation Tool (PACT). The achieved results, i.e. the loss curves, will provide a simple means by which the engineers can quantify and communicate seismic performance to other stakeholders. In the case study buildings, the braced one has less annual losses in comparison with other investigated cases, and the structure with high ductility can be considered as the next ones. Execution cost of each building should be considered by contractors. Also, seismic fragility curves of structures for various limit states, as well, the corresponding loss models are identified as the most essential data towards application of the investigated PBEE process.展开更多
The objective of Performance-Based Earthquake Engineering (PBEE) is the analysis of performance objectives with a specified annual probability of exceedance. Increasingly undesirable performance is caused by increas...The objective of Performance-Based Earthquake Engineering (PBEE) is the analysis of performance objectives with a specified annual probability of exceedance. Increasingly undesirable performance is caused by increasing levels of strong ground motion having decreasing annual probabilities of exceedance. The development of this methodology includes three steps: (1) evaluation of the distribution of ground motion at a site; (2) evaluation of the distribution of system response; (3) evaluation of the probability of exceeding decision variables within a given time period, given appropriate damage measures. The work has taken a systematic approach to determine the impact of increasing levels of detail in site characterization on the accuracy of ground motion and site effects predictions. Complementary studies have investigated the use of the following models for evaluating site effects: (1) amplification factors defined on the basis of generalized site categories, (2) one-dimensional ground response analysis, and (3) two-dimensional ground response analysis for surface topography on ground motion. The paper provides a brief synthesis of ground motion and site effects analysis procedures within a Performance-Based Design framework. It focuses about the influence on the evaluation of site effects in some active regions by different shear waves velocity measurements Down Hole (D-H), Cross Hole (C-H), Seismic Dilatometer Marchetti Test (SDMT) and by different variation of shear modulus and damping ratio with strain level and depth from different laboratory dynamic tests for soil characterization: Resonant Column Test (RCT), Cyclic Loading Torsional Shear Test (CLTST).展开更多
Performance-based design is more holistic and flexible than prescriptive design for providing safety in large complex buildings. Here, a multi-agent method to model the egress patterns of evacuees is combined with a m...Performance-based design is more holistic and flexible than prescriptive design for providing safety in large complex buildings. Here, a multi-agent method to model the egress patterns of evacuees is combined with a microscopic pedestrian simulation model used to analyze the forces between individuals in a densely populated enclosed space in a crowd crushing and trampling analysis (CroC&Ts). The system is used to model egress patterns in a typical crowd evacuation simulation. The simulations indicate that some individuals will die from crushing in 2 m and 4 m wide exits in emergencies. The simulations also show that the fatality probability increases when barriers obstacled the path and when the egress distances were lar- ger. The simulations validate the conclusions of the stranded crowd model (SCM) and provide quantitative predictions of the crowd crushing and trampling risk. Therefore, the CroC&Ts can provide performancebased egress designs for large pubic buildings and improve crowd safety management and emergency planning.展开更多
The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and e...The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and economic development. A new performance-based seismic design criterion that is composed of three components is presented in this paper. It can not only effectively control the economic losses and casualty, but also ensure the building's function in proper operation during earthquakes. The three components are: classification of seismic design for buildings, determination of seismic design intensity and/or seismic design ground motion for controlling seismic economic losses and casualties, and determination of the importance factors in terms of service periods of buildings. For controlling the seismic human losses, the idea of socially acceptable casualty level is presented and the 'Optimal Economic Decision Model' and 'Optimal Safe Decision Model' are established. Finally, a new method is recommended for calculating the importance factors of structures by adjusting structures service period on the base of more important structure with longer service period than the conventional ones. Therefore, the more important structure with longer service periods will be designed for higher seismic loads, in case the exceedance probability of seismic hazard in different service period is same.展开更多
With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components ...With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.展开更多
Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logi...Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logical. In this study, simple formulae to estimate the peak floor displacement patterns of eccentrically braced frames(EBFs) at different performance levels subjected to earthquake ground motions are proposed. These formulae are applicable in a PBSD and especially in direct displacement-based design(DDBD). Parametric study is conducted on a group of 30 EBFs under a set of 15 far field and near field accelerograms which they scaled to different amplitudes to adapt various performance levels. The results of thousands of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to recognize the major parameters that influence the peak displacement pattern of these frames. Results show that suggested displacement patterns have relatively good agreement with those acquired by an exact nonlinear dynamic analysis.展开更多
Purpose: This study aims to present the key systemic changes in the Polish book evaluation model to focus on the publisher list, as inspired by the Norwegian Model. Design/methodology/approach: In this study we recons...Purpose: This study aims to present the key systemic changes in the Polish book evaluation model to focus on the publisher list, as inspired by the Norwegian Model. Design/methodology/approach: In this study we reconstruct the framework of the 2010 and 2018 models of book evaluation in Poland within the performance-based research funding system. Findings: For almost 20 years the book evaluation system in Poland has been based on the verification of various technical criteria(e.g. length of the book). The new 2018 model is based on the principle of prestige inheritance(a book is worth as much as its publisher is) and is inspired by the publisher list used in the Norwegian Model. In this paper, we argue that this solution may be a more balanced policy instrument than the previous 2010 model in which neither the quality of the publisher nor the quality of the book played any role in the evaluation.Research limitations: We work from the framework of the 2018 model of book evaluation specified in the law on higher education and science from 20 July 2018, as implementation acts are not available yet. Practical implications: This study may provide a valuable point of reference on how structural reforms in the research evaluation model were implemented on a country level. The results of this study may be interesting to policy makers, stakeholders and researchers focused on science policy. Originality/value: This is the very first study that presents the new framework of the Polish research evaluation model and policy instruments for scholarly book evaluation. We describe what motivated policy makers to change the book evaluation model, and what arguments were explicitly raised to argue for the new solution.展开更多
This paper provides a summary of the objectives and principles which underpin the 2004 edition of the New Zealand earthquake design standard, AS/NZS 1170 Part 5. As with many modern earthquake design standards, the Ne...This paper provides a summary of the objectives and principles which underpin the 2004 edition of the New Zealand earthquake design standard, AS/NZS 1170 Part 5. As with many modern earthquake design standards, the New Zealand earthquake design standard recognizes that earthquake resistant design that only addresses life safety goals without addressing both operational continuity of essential facilities and damage control, falls short of public expectations. Such standards not longer meet societal expectations. The paper outlines how these issues have been addressed within New Zealand, and some of the issues addressed when preparing appendices to the standard to provide guidance for materials standard writers to ensure consistency with the proposed approach. Recognizing the significance of non-structural components and parts of buildings in both damage control and operational continuity has been an important step forward in attaining the performance levels required.展开更多
Issues on intelligent resource description and multiple intelligent resources integration for lntemet based collaborative design are analyzed. A performance-based intelligent resource description model for lnternet-ba...Issues on intelligent resource description and multiple intelligent resources integration for lntemet based collaborative design are analyzed. A performance-based intelligent resource description model for lnternet-based product design is proposed, which can help to create, store, manipulate and exchange intelligent resource description information for applications, tools and systems in Interact-based product design. A method to integrate multiple intelligent resources to fulfill a complex product design and analysis via lntemet is also proposed. A real project for improving the bearing system design of a turbo-expander with many intelligent resources in prominent universities is presented as a case study.展开更多
One of the challenges in construction of nearly and net ZEBs is how to truly achieve the nearly and net energy goals after building occupancy.Traditional building design standards and practices are mostly based on des...One of the challenges in construction of nearly and net ZEBs is how to truly achieve the nearly and net energy goals after building occupancy.Traditional building design standards and practices are mostly based on design performance evaluation,but practices show that many designed nearly/net ZEBs failed to achieve the energy goals after building occupancy.To facilitate the practical achievement of nearly and net ZEBs,recently most of the newly-released ZEB design standards have turned to post-occupancy performance evaluation,posing great challenges to nearly and net ZEB design.However,the detailed challenges have not be comprehensively investigated,and effective optimal design methods which can facilitate the achievement of nearly and net ZEBs under these standards are still absent.In this study,new challenges of nearly and net ZEB design under the post-occupancy performance-based design standards are fully investigated,and a risk-benefit based optimal design method is proposed to facilitate the achievement of nearly and net ZEBs under these standards.The newly-released ZEB standard in China is taken as an example to investigate the challenges and test the proposed method.Results show that nearly and net ZEBs designed using conventional design method have high risk in achieving energy goals under these standards due to high risk in satisfying the requirement regarding non-renewable primary energy consumption after building occupancy.The proposed design method is effective to facilitate achieving energy goals under these standards based on the risk that decision-makers would like to take.展开更多
In the field of earthquake engineering,the advent of the performance-based design philosophy,together with the highly uncertain nature of earthquake ground excitations to structures,has brought probabilistic performan...In the field of earthquake engineering,the advent of the performance-based design philosophy,together with the highly uncertain nature of earthquake ground excitations to structures,has brought probabilistic performance-based design to the forefront of seismic design.In order to design structures that explicitly satisfy probabilistic performance criteria,a probabilistic performance-based optimum seismic design(PPBOSD)framework is proposed in this paper by extending the state-of-the-art performance-based earthquake engineering(PBEE)methodology.PBEE is traditionally used for risk evaluation of existing or newly designed structural systems,thus referred to herein as forward PBEE analysis.In contrast,its use for design purposes is limited because design is essentially a more challenging inverse problem.To address this challenge,a decision-making layer is wrapped around the forward PBEE analysis procedure for computer-aided optimum structural design/retrofit accounting for various sources of uncertainty.In this paper,the framework is illustrated and validated using a proof-of-concept problem,namely tuning a simplified nonlinear inelastic single-degreeof-freedom(SDOF)model of a bridge to achieve a target probabilistic loss hazard curve.For this purpose,first the forward PBEE analysis is presented in conjunction with the multilayer Monte Carlo simulation method to estimate the total loss hazard curve efficiently,followed by a sensitivity study to investigate the effects of system(design)parameters on the probabilistic seismic performance of the bridge.The proposed PPBOSD framework is validated by successfully tuning the system parameters of the structure rated for a target probabilistic seismic loss hazard curve.The PPBOSD framework provides a tool that is essential to develop,calibrate and validate simplified probabilistic performance-based design procedures.展开更多
Fires at the Wildland-Urban Interface(WUI)are becoming increasingly hazardous for life safety and property protection.Guidelines and standards for fire practitioners are needed in order to help WUI communities face th...Fires at the Wildland-Urban Interface(WUI)are becoming increasingly hazardous for life safety and property protection.Guidelines and standards for fire practitioners are needed in order to help WUI communities face this threat and become fire-adapted.A performance-based design approach(PBD)is proposed to deal with the complex issues present at the WUI homeowner scale,which entails the use of Computational Fluid Dynamics(CFD)tools such as FDS in order to identify vulnerabilities in a quantitative manner.An analysis of recent European WUI fires is presented,along with the definition of several pattern scenarios that can be derived from these.Based on this analysis,examples of PBD fire scenarios specific for the Mediterranean WUI microscale are presented,involving glazing systems,roofing and gutters,external structures adjacent to the main building,and gaps present in the building envelope.A worked example to show the implementation of the proposed PBD method is provided in which the fire impact of residential fuel on a glazing system is quantitatively analysed.展开更多
One of the biggest global issues at present involves the search for measures to conserve energy and to combat climate change.Because of an increase in natural disasters and energy use,architects and engineers have bee...One of the biggest global issues at present involves the search for measures to conserve energy and to combat climate change.Because of an increase in natural disasters and energy use,architects and engineers have been focusing more on creating green buildings with low-carbon designs.Building information modeling(BIM)is used to record all of the data related to buildings from the early design stage.This information can be used to respond to energy simulation feedback and to accommodate changes that may be necessary during the design developments.To mitigate greenhouse gas emissions and to conserve energy in the buildings,the application of a BIM-based low-carbon design technique is required from the early design stage.However,the existing research is limited to sub-segmented topics;therefore,it is difficult for designers to establish a rank grade for a low-carbon design technique that is required for application in design planning.In this study,we attempt to analyze the rank grade and the correlation among design components that affect a building’s energy performance.We selected tower buildings for the experiment,as they consume a massive amount of energy and have a large impact on the surrounding environment.We analyzed the values that resulted from different shapes,scales,slenderness ratios,window-to-wall ratios,and solar orientations of the tower buildings.Then,we identified a correlation and rank grade among different design components.Architects can maximize energy performance efficiency by considering and applying the rank grade of a low-carbon design technique during design planning.In addition,the development of guidelines for green BIM would reduce confusion in the decision-making process and design modification during the stages of design development,which would then minimize the cost.Furthermore,it is expected that this study can be used to create a database for the realization of green buildings.展开更多
When evaluating the seismic safety and reliability of complex engineering structures,it is a critical problem to reasonably consider the randomness and multi-dimensional nature of ground motions.To this end,a proposed...When evaluating the seismic safety and reliability of complex engineering structures,it is a critical problem to reasonably consider the randomness and multi-dimensional nature of ground motions.To this end,a proposed modeling strategy of multi-dimensional stochastic earthquakes is addressed in this study.This improved seismic model has several merits that enable it to better provide seismic analyses of structures.Specifically,at first,the ground motion model is compatible with the design response spectrum.Secondly,the evolutionary power spectrum involved in the model and the design response spectrum are constructed accordingly with sufficient consideration of the correlation between different seismic components.Thirdly,the random function-based dimension-reduction representation is applied,by which seismic modeling is established,with three elementary random variables.Numerical simulations of multi-dimensional stochastic ground motions in a specific design scenario indicate the effectiveness of the proposed modeling strategy.Moreover,the multi-dimensional seismic response and the global reliability of a high-rise frame-core tube structure is discussed in detail to further illustrate the engineering applicability of the proposed method.The analytical investigations demonstrate that the suggested stochastic model of multi-dimensional ground motion is available for accurate seismic response analysis and dynamic reliability assessment of complex engineering structures for performance-based seismic resistance design.展开更多
This paper presents a performance-based methodology for the assessment of seismic vulnerability and capacity of buildings. The vulnerability assessment methodology is based on the HAZUS methodology and the improved ca...This paper presents a performance-based methodology for the assessment of seismic vulnerability and capacity of buildings. The vulnerability assessment methodology is based on the HAZUS methodology and the improved capacity- demand-diagram method. The spectral displacement (Sd) of performance points on a capacity curve is used to estimate the damage level of a building. The relationship between Sd and peak ground acceleration (PGA) is established, and then a new vulnerability function is expressed in terms of PGA. Furthermore, the expected value of the seismic capacity index (SCev) is provided to estimate the seismic capacity of buildings based on the probability distribution of damage levels and the corresponding seismic capacity index. The results indicate that the proposed vulnerability methodology is able to assess seismic damage of a large number of building stock directly and quickly following an earthquake. The SCev provides an effective index to measure the seismic capacity of buildings and illustrate the relationship between the seismic capacity of buildings and seismic action. The estimated result is compared with damage surveys of the cities of Dujiangyan and Jiangyou in the M8.0 Wenchuan earthquake, revealing that the methodology is acceptable for seismic risk assessment and decision making. The primary reasons for discrepancies between the estimated results and the damage surveys are discussed.展开更多
This paper presents the theory,method,and application of performance-based pavement needs assessment at a state level,using the Pennsylvania Interstate System as an example.First,a general framework is presented for t...This paper presents the theory,method,and application of performance-based pavement needs assessment at a state level,using the Pennsylvania Interstate System as an example.First,a general framework is presented for the pavement asset management and a general optimization model is established for the pavement maintenance and rehabilitation needs assessment.Also,the bundling of pavement segments for the project implementation is discussed.Using the examples of Statewide Transportation Improvement Plan and Long Range Transportation Plan for Pennsylvania Interstate System,the application of performance-based pavement needs assessment is demonstrated.It is shown that unconstrained analysis can help decision-makers investigate the real maintenance and rehabilitation needs;financially-constrained analysis can help decision-makers select projects for implementation and examine the corresponding future pavement conditions.Trade-off analysis can help decision-makers investigate the outcomes of different investment levels on pavement maintenance and rehabilitation and make the final decision on the investment level.The proposed case study provides a good example of performance-based pavement needs assessment for developing countries.展开更多
The BOF-key is the performance-based research funding system that is used in Flanders, Belgium. In this paper we describe the historical background of the system, its current design and organization, as well as its ef...The BOF-key is the performance-based research funding system that is used in Flanders, Belgium. In this paper we describe the historical background of the system, its current design and organization, as well as its effects on the Flemish higher education landscape. The BOFkey in its current form relies on three bibliometric parameters: publications in Web of Science, citations in Web of Science, and publications in a comprehensive regional database for SSH publications. Taken together, the BOF-key forms a unique variant of the Norwegian model: while the system to a large extent relies on a commercial database, it avoids the problem of inadequate coverage of the SSH. Because the bibliometric parameters of the BOF-key are reused in other funding allocation schemes, their overall importance to the Flemish universities is substantial.展开更多
文摘Performance-based design in earthquake engineering is a structural optimization problem that has, as the objective, the determination of design parameters for the minimization of total costs, while at the same time satisfying minimum reliability levels for the specifi ed performance criteria. Total costs include those for construction and structural damage repairs, those associated with non-structural components and the social costs of economic losses, injuries and fatalities. This paper presents a general framework to approach this problem, using a numerical optimization strategy and incorporating the use of neural networks for the evaluation of dynamic responses and the reliability levels achieved for a given set of design parameters. The strategy is applied to an example of a three-story offi ce building. The results show the importance of considering the social costs, and the optimum failure probabilities when minimum reliability constraints are not taken into account.
文摘This paper investigates a simple approach proposed towards performance-based earthquake engineering (PBEE) which has potential applications to the performance-based design (PBD) and performance-based assessment (PBA) fields. The simple method of PBEE encompasses three areas of seismic risk which include seismic hazard, structural analysis, and loss models. The aim of the PBEE process, entitled as FEMA P-58, is to present essential data needed to make a rational decision regarding predicted performance, where various sources of uncertainties are involved. In developing countries, the lack of suitable real ground motions corresponding to site characteristics and seismicity particularly for larger intensities and the scarcity of demands, which makes it hard to identify the seismic capacity of a structure, is the main our motivation of using the FEMA method. In this paper, the method of FEMA P-58 is investigated, in terms of available tools and required data, in such a way that it will be applicable for developing countries which are located in high seismic hazard zones. To achieve this goal, three steel moment-resisting buildings with low and high ductility, and three steel braced-frame buildings are selected as case studies. The mean annual loss is estimated by the available software, Performance Assessment Calculation Tool (PACT). The achieved results, i.e. the loss curves, will provide a simple means by which the engineers can quantify and communicate seismic performance to other stakeholders. In the case study buildings, the braced one has less annual losses in comparison with other investigated cases, and the structure with high ductility can be considered as the next ones. Execution cost of each building should be considered by contractors. Also, seismic fragility curves of structures for various limit states, as well, the corresponding loss models are identified as the most essential data towards application of the investigated PBEE process.
文摘The objective of Performance-Based Earthquake Engineering (PBEE) is the analysis of performance objectives with a specified annual probability of exceedance. Increasingly undesirable performance is caused by increasing levels of strong ground motion having decreasing annual probabilities of exceedance. The development of this methodology includes three steps: (1) evaluation of the distribution of ground motion at a site; (2) evaluation of the distribution of system response; (3) evaluation of the probability of exceeding decision variables within a given time period, given appropriate damage measures. The work has taken a systematic approach to determine the impact of increasing levels of detail in site characterization on the accuracy of ground motion and site effects predictions. Complementary studies have investigated the use of the following models for evaluating site effects: (1) amplification factors defined on the basis of generalized site categories, (2) one-dimensional ground response analysis, and (3) two-dimensional ground response analysis for surface topography on ground motion. The paper provides a brief synthesis of ground motion and site effects analysis procedures within a Performance-Based Design framework. It focuses about the influence on the evaluation of site effects in some active regions by different shear waves velocity measurements Down Hole (D-H), Cross Hole (C-H), Seismic Dilatometer Marchetti Test (SDMT) and by different variation of shear modulus and damping ratio with strain level and depth from different laboratory dynamic tests for soil characterization: Resonant Column Test (RCT), Cyclic Loading Torsional Shear Test (CLTST).
基金Supported by the China Postdoctoral Science Foundation(No. 20070420117)
文摘Performance-based design is more holistic and flexible than prescriptive design for providing safety in large complex buildings. Here, a multi-agent method to model the egress patterns of evacuees is combined with a microscopic pedestrian simulation model used to analyze the forces between individuals in a densely populated enclosed space in a crowd crushing and trampling analysis (CroC&Ts). The system is used to model egress patterns in a typical crowd evacuation simulation. The simulations indicate that some individuals will die from crushing in 2 m and 4 m wide exits in emergencies. The simulations also show that the fatality probability increases when barriers obstacled the path and when the egress distances were lar- ger. The simulations validate the conclusions of the stranded crowd model (SCM) and provide quantitative predictions of the crowd crushing and trampling risk. Therefore, the CroC&Ts can provide performancebased egress designs for large pubic buildings and improve crowd safety management and emergency planning.
基金Chinese National Natural Science Foundation with the grant No.59895410the China Basic Research and Development Project:the Mechanism and Prediction of the Strong Earthquake of the Continental under the Grant No.95130603
文摘The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and economic development. A new performance-based seismic design criterion that is composed of three components is presented in this paper. It can not only effectively control the economic losses and casualty, but also ensure the building's function in proper operation during earthquakes. The three components are: classification of seismic design for buildings, determination of seismic design intensity and/or seismic design ground motion for controlling seismic economic losses and casualties, and determination of the importance factors in terms of service periods of buildings. For controlling the seismic human losses, the idea of socially acceptable casualty level is presented and the 'Optimal Economic Decision Model' and 'Optimal Safe Decision Model' are established. Finally, a new method is recommended for calculating the importance factors of structures by adjusting structures service period on the base of more important structure with longer service period than the conventional ones. Therefore, the more important structure with longer service periods will be designed for higher seismic loads, in case the exceedance probability of seismic hazard in different service period is same.
文摘With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.
文摘Performance-based seismic design(PBSD) aims to assess structures at different damage states. Since damage can be directly associated to displacements, seismic design with consideration of displacement seems to be logical. In this study, simple formulae to estimate the peak floor displacement patterns of eccentrically braced frames(EBFs) at different performance levels subjected to earthquake ground motions are proposed. These formulae are applicable in a PBSD and especially in direct displacement-based design(DDBD). Parametric study is conducted on a group of 30 EBFs under a set of 15 far field and near field accelerograms which they scaled to different amplitudes to adapt various performance levels. The results of thousands of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to recognize the major parameters that influence the peak displacement pattern of these frames. Results show that suggested displacement patterns have relatively good agreement with those acquired by an exact nonlinear dynamic analysis.
基金supported by the DIALOG Program[grant name“Research into Excellence Patterns in Science and Art”]financed by the Ministry of Science and Higher Education in Poland
文摘Purpose: This study aims to present the key systemic changes in the Polish book evaluation model to focus on the publisher list, as inspired by the Norwegian Model. Design/methodology/approach: In this study we reconstruct the framework of the 2010 and 2018 models of book evaluation in Poland within the performance-based research funding system. Findings: For almost 20 years the book evaluation system in Poland has been based on the verification of various technical criteria(e.g. length of the book). The new 2018 model is based on the principle of prestige inheritance(a book is worth as much as its publisher is) and is inspired by the publisher list used in the Norwegian Model. In this paper, we argue that this solution may be a more balanced policy instrument than the previous 2010 model in which neither the quality of the publisher nor the quality of the book played any role in the evaluation.Research limitations: We work from the framework of the 2018 model of book evaluation specified in the law on higher education and science from 20 July 2018, as implementation acts are not available yet. Practical implications: This study may provide a valuable point of reference on how structural reforms in the research evaluation model were implemented on a country level. The results of this study may be interesting to policy makers, stakeholders and researchers focused on science policy. Originality/value: This is the very first study that presents the new framework of the Polish research evaluation model and policy instruments for scholarly book evaluation. We describe what motivated policy makers to change the book evaluation model, and what arguments were explicitly raised to argue for the new solution.
文摘This paper provides a summary of the objectives and principles which underpin the 2004 edition of the New Zealand earthquake design standard, AS/NZS 1170 Part 5. As with many modern earthquake design standards, the New Zealand earthquake design standard recognizes that earthquake resistant design that only addresses life safety goals without addressing both operational continuity of essential facilities and damage control, falls short of public expectations. Such standards not longer meet societal expectations. The paper outlines how these issues have been addressed within New Zealand, and some of the issues addressed when preparing appendices to the standard to provide guidance for materials standard writers to ensure consistency with the proposed approach. Recognizing the significance of non-structural components and parts of buildings in both damage control and operational continuity has been an important step forward in attaining the performance levels required.
基金This project is supported by National Natural Science Foundation of China (No.59990472)Doctor Foundation of Ministry of Education of China (No.20030698005, No.20050698016).
文摘Issues on intelligent resource description and multiple intelligent resources integration for lntemet based collaborative design are analyzed. A performance-based intelligent resource description model for lnternet-based product design is proposed, which can help to create, store, manipulate and exchange intelligent resource description information for applications, tools and systems in Interact-based product design. A method to integrate multiple intelligent resources to fulfill a complex product design and analysis via lntemet is also proposed. A real project for improving the bearing system design of a turbo-expander with many intelligent resources in prominent universities is presented as a case study.
基金supported by a grant(152079/18E)from the Research Grant Council(RGC)of the Hong Kong SAR,China.
文摘One of the challenges in construction of nearly and net ZEBs is how to truly achieve the nearly and net energy goals after building occupancy.Traditional building design standards and practices are mostly based on design performance evaluation,but practices show that many designed nearly/net ZEBs failed to achieve the energy goals after building occupancy.To facilitate the practical achievement of nearly and net ZEBs,recently most of the newly-released ZEB design standards have turned to post-occupancy performance evaluation,posing great challenges to nearly and net ZEB design.However,the detailed challenges have not be comprehensively investigated,and effective optimal design methods which can facilitate the achievement of nearly and net ZEBs under these standards are still absent.In this study,new challenges of nearly and net ZEB design under the post-occupancy performance-based design standards are fully investigated,and a risk-benefit based optimal design method is proposed to facilitate the achievement of nearly and net ZEBs under these standards.The newly-released ZEB standard in China is taken as an example to investigate the challenges and test the proposed method.Results show that nearly and net ZEBs designed using conventional design method have high risk in achieving energy goals under these standards due to high risk in satisfying the requirement regarding non-renewable primary energy consumption after building occupancy.The proposed design method is effective to facilitate achieving energy goals under these standards based on the risk that decision-makers would like to take.
文摘In the field of earthquake engineering,the advent of the performance-based design philosophy,together with the highly uncertain nature of earthquake ground excitations to structures,has brought probabilistic performance-based design to the forefront of seismic design.In order to design structures that explicitly satisfy probabilistic performance criteria,a probabilistic performance-based optimum seismic design(PPBOSD)framework is proposed in this paper by extending the state-of-the-art performance-based earthquake engineering(PBEE)methodology.PBEE is traditionally used for risk evaluation of existing or newly designed structural systems,thus referred to herein as forward PBEE analysis.In contrast,its use for design purposes is limited because design is essentially a more challenging inverse problem.To address this challenge,a decision-making layer is wrapped around the forward PBEE analysis procedure for computer-aided optimum structural design/retrofit accounting for various sources of uncertainty.In this paper,the framework is illustrated and validated using a proof-of-concept problem,namely tuning a simplified nonlinear inelastic single-degreeof-freedom(SDOF)model of a bridge to achieve a target probabilistic loss hazard curve.For this purpose,first the forward PBEE analysis is presented in conjunction with the multilayer Monte Carlo simulation method to estimate the total loss hazard curve efficiently,followed by a sensitivity study to investigate the effects of system(design)parameters on the probabilistic seismic performance of the bridge.The proposed PPBOSD framework is validated by successfully tuning the system parameters of the structure rated for a target probabilistic seismic loss hazard curve.The PPBOSD framework provides a tool that is essential to develop,calibrate and validate simplified probabilistic performance-based design procedures.
基金This research was partially funded by the European Union Civil Pro-tection(Project GA 826522 WUIVIEW UCPM-2018-PP-AG)the Spanish Ministry of Economy and Competitiveness(Project CTQ2017-85990-R,co-financed with FEDER funds)the Autonomous Government of Catalonia(project no.2017-SGR-392).
文摘Fires at the Wildland-Urban Interface(WUI)are becoming increasingly hazardous for life safety and property protection.Guidelines and standards for fire practitioners are needed in order to help WUI communities face this threat and become fire-adapted.A performance-based design approach(PBD)is proposed to deal with the complex issues present at the WUI homeowner scale,which entails the use of Computational Fluid Dynamics(CFD)tools such as FDS in order to identify vulnerabilities in a quantitative manner.An analysis of recent European WUI fires is presented,along with the definition of several pattern scenarios that can be derived from these.Based on this analysis,examples of PBD fire scenarios specific for the Mediterranean WUI microscale are presented,involving glazing systems,roofing and gutters,external structures adjacent to the main building,and gaps present in the building envelope.A worked example to show the implementation of the proposed PBD method is provided in which the fire impact of residential fuel on a glazing system is quantitatively analysed.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MEST)(No.2013-065823)。
文摘One of the biggest global issues at present involves the search for measures to conserve energy and to combat climate change.Because of an increase in natural disasters and energy use,architects and engineers have been focusing more on creating green buildings with low-carbon designs.Building information modeling(BIM)is used to record all of the data related to buildings from the early design stage.This information can be used to respond to energy simulation feedback and to accommodate changes that may be necessary during the design developments.To mitigate greenhouse gas emissions and to conserve energy in the buildings,the application of a BIM-based low-carbon design technique is required from the early design stage.However,the existing research is limited to sub-segmented topics;therefore,it is difficult for designers to establish a rank grade for a low-carbon design technique that is required for application in design planning.In this study,we attempt to analyze the rank grade and the correlation among design components that affect a building’s energy performance.We selected tower buildings for the experiment,as they consume a massive amount of energy and have a large impact on the surrounding environment.We analyzed the values that resulted from different shapes,scales,slenderness ratios,window-to-wall ratios,and solar orientations of the tower buildings.Then,we identified a correlation and rank grade among different design components.Architects can maximize energy performance efficiency by considering and applying the rank grade of a low-carbon design technique during design planning.In addition,the development of guidelines for green BIM would reduce confusion in the decision-making process and design modification during the stages of design development,which would then minimize the cost.Furthermore,it is expected that this study can be used to create a database for the realization of green buildings.
基金National Natural Science Foundation of China under Grant Nos.51978543,52108444,and 51778343Plan of Outstanding Young and Middle-aged Scientific and Technological Innovation Team in the Universities of Hubei Province with Project No.T2020010Natural Science Foundation of Hebei Province under Grant No.E2021512001。
文摘When evaluating the seismic safety and reliability of complex engineering structures,it is a critical problem to reasonably consider the randomness and multi-dimensional nature of ground motions.To this end,a proposed modeling strategy of multi-dimensional stochastic earthquakes is addressed in this study.This improved seismic model has several merits that enable it to better provide seismic analyses of structures.Specifically,at first,the ground motion model is compatible with the design response spectrum.Secondly,the evolutionary power spectrum involved in the model and the design response spectrum are constructed accordingly with sufficient consideration of the correlation between different seismic components.Thirdly,the random function-based dimension-reduction representation is applied,by which seismic modeling is established,with three elementary random variables.Numerical simulations of multi-dimensional stochastic ground motions in a specific design scenario indicate the effectiveness of the proposed modeling strategy.Moreover,the multi-dimensional seismic response and the global reliability of a high-rise frame-core tube structure is discussed in detail to further illustrate the engineering applicability of the proposed method.The analytical investigations demonstrate that the suggested stochastic model of multi-dimensional ground motion is available for accurate seismic response analysis and dynamic reliability assessment of complex engineering structures for performance-based seismic resistance design.
基金National Natural Science Foundation of China Under Grant No.50908216Postdoctoral Science Foundation of China Under Grant No.20070420878
文摘This paper presents a performance-based methodology for the assessment of seismic vulnerability and capacity of buildings. The vulnerability assessment methodology is based on the HAZUS methodology and the improved capacity- demand-diagram method. The spectral displacement (Sd) of performance points on a capacity curve is used to estimate the damage level of a building. The relationship between Sd and peak ground acceleration (PGA) is established, and then a new vulnerability function is expressed in terms of PGA. Furthermore, the expected value of the seismic capacity index (SCev) is provided to estimate the seismic capacity of buildings based on the probability distribution of damage levels and the corresponding seismic capacity index. The results indicate that the proposed vulnerability methodology is able to assess seismic damage of a large number of building stock directly and quickly following an earthquake. The SCev provides an effective index to measure the seismic capacity of buildings and illustrate the relationship between the seismic capacity of buildings and seismic action. The estimated result is compared with damage surveys of the cities of Dujiangyan and Jiangyou in the M8.0 Wenchuan earthquake, revealing that the methodology is acceptable for seismic risk assessment and decision making. The primary reasons for discrepancies between the estimated results and the damage surveys are discussed.
基金The National Key Research and Development Program of China(No.2018YFB1601202)the Natural Science Foundation of Shaanxi Province(No.2019JM-228)+1 种基金the National Natural Science Foundation of China(No.51308335)the Fundamental Research Funds for the Central Universities of Chang’an University(No.300102218401)
文摘This paper presents the theory,method,and application of performance-based pavement needs assessment at a state level,using the Pennsylvania Interstate System as an example.First,a general framework is presented for the pavement asset management and a general optimization model is established for the pavement maintenance and rehabilitation needs assessment.Also,the bundling of pavement segments for the project implementation is discussed.Using the examples of Statewide Transportation Improvement Plan and Long Range Transportation Plan for Pennsylvania Interstate System,the application of performance-based pavement needs assessment is demonstrated.It is shown that unconstrained analysis can help decision-makers investigate the real maintenance and rehabilitation needs;financially-constrained analysis can help decision-makers select projects for implementation and examine the corresponding future pavement conditions.Trade-off analysis can help decision-makers investigate the outcomes of different investment levels on pavement maintenance and rehabilitation and make the final decision on the investment level.The proposed case study provides a good example of performance-based pavement needs assessment for developing countries.
文摘The BOF-key is the performance-based research funding system that is used in Flanders, Belgium. In this paper we describe the historical background of the system, its current design and organization, as well as its effects on the Flemish higher education landscape. The BOFkey in its current form relies on three bibliometric parameters: publications in Web of Science, citations in Web of Science, and publications in a comprehensive regional database for SSH publications. Taken together, the BOF-key forms a unique variant of the Norwegian model: while the system to a large extent relies on a commercial database, it avoids the problem of inadequate coverage of the SSH. Because the bibliometric parameters of the BOF-key are reused in other funding allocation schemes, their overall importance to the Flemish universities is substantial.