Aqueous Zn^(2+)-ion batteries(AZIBs),recognized for their high security,reliability,and cost efficiency,have garnered considerable attention.However,the prevalent issues of dendrite growth and parasitic reactions at t...Aqueous Zn^(2+)-ion batteries(AZIBs),recognized for their high security,reliability,and cost efficiency,have garnered considerable attention.However,the prevalent issues of dendrite growth and parasitic reactions at the Zn electrode interface significantly impede their practical application.In this study,we introduced a ubiquitous biomolecule of phenylalanine(Phe)into the electrolyte as a multifunctional additive to improve the reversibility of the Zn anode.Leveraging its exceptional nucleophilic characteristics,Phe molecules tend to coordinate with Zn^(2+)ions for optimizing the solvation environment.Simultaneously,the distinctive lipophilicity of aromatic amino acids empowers Phe with a higher adsorption energy,enabling the construction of a multifunctional protective interphase.The hydrophobic benzene ring ligands act as cleaners for repelling H_(2)O molecules,while the hydrophilic hydroxyl and carboxyl groups attract Zn^(2+)ions for homogenizing Zn^(2+)flux.Moreover,the preferential reduction of Phe molecules prior to H_(2)O facilitates the in situ formation of an organic-inorganic hybrid solid electrolyte interphase,enhancing the interfacial stability of the Zn anode.Consequently,Zn||Zn cells display improved reversibility,achieving an extended cycle life of 5250 h.Additionally,Zn||LMO full cells exhibit enhanced cyclability of retaining 77.3%capacity after 300 cycles,demonstrating substantial potential in advancing the commercialization of AZIBs.展开更多
Phenylalanine ammonia lyase(PAL)is the rate-limiting and pivotal enzyme of the general phenylpropanoid path-way,but few reports have been found on PAL genes in Pinus yunnanensis.In the present study,three PAL genes we...Phenylalanine ammonia lyase(PAL)is the rate-limiting and pivotal enzyme of the general phenylpropanoid path-way,but few reports have been found on PAL genes in Pinus yunnanensis.In the present study,three PAL genes were cloned and identified from P.yunnanensis seedlings for thefirst time,namely,PyPAL-1,PyPAL-2,and PyPAL-3.Our results indicated that the open-reading frames of PyPAL genes were 2184,2157,and 2385 bp.Phylogenetic tree analysis revealed that PyPALs have high homology with other known PAL genes in other plants.In vitro enzymatic analysis showed that all three PyPAL recombinant proteins could catalyze the deamination of L-phenylalanine to form trans-cinnamic acid,but only PAL1 and PAL2 can catalyze the conversion of L-tyrosine toρ-coumaric acid.Three PyPAL genes were expressed in different tissues in 1-year-old P.yunnanensis,and such genes had different expression patterns.This study lays a foundation for further understanding of the biosynthesis of secondary metabolites in P.yunnanensis.展开更多
A study was conducted to explore the defense response in woody plants after insect herbivory. The activities of two enzymes, lipoxygenase (LOX), a key enzyme ofjasmonate (JA) pathway, and phenylalanine ammonia lya...A study was conducted to explore the defense response in woody plants after insect herbivory. The activities of two enzymes, lipoxygenase (LOX), a key enzyme ofjasmonate (JA) pathway, and phenylalanine ammonia lyase (PAL), a rate-limiting enzyme of phenyl- propanoid pathway, were measured in the leaves of one-year-old poplar (Populus simonii × P. pyramidalis 'Opera 8277') cuttings after Clostera anachoreta larvae attack. The results show that the increased activities of LOX and PAL were found not only in the leaves wounded by C. anachoreta larvae but also in their tipper systemic leaves, indicating that JA and phenylpropanoid pathways were activated, and the defense response was stimulated systemically. The increase in LOX and PAL activities in neighboring intact poplar cuttings sug- gested that there exists the interplant communication between poplar plants mediated by the herbivore-induced volatiles. Methyl jasmonate (MeJA) was also proved to be an airborne signal to induce defense response in P simonii × P pyramidalis 'Opera 8277' cuttings.展开更多
Cu-Zn-AI-CO3 layered double hydroxide (LDH), with a Cu to Zn mole ratio of 5:1 and a (Cu+Zn) to AI mole ratio of nearly 2, was prepared and its calcined product (CLDH) was obtained. Batch sorption studies were...Cu-Zn-AI-CO3 layered double hydroxide (LDH), with a Cu to Zn mole ratio of 5:1 and a (Cu+Zn) to AI mole ratio of nearly 2, was prepared and its calcined product (CLDH) was obtained. Batch sorption studies were conducted to investigate removal of phenylalanine from water with CLDH. The results show that CLDH can be used as an effective adsorbent and its sorption capacity is higher than that of Mg-A1--CO3-LDH. The maximum adsorption was observed at pH 6.7. A maximum adsorption capacity is 37.25 mg/g. The adsorption processes follow the Lagergren's first order kinetic model. The adsorption data are fitted well with the Langmuir isotherm equation. The thermodynamic parameters were calculated, and the negative △G and positive △H indicate that the adsorption processes are spontaneous endothermic in nature. The mechanism of adsorption also suggests that the benzoate molecules are tilted, forming an angle with the hydroxyl layers.展开更多
Rhizopus rot of peach fruits could be significantly suppressed by Pichia membranefaciens. Polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonium-lyase (PAL) activities induced by inoculation with P. mem...Rhizopus rot of peach fruits could be significantly suppressed by Pichia membranefaciens. Polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonium-lyase (PAL) activities induced by inoculation with P. membrane faciens or R. stolonifer were studied in postharvest peach fruits. The activities of PPO and PAL in peaches increased significantly after being inoculated with P. membrane faciens + R. stolonifer by 24 h, the activities maintained at a high level throughout the experiment. Under the condition of infected with R. stolonifer alone, activity of PPO and PAL could also increased, but the levels were lower than those treated with P. membrane faciens+ R. stolonifer. However, fruits inoculaed with P. membrane-faciens + R. stolonifer or R. stolonifer alone did not stimulated POD activity. The results suggest that the activation of these defense enzymes is involved in the action of P. membrane faciens against R. stolonifer.展开更多
In this study, the activities of phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), and peroxidase (POD) were assayed in cucumber seedlings (Cucumis sativus L.) at 0, 6, 12, 24, 48, 72, and 96 h after...In this study, the activities of phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), and peroxidase (POD) were assayed in cucumber seedlings (Cucumis sativus L.) at 0, 6, 12, 24, 48, 72, and 96 h after they were infested by Bemisia tabaci (Gennadius) using spectrophotometric analysis. The results indicated that herbivore infestation increased the activities of PAL, PPO, and POD. The enzymes showed different activity levels at different times after the infestation. The PAL activity reached the first high peak by 23.1% at 6 h and the highest peak by 29.1% at 48 h compared to the control. The PPO activity reached the first high peak by 22.7% at 6 h and the highest peak by 52.6% at 24 h, and the POD activity reached the highest peak by 213.2% at 6 h and another higher peak value by 135.2% at 96 h. The results suggest that the enhanced activities of the enzymes may contribute to bioprotection of cucumber plants against B. tabaci infestation.展开更多
Phenylalanine ammonia-lyase (PAL), the first enzyme of phenylpropanoid pathway, is always encoded by multigene families in plants. In this study, using genome-wide searches, 13 PAL genes in cucumber (CsPAL1-13) an...Phenylalanine ammonia-lyase (PAL), the first enzyme of phenylpropanoid pathway, is always encoded by multigene families in plants. In this study, using genome-wide searches, 13 PAL genes in cucumber (CsPAL1-13) and 13 PALs in melon (Cm- PALl-13) were identified. In the corresponding genomes, ten of these PAL genes were located in tandem in two clusters, while the others were widely dispersed in different chromosomes as a single copy. The protein sequences of CsPALs and CmPALs shared an overall high identity to each other. In our previous report, 12 PAL genes were identified in watermelon (CIPAL1-12). Thereby, a total of 38 cucurbit PAL members were included. Here, a comprehensive comparison of PAL gene families was performed among three cucurbit plants. The phylogenetic and syntenic analyses placed the cucurbit PALs as 11 CsPAL-CmPAL-CIPAL triples, of which ten triples were clustered into the dicot group, and the remaining one, CsPAL1-CmPAL8-CIPAL2, was grouped with gymnosperm PALs and might serve as an ancestor of cucurbit PALs. By comparing the syntenic relationships and gene structure of these PAL genes, the expansion of cucurbit PAL families might arise from a series of segmental and tandem duplications and intron insertion events. Furthermore, the expression profiling in different tissues suggested that different cucurbit PALs displayed divergent but overlapping expression profiles, and the CsPAL-CmPAL-CIPAL orthologs showed correlative expression patterns among three cucurbit plants. Taken together, this study provided an extensive description on the evolution and expression of cucurbit PAL gene families and might facilitate the further studies for elucidating the functions of PALs in cucurbit plants.展开更多
Objective The aim is to ascertain whether phenylalanine (Phe) can inverse the left heart"remodeling" in patients with essential hypertension. Methods The changes of echocardiographic variables werecompared a...Objective The aim is to ascertain whether phenylalanine (Phe) can inverse the left heart"remodeling" in patients with essential hypertension. Methods The changes of echocardiographic variables werecompared aler 3,6 and 9 months of observation between the Phe intervention group (Phe 1g/d+amiloride complex1 tablet/d, 20 cases) and control group (placebo 1g/d+amiloride complex 1 tablet/d, 20 cases) with eitherinterventricular septum and (or) post- wall thickness≥12mm, and were carried on further to compare incross- over trial. Results (1) Phe improved elfectively the left heart and systolic dyslunction; while theimprovement, also shown in control group due to the concurrent use of diuretic antihypertensive drug-amiloridecomplex, was much less evident than that in Phe group. (2) The disturbed left heart structure and systolic functionwere improved prominently while placebo was crossed over to Phe, and the improvement decreased afer Phe wascrrossed over to placebo. (3) The changes almost attained to its peak level after 6 months and not improved furtherat 9 months. (4) The differences seen between above 2 groops could not be eoplained by their diverse drops of bloodpressure. Conclusion Phe does exert an indopendent inverse effect on cardiac "remodeling", which mightimplicate an important clinical oplication upon the prevention and control of essential hypertension and itscomplications.展开更多
The substrate hippuryl phenylalanine of carboxypeptidase A was selected as model to design new hapten molecule. N-Benzoyl tauryl phenylalanine (I) was synthesized and its structure was characterized by X-ray crystallo...The substrate hippuryl phenylalanine of carboxypeptidase A was selected as model to design new hapten molecule. N-Benzoyl tauryl phenylalanine (I) was synthesized and its structure was characterized by X-ray crystallography method.展开更多
Information on population genetic structure and crop genetic diversity is important for genetically improving crop species and conserving threatened species. The PAL gene sequence is part of a multigene family that ca...Information on population genetic structure and crop genetic diversity is important for genetically improving crop species and conserving threatened species. The PAL gene sequence is part of a multigene family that can be utilized to design DNA marker systems for genetic diversity and population structure investigation. In the current study, genetic diversity and population structure of 100 accessions of wild Pistacia species were investigated with 78 PAL markers. A protocol for using PAL sequences as DNA markers was developed. A total of 313 PAL loci were recognized, showing 100% polymorphism for PAL markers. The PAL markers produced relatively more observed and effective alleles in Pistacia falcata and Pistacia atlantica, with a higher Shannon's information index and expected heterozygosity in P. atlantica, Pistacia vera and Pistacia mutica. Pairwise assessment of Nei's genetic distance and genetic identity between populations revealed a close association between geographically iso- lated populations of Pistacia khinjuk and Pistacia chinensis. The accessions of wild Pistacia species had more genetic relationship among studied groups of species. Analysis of molecular variance indicated 19% among- population variation and 81% within-population variation for the PAL gene based DNA marker. Population structure analysis based on PAL revealed four groups with high genetic admixture among populations. The results establish PAL markers as a functional DNA marker system and provide important genetic information about accessions from wild populations of Pistacia species.展开更多
Phenylalanine (Phe) is a significant amino acid that cannot be synthesized by human themselves but must be taken from environment. It was initially found that the nanosized amorphous Ni-B/SiO2 alloy prepared by the ...Phenylalanine (Phe) is a significant amino acid that cannot be synthesized by human themselves but must be taken from environment. It was initially found that the nanosized amorphous Ni-B/SiO2 alloy prepared by the chemical reduction method was an effective catalyst for the preparation of Phe from phenylpyruvic acid (PPA) by amination and hydrogenation. It has been found that the amorphous Ni-B/SiO2 alloy catalyst exhibits superior activity and selectivity to the traditional catalysts Raney Ni and Urushibara nickel. The effects of reaction time, amounts of catalysts and ammonia solution, reaction temperature, and H2 pressure on the reaction have been investigated systematically. The results indicated that the yield of Phe was 97.9%, and the selectivity for Phe reached 98.9% when the reaction was carried out for 3 h at 333 K and 2.0 MPa of H2 with m(Cat.) : m(PPA) = 0.6 : 1.0 and n(NH3) : n(PPA) = 3 : 1. The catalysts were characterized by XRD, AAS, XPS, BET, and TEM, and the relationship between the catalyst structure and the catalytic activity was discussed in detail. It was found that the reason why Ni-B/SiO2 amorphous alloy catalyst was much more active for the preparation of Phe could be accounted for by the presence of electron-rich Ni due to electron donation from alloying B; the smaller size of Ni-B particles, the larger specific surface area of Ni-B/SiO2.展开更多
The racemic phenylalanine has been separated by (R)-mandelic acid through the formation of diastereomeric molecular complex. The crystal of the title chiral complex (C8H8O3 C9H11NO2, Mr = 317.33) belongs to monoclinic...The racemic phenylalanine has been separated by (R)-mandelic acid through the formation of diastereomeric molecular complex. The crystal of the title chiral complex (C8H8O3 C9H11NO2, Mr = 317.33) belongs to monoclinic, space group C2 with a = 19.391(3), b = 5.715(4), c = 15.755(3) ? b = 115.23(1), V = 1579(1) 3, Z = 4, Dc = 1.335 g/cm3, F(000) = 672, m = 0.099 mm-1, R = 0.033 and wR = 0.060 for 1278 observed reflections (I > 2s(I)). The complex consists of (R)-mandelic acid and (R)-phenylalanine in 1:1 molar ratio, and the complex molecules form layered crystal structure by self-assembly through intermolecular H-bonding between carboxyl and carboxylate of the neighboring molecules.展开更多
A successful chiral separation of N-benzoyl phenylalanine methyl ester has been achieved by nonaqueous capillary electrophoresis (NACE) using P-CD as chiral selector in formamide (FA). Some experimental parameters inf...A successful chiral separation of N-benzoyl phenylalanine methyl ester has been achieved by nonaqueous capillary electrophoresis (NACE) using P-CD as chiral selector in formamide (FA). Some experimental parameters influencing the chiral separation such as concentration of P-CD, ionic strength and apparent pH (pH*) are discussed.展开更多
The present research was conducted to study salinity effect on callus growth and regeneration from the local Chilli pepper cultivar as well as calli content of capsaicin, phenylalanine, proline and ascorbic acid. The ...The present research was conducted to study salinity effect on callus growth and regeneration from the local Chilli pepper cultivar as well as calli content of capsaicin, phenylalanine, proline and ascorbic acid. The results showed that the Pericarp gave the highest fresh and dry weight of 511.6 mg and 56.95 mg respectively at 9 dSm-1 compared with other interactions. Moreover the lowest fresh and dry weight was recorded for the root calli grown at 12 dSm-1. The highest regeneration percentage was 87.20% at 3 dSm-1 and the lowest was 6.70% at 9 dSm-1. For explant effect on regeneration, the highest percentage was 71.1% for shoot tips and the lowest was 23.30 % from the pericarp. However no plants were regenerated at 12 dSm-1 from all explants and at 9 dSm-1 from calli induced from roots, placenta and pericarps. Calli induced from Pericarp contain significantly higher Proline amount at 12 dSm-1 which was 34.65 μg/g and the lowest was 2.57 μg/g at 3 dSml. Moreover Phenylalanine ranged from 28.23 μg/g at 3 dSml and 41.50μg/g at 12 dSm1. While a wide range between the explants in the Ascorbic acid amount was recorded. The highest was 47.21 μg/g from the Placenta calli and the lowest was 0.98 μg/g from the Shoot tip calli. On the other hand calli produced from Placenta gave the highest amount of Capsaicin 53.11 μg/g at 9 dSm-1 which was not significantly different than the placenta and the pericarp at 12 dSml and the shoot tips, placenta and the pericarp at 9 μg/g. In conclusion Chili pepper callus tolerated salinity via the accumulation of Ascorbic acid, Proline, Phenylalanine and Capsaicin. Moreover Chili Pepper grown In vitro under salt stress contained high amount of Capsaicin the important pharmaceutical compound. Finally pepper plants were regenerated from salt stressed calli might be salt tolerant under field conditions.展开更多
The polystyrene supported phenylalanine Schiff base complex of Mn(Ⅱ) (PS-Sal-Phe-Mn ) was prepared with chloromethylated styrene polymer heads, 2 L-phenylalanine and manganese (Ⅱ) acetate tetrahyrate., The pol...The polystyrene supported phenylalanine Schiff base complex of Mn(Ⅱ) (PS-Sal-Phe-Mn ) was prepared with chloromethylated styrene polymer heads, 2 L-phenylalanine and manganese (Ⅱ) acetate tetrahyrate., The polymeric ligand and the complex were characterized by FT.IR,, small area X-ray photoelectron spectroscopy (XPS), and ICP-AES. in the presence of the manganese complex, cyclohexene (1) was effectively oxidized by molecular oxygen without reductant. The major products of the reaction were 2.cyclohexen-l-ol (2), 2-cyclohexen-l-one (3)and 2-cyclohexen-1-hydroperoxide (4), which was different with typical oxidation of cyclohexene. The influence of reaction temperature and additive for oxidation had been studied. The selectivity of 2-cyclohexen-l-hydroperoxide varied with reaction time and different additives. The mechanism of cyclohexene oxidation had also been discussed.展开更多
We report novel mutations in exon 7 of human phenylalanine hydroxylase (PAH) gene of phenylketonuria (PKU ) in southern Chinese, analysed by using PCR-DGGE (denaturing gradient gel electrophoresis ), solid phase DNA s...We report novel mutations in exon 7 of human phenylalanine hydroxylase (PAH) gene of phenylketonuria (PKU ) in southern Chinese, analysed by using PCR-DGGE (denaturing gradient gel electrophoresis ), solid phase DNA sequencing and Ih vliro expression. One of the 2 novel mutations, IVS6nt1, is an intron-exon Junctional mutation which results a splicing defect in mRNA. Arg252Gln is another novel mutation with residual PAH activity only 24 % compared to wild type in in vitro mutagenesis and expression in Cos-1 cell. Other 3 known mutations and polymorphism including Arg241Cys, Arg243Gln and Val245Val(GTG to GTA) together with these novel mutations composed the mutatlonal profile of exon 7 in the PAH gene of PKUs in this populations.展开更多
Exon 7 of the l’henylalan1ne hydroxylase (PAH) gene was analyzed in 15 chlldren affected wlth classicphenylketonL1rla (PKU) from northern Chlna by uslng PCRxsingle strand conformation polymorphism(PCR-SSCP) technique...Exon 7 of the l’henylalan1ne hydroxylase (PAH) gene was analyzed in 15 chlldren affected wlth classicphenylketonL1rla (PKU) from northern Chlna by uslng PCRxsingle strand conformation polymorphism(PCR-SSCP) technique and DNA direct sequencing. Six missense mutatlons (l. e. R2413Q. R 241H, G247V,1,2 19H, F2541;lnd G257V )and one silent rnutatlon (V245v ) were identified. The latter three missense mu-tations were demonstrated as novel mltations in comparison with the PAH mutation database. one missense mt1tation (R241 H) was flrst dowumeTlted in Chinese. our results showed populatlon ancl reglon tllffer-ences in the PAH mutation clistribution. and suggest that there is more thfln one founding population forPKU in China. The fincling of novel mutations will enhence the molecular diagnosis of PKU.展开更多
The title compound, ethyl ester N-(iso-propylcarbamoylmethoxyphosphonyl)-(1)-α-phenylalanine(C_16H_25N_2O_5P), was synthesized by a series of reactions, and its crystal structure was determined by single crystal X-ra...The title compound, ethyl ester N-(iso-propylcarbamoylmethoxyphosphonyl)-(1)-α-phenylalanine(C_16H_25N_2O_5P), was synthesized by a series of reactions, and its crystal structure was determined by single crystal X-ray diffraction. The crystal belongs to monoclinic system, space group P2_1, with a=5. 256(1), b=15. 869(3) , c=11. 718(4) A. β=96. 50(3), V=971. 1(9) A ̄3, M_r=356. 36,Z=2, D_c=1. 219 g/cm ̄3, μ=0. 161 mm ̄(-1), and F(000)=190. The final agreement factors are R=0. 057 and R_w=0. 055 for 1311 observed independent reflections with I ≥3σ(I). The results of structure analysis indicate that the configuration of the chiral phosphorus atom is S-form.展开更多
Amino acid metabolic remodeling is a hallmark of cancer,driving an increased nutritional demand for amino acids.Amino acids are pivotal for energetic regulation,biosynthetic support,and homeostatic maintenance to stim...Amino acid metabolic remodeling is a hallmark of cancer,driving an increased nutritional demand for amino acids.Amino acids are pivotal for energetic regulation,biosynthetic support,and homeostatic maintenance to stimulate cancer progression.However,the role of phenylalanine in multiple myeloma(MM)remains unknown.Here,we demonstrate that phenylalanine levels in MM patients are decreased in plasma but elevated in bone marrow(BM)cells.After the treatment,phenylalanine levels increase in plasma and decrease in BM.This suggests that changes in phenylalanine have diagnostic value and that phenylalanine in the BM microenvironment is an essential source of nutrients for MM progression.The requirement for phenylalanine by MM cells exhibits a similar pattern.Inhibiting phenylalanine utilization suppresses MM cell growth and provides a synergistic effect with Bortezomib(BTZ)treatment in vitro and murine models.Mechanistically,phenylalanine deprivation induces excessive endoplasmic reticulum stress and leads to MM cell apoptosis through the ATF3eCHOPeDR5 pathway.Interference with ATF3 significantly affects phenylalanine deprivation therapy.In conclusion,we have identified phenylalanine metabolism as a characteristic feature of MM metabolic remodeling.Phenylalanine is necessary for MM proliferation,and its aberrant demand highlights the importance of lowphenylalanine diets as an adjuvant treatment for MM.展开更多
Essential amino acids(EAAs)deprivation is a potential antitumor approach because EAAs are critical for tumor growth.To efficiently inhibit tumor growth,continuous deprivation of EAAs is required,how-ever,continuous de...Essential amino acids(EAAs)deprivation is a potential antitumor approach because EAAs are critical for tumor growth.To efficiently inhibit tumor growth,continuous deprivation of EAAs is required,how-ever,continuous deprivation without precise control will introduce toxicity to normal cells.Herein,a programmable double-unlock nanocomplex(ROCK)was prepared,which could self-supply phenylalanine ammonia-lyase(PAL)to tumor cells for phenylalanine(Phe)deprivation.ROCK was double-locked in physiological conditions when administered systemically.While ROCK actively targeted to tumor cells by integrinαvβ3/5 and CD44,ROCK was firstly unlocked by cleavage of protease on tumor cell membrane,exposing CendR and R8 to enhance endocytosis.Then,hyaluronic acid was digested by hyaluronidase overexpressed in endo/lysosome of tumor cells,in which ROCK was secondly unlocked,resulting in pro-moting endo/lysosome escape and PAL plasmid(pPAL)release.Released pPAL could sustainably express PAL in host tumor cells until the self-supplied PAL precisely and successfully deprived Phe,thereby block-ing the protein synthesis and killing tumor cells specifically.Overall,our precise Phe deprivation strategy effectively inhibited tumor growth with no observable toxicity to normal cells,providing new insights to efficiently remove intratumoral nutrition for cancer therapy.展开更多
基金supported by the Joint Funds of the National Natural Science Foundation of China(U2130204)the National Natural Science Foundation of China(52002022)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(YESS20200364)the Beijing Outstanding Young Scientists Program(BJJWZYJH01201910007023).
文摘Aqueous Zn^(2+)-ion batteries(AZIBs),recognized for their high security,reliability,and cost efficiency,have garnered considerable attention.However,the prevalent issues of dendrite growth and parasitic reactions at the Zn electrode interface significantly impede their practical application.In this study,we introduced a ubiquitous biomolecule of phenylalanine(Phe)into the electrolyte as a multifunctional additive to improve the reversibility of the Zn anode.Leveraging its exceptional nucleophilic characteristics,Phe molecules tend to coordinate with Zn^(2+)ions for optimizing the solvation environment.Simultaneously,the distinctive lipophilicity of aromatic amino acids empowers Phe with a higher adsorption energy,enabling the construction of a multifunctional protective interphase.The hydrophobic benzene ring ligands act as cleaners for repelling H_(2)O molecules,while the hydrophilic hydroxyl and carboxyl groups attract Zn^(2+)ions for homogenizing Zn^(2+)flux.Moreover,the preferential reduction of Phe molecules prior to H_(2)O facilitates the in situ formation of an organic-inorganic hybrid solid electrolyte interphase,enhancing the interfacial stability of the Zn anode.Consequently,Zn||Zn cells display improved reversibility,achieving an extended cycle life of 5250 h.Additionally,Zn||LMO full cells exhibit enhanced cyclability of retaining 77.3%capacity after 300 cycles,demonstrating substantial potential in advancing the commercialization of AZIBs.
基金This study received financial support from the Youth Talents Special Project of Yunnan Province,“Xingdian Talents Support Program”(XDYC-QNRC-2022-0203)Southwest Forestry University Scientific Research Start-Up Funds(112116).
文摘Phenylalanine ammonia lyase(PAL)is the rate-limiting and pivotal enzyme of the general phenylpropanoid path-way,but few reports have been found on PAL genes in Pinus yunnanensis.In the present study,three PAL genes were cloned and identified from P.yunnanensis seedlings for thefirst time,namely,PyPAL-1,PyPAL-2,and PyPAL-3.Our results indicated that the open-reading frames of PyPAL genes were 2184,2157,and 2385 bp.Phylogenetic tree analysis revealed that PyPALs have high homology with other known PAL genes in other plants.In vitro enzymatic analysis showed that all three PyPAL recombinant proteins could catalyze the deamination of L-phenylalanine to form trans-cinnamic acid,but only PAL1 and PAL2 can catalyze the conversion of L-tyrosine toρ-coumaric acid.Three PyPAL genes were expressed in different tissues in 1-year-old P.yunnanensis,and such genes had different expression patterns.This study lays a foundation for further understanding of the biosynthesis of secondary metabolites in P.yunnanensis.
基金supported by the Pro-gramme for Changjiang Scholars and the Innovative Research Team in Universities of China (PCSIRT0607)by the National Natural Science Foundation of China (30871727+2 种基金 30872037)the National Key Project of Scientific and Technical Supporting Programmes Funded by the Ministry of Science & Technology of China (2006BAD01A15 2006BAD24B04)
文摘A study was conducted to explore the defense response in woody plants after insect herbivory. The activities of two enzymes, lipoxygenase (LOX), a key enzyme ofjasmonate (JA) pathway, and phenylalanine ammonia lyase (PAL), a rate-limiting enzyme of phenyl- propanoid pathway, were measured in the leaves of one-year-old poplar (Populus simonii × P. pyramidalis 'Opera 8277') cuttings after Clostera anachoreta larvae attack. The results show that the increased activities of LOX and PAL were found not only in the leaves wounded by C. anachoreta larvae but also in their tipper systemic leaves, indicating that JA and phenylpropanoid pathways were activated, and the defense response was stimulated systemically. The increase in LOX and PAL activities in neighboring intact poplar cuttings sug- gested that there exists the interplant communication between poplar plants mediated by the herbivore-induced volatiles. Methyl jasmonate (MeJA) was also proved to be an airborne signal to induce defense response in P simonii × P pyramidalis 'Opera 8277' cuttings.
基金Project (21176263) supported by the National Natural Science Foundation of ChinaProject (2009RS3039) supported by Hunan Provincial Postdoctoral Special Foundation of ChinaProject (09JJ3026) supported by Hunan Provincial Natural Science Foundation of China
文摘Cu-Zn-AI-CO3 layered double hydroxide (LDH), with a Cu to Zn mole ratio of 5:1 and a (Cu+Zn) to AI mole ratio of nearly 2, was prepared and its calcined product (CLDH) was obtained. Batch sorption studies were conducted to investigate removal of phenylalanine from water with CLDH. The results show that CLDH can be used as an effective adsorbent and its sorption capacity is higher than that of Mg-A1--CO3-LDH. The maximum adsorption was observed at pH 6.7. A maximum adsorption capacity is 37.25 mg/g. The adsorption processes follow the Lagergren's first order kinetic model. The adsorption data are fitted well with the Langmuir isotherm equation. The thermodynamic parameters were calculated, and the negative △G and positive △H indicate that the adsorption processes are spontaneous endothermic in nature. The mechanism of adsorption also suggests that the benzoate molecules are tilted, forming an angle with the hydroxyl layers.
基金the grants fromthe National Natural Science Foundation of China(NNSF-30170663) the Chinese Academy of Sciences.
文摘Rhizopus rot of peach fruits could be significantly suppressed by Pichia membranefaciens. Polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonium-lyase (PAL) activities induced by inoculation with P. membrane faciens or R. stolonifer were studied in postharvest peach fruits. The activities of PPO and PAL in peaches increased significantly after being inoculated with P. membrane faciens + R. stolonifer by 24 h, the activities maintained at a high level throughout the experiment. Under the condition of infected with R. stolonifer alone, activity of PPO and PAL could also increased, but the levels were lower than those treated with P. membrane faciens+ R. stolonifer. However, fruits inoculaed with P. membrane-faciens + R. stolonifer or R. stolonifer alone did not stimulated POD activity. The results suggest that the activation of these defense enzymes is involved in the action of P. membrane faciens against R. stolonifer.
文摘In this study, the activities of phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), and peroxidase (POD) were assayed in cucumber seedlings (Cucumis sativus L.) at 0, 6, 12, 24, 48, 72, and 96 h after they were infested by Bemisia tabaci (Gennadius) using spectrophotometric analysis. The results indicated that herbivore infestation increased the activities of PAL, PPO, and POD. The enzymes showed different activity levels at different times after the infestation. The PAL activity reached the first high peak by 23.1% at 6 h and the highest peak by 29.1% at 48 h compared to the control. The PPO activity reached the first high peak by 22.7% at 6 h and the highest peak by 52.6% at 24 h, and the POD activity reached the highest peak by 213.2% at 6 h and another higher peak value by 135.2% at 96 h. The results suggest that the enhanced activities of the enzymes may contribute to bioprotection of cucumber plants against B. tabaci infestation.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China (31101548)the Special Fund for Agro-Scientific Research in the Public Interest, China (201303014)+1 种基金funded by the China Agriculture Research System (CARS-25)the Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-IVFCAAS)
文摘Phenylalanine ammonia-lyase (PAL), the first enzyme of phenylpropanoid pathway, is always encoded by multigene families in plants. In this study, using genome-wide searches, 13 PAL genes in cucumber (CsPAL1-13) and 13 PALs in melon (Cm- PALl-13) were identified. In the corresponding genomes, ten of these PAL genes were located in tandem in two clusters, while the others were widely dispersed in different chromosomes as a single copy. The protein sequences of CsPALs and CmPALs shared an overall high identity to each other. In our previous report, 12 PAL genes were identified in watermelon (CIPAL1-12). Thereby, a total of 38 cucurbit PAL members were included. Here, a comprehensive comparison of PAL gene families was performed among three cucurbit plants. The phylogenetic and syntenic analyses placed the cucurbit PALs as 11 CsPAL-CmPAL-CIPAL triples, of which ten triples were clustered into the dicot group, and the remaining one, CsPAL1-CmPAL8-CIPAL2, was grouped with gymnosperm PALs and might serve as an ancestor of cucurbit PALs. By comparing the syntenic relationships and gene structure of these PAL genes, the expansion of cucurbit PAL families might arise from a series of segmental and tandem duplications and intron insertion events. Furthermore, the expression profiling in different tissues suggested that different cucurbit PALs displayed divergent but overlapping expression profiles, and the CsPAL-CmPAL-CIPAL orthologs showed correlative expression patterns among three cucurbit plants. Taken together, this study provided an extensive description on the evolution and expression of cucurbit PAL gene families and might facilitate the further studies for elucidating the functions of PALs in cucurbit plants.
文摘Objective The aim is to ascertain whether phenylalanine (Phe) can inverse the left heart"remodeling" in patients with essential hypertension. Methods The changes of echocardiographic variables werecompared aler 3,6 and 9 months of observation between the Phe intervention group (Phe 1g/d+amiloride complex1 tablet/d, 20 cases) and control group (placebo 1g/d+amiloride complex 1 tablet/d, 20 cases) with eitherinterventricular septum and (or) post- wall thickness≥12mm, and were carried on further to compare incross- over trial. Results (1) Phe improved elfectively the left heart and systolic dyslunction; while theimprovement, also shown in control group due to the concurrent use of diuretic antihypertensive drug-amiloridecomplex, was much less evident than that in Phe group. (2) The disturbed left heart structure and systolic functionwere improved prominently while placebo was crossed over to Phe, and the improvement decreased afer Phe wascrrossed over to placebo. (3) The changes almost attained to its peak level after 6 months and not improved furtherat 9 months. (4) The differences seen between above 2 groops could not be eoplained by their diverse drops of bloodpressure. Conclusion Phe does exert an indopendent inverse effect on cardiac "remodeling", which mightimplicate an important clinical oplication upon the prevention and control of essential hypertension and itscomplications.
文摘The substrate hippuryl phenylalanine of carboxypeptidase A was selected as model to design new hapten molecule. N-Benzoyl tauryl phenylalanine (I) was synthesized and its structure was characterized by X-ray crystallography method.
基金supported by Shahid Chamran University of Ahvaz Fund(SHCUF)under Project No.SHCH_AGF_Grant 1394
文摘Information on population genetic structure and crop genetic diversity is important for genetically improving crop species and conserving threatened species. The PAL gene sequence is part of a multigene family that can be utilized to design DNA marker systems for genetic diversity and population structure investigation. In the current study, genetic diversity and population structure of 100 accessions of wild Pistacia species were investigated with 78 PAL markers. A protocol for using PAL sequences as DNA markers was developed. A total of 313 PAL loci were recognized, showing 100% polymorphism for PAL markers. The PAL markers produced relatively more observed and effective alleles in Pistacia falcata and Pistacia atlantica, with a higher Shannon's information index and expected heterozygosity in P. atlantica, Pistacia vera and Pistacia mutica. Pairwise assessment of Nei's genetic distance and genetic identity between populations revealed a close association between geographically iso- lated populations of Pistacia khinjuk and Pistacia chinensis. The accessions of wild Pistacia species had more genetic relationship among studied groups of species. Analysis of molecular variance indicated 19% among- population variation and 81% within-population variation for the PAL gene based DNA marker. Population structure analysis based on PAL revealed four groups with high genetic admixture among populations. The results establish PAL markers as a functional DNA marker system and provide important genetic information about accessions from wild populations of Pistacia species.
基金Fundamental research project of South-Central University for Nationalities (No. YZZ05010)
文摘Phenylalanine (Phe) is a significant amino acid that cannot be synthesized by human themselves but must be taken from environment. It was initially found that the nanosized amorphous Ni-B/SiO2 alloy prepared by the chemical reduction method was an effective catalyst for the preparation of Phe from phenylpyruvic acid (PPA) by amination and hydrogenation. It has been found that the amorphous Ni-B/SiO2 alloy catalyst exhibits superior activity and selectivity to the traditional catalysts Raney Ni and Urushibara nickel. The effects of reaction time, amounts of catalysts and ammonia solution, reaction temperature, and H2 pressure on the reaction have been investigated systematically. The results indicated that the yield of Phe was 97.9%, and the selectivity for Phe reached 98.9% when the reaction was carried out for 3 h at 333 K and 2.0 MPa of H2 with m(Cat.) : m(PPA) = 0.6 : 1.0 and n(NH3) : n(PPA) = 3 : 1. The catalysts were characterized by XRD, AAS, XPS, BET, and TEM, and the relationship between the catalyst structure and the catalytic activity was discussed in detail. It was found that the reason why Ni-B/SiO2 amorphous alloy catalyst was much more active for the preparation of Phe could be accounted for by the presence of electron-rich Ni due to electron donation from alloying B; the smaller size of Ni-B particles, the larger specific surface area of Ni-B/SiO2.
基金The work was supported by the National Natural Science Foundation of China (29973036)
文摘The racemic phenylalanine has been separated by (R)-mandelic acid through the formation of diastereomeric molecular complex. The crystal of the title chiral complex (C8H8O3 C9H11NO2, Mr = 317.33) belongs to monoclinic, space group C2 with a = 19.391(3), b = 5.715(4), c = 15.755(3) ? b = 115.23(1), V = 1579(1) 3, Z = 4, Dc = 1.335 g/cm3, F(000) = 672, m = 0.099 mm-1, R = 0.033 and wR = 0.060 for 1278 observed reflections (I > 2s(I)). The complex consists of (R)-mandelic acid and (R)-phenylalanine in 1:1 molar ratio, and the complex molecules form layered crystal structure by self-assembly through intermolecular H-bonding between carboxyl and carboxylate of the neighboring molecules.
文摘A successful chiral separation of N-benzoyl phenylalanine methyl ester has been achieved by nonaqueous capillary electrophoresis (NACE) using P-CD as chiral selector in formamide (FA). Some experimental parameters influencing the chiral separation such as concentration of P-CD, ionic strength and apparent pH (pH*) are discussed.
文摘The present research was conducted to study salinity effect on callus growth and regeneration from the local Chilli pepper cultivar as well as calli content of capsaicin, phenylalanine, proline and ascorbic acid. The results showed that the Pericarp gave the highest fresh and dry weight of 511.6 mg and 56.95 mg respectively at 9 dSm-1 compared with other interactions. Moreover the lowest fresh and dry weight was recorded for the root calli grown at 12 dSm-1. The highest regeneration percentage was 87.20% at 3 dSm-1 and the lowest was 6.70% at 9 dSm-1. For explant effect on regeneration, the highest percentage was 71.1% for shoot tips and the lowest was 23.30 % from the pericarp. However no plants were regenerated at 12 dSm-1 from all explants and at 9 dSm-1 from calli induced from roots, placenta and pericarps. Calli induced from Pericarp contain significantly higher Proline amount at 12 dSm-1 which was 34.65 μg/g and the lowest was 2.57 μg/g at 3 dSml. Moreover Phenylalanine ranged from 28.23 μg/g at 3 dSml and 41.50μg/g at 12 dSm1. While a wide range between the explants in the Ascorbic acid amount was recorded. The highest was 47.21 μg/g from the Placenta calli and the lowest was 0.98 μg/g from the Shoot tip calli. On the other hand calli produced from Placenta gave the highest amount of Capsaicin 53.11 μg/g at 9 dSm-1 which was not significantly different than the placenta and the pericarp at 12 dSml and the shoot tips, placenta and the pericarp at 9 μg/g. In conclusion Chili pepper callus tolerated salinity via the accumulation of Ascorbic acid, Proline, Phenylalanine and Capsaicin. Moreover Chili Pepper grown In vitro under salt stress contained high amount of Capsaicin the important pharmaceutical compound. Finally pepper plants were regenerated from salt stressed calli might be salt tolerant under field conditions.
文摘The polystyrene supported phenylalanine Schiff base complex of Mn(Ⅱ) (PS-Sal-Phe-Mn ) was prepared with chloromethylated styrene polymer heads, 2 L-phenylalanine and manganese (Ⅱ) acetate tetrahyrate., The polymeric ligand and the complex were characterized by FT.IR,, small area X-ray photoelectron spectroscopy (XPS), and ICP-AES. in the presence of the manganese complex, cyclohexene (1) was effectively oxidized by molecular oxygen without reductant. The major products of the reaction were 2.cyclohexen-l-ol (2), 2-cyclohexen-l-one (3)and 2-cyclohexen-1-hydroperoxide (4), which was different with typical oxidation of cyclohexene. The influence of reaction temperature and additive for oxidation had been studied. The selectivity of 2-cyclohexen-l-hydroperoxide varied with reaction time and different additives. The mechanism of cyclohexene oxidation had also been discussed.
文摘We report novel mutations in exon 7 of human phenylalanine hydroxylase (PAH) gene of phenylketonuria (PKU ) in southern Chinese, analysed by using PCR-DGGE (denaturing gradient gel electrophoresis ), solid phase DNA sequencing and Ih vliro expression. One of the 2 novel mutations, IVS6nt1, is an intron-exon Junctional mutation which results a splicing defect in mRNA. Arg252Gln is another novel mutation with residual PAH activity only 24 % compared to wild type in in vitro mutagenesis and expression in Cos-1 cell. Other 3 known mutations and polymorphism including Arg241Cys, Arg243Gln and Val245Val(GTG to GTA) together with these novel mutations composed the mutatlonal profile of exon 7 in the PAH gene of PKUs in this populations.
文摘Exon 7 of the l’henylalan1ne hydroxylase (PAH) gene was analyzed in 15 chlldren affected wlth classicphenylketonL1rla (PKU) from northern Chlna by uslng PCRxsingle strand conformation polymorphism(PCR-SSCP) technique and DNA direct sequencing. Six missense mutatlons (l. e. R2413Q. R 241H, G247V,1,2 19H, F2541;lnd G257V )and one silent rnutatlon (V245v ) were identified. The latter three missense mu-tations were demonstrated as novel mltations in comparison with the PAH mutation database. one missense mt1tation (R241 H) was flrst dowumeTlted in Chinese. our results showed populatlon ancl reglon tllffer-ences in the PAH mutation clistribution. and suggest that there is more thfln one founding population forPKU in China. The fincling of novel mutations will enhence the molecular diagnosis of PKU.
文摘The title compound, ethyl ester N-(iso-propylcarbamoylmethoxyphosphonyl)-(1)-α-phenylalanine(C_16H_25N_2O_5P), was synthesized by a series of reactions, and its crystal structure was determined by single crystal X-ray diffraction. The crystal belongs to monoclinic system, space group P2_1, with a=5. 256(1), b=15. 869(3) , c=11. 718(4) A. β=96. 50(3), V=971. 1(9) A ̄3, M_r=356. 36,Z=2, D_c=1. 219 g/cm ̄3, μ=0. 161 mm ̄(-1), and F(000)=190. The final agreement factors are R=0. 057 and R_w=0. 055 for 1311 observed independent reflections with I ≥3σ(I). The results of structure analysis indicate that the configuration of the chiral phosphorus atom is S-form.
基金supported by the Capital’s Funds for Health Improvement and Research(CFH)(Nos.2020-1-2031 and 2020-2-4082,China)State Key Laboratory of Respiratory Health and Multimorbidity.
文摘Amino acid metabolic remodeling is a hallmark of cancer,driving an increased nutritional demand for amino acids.Amino acids are pivotal for energetic regulation,biosynthetic support,and homeostatic maintenance to stimulate cancer progression.However,the role of phenylalanine in multiple myeloma(MM)remains unknown.Here,we demonstrate that phenylalanine levels in MM patients are decreased in plasma but elevated in bone marrow(BM)cells.After the treatment,phenylalanine levels increase in plasma and decrease in BM.This suggests that changes in phenylalanine have diagnostic value and that phenylalanine in the BM microenvironment is an essential source of nutrients for MM progression.The requirement for phenylalanine by MM cells exhibits a similar pattern.Inhibiting phenylalanine utilization suppresses MM cell growth and provides a synergistic effect with Bortezomib(BTZ)treatment in vitro and murine models.Mechanistically,phenylalanine deprivation induces excessive endoplasmic reticulum stress and leads to MM cell apoptosis through the ATF3eCHOPeDR5 pathway.Interference with ATF3 significantly affects phenylalanine deprivation therapy.In conclusion,we have identified phenylalanine metabolism as a characteristic feature of MM metabolic remodeling.Phenylalanine is necessary for MM proliferation,and its aberrant demand highlights the importance of lowphenylalanine diets as an adjuvant treatment for MM.
基金supported by funds of Sichuan Province for Distinguished Young Scholar(No.2021JDJQ0037)the National Natural Science Foundation of China(No.82172094).
文摘Essential amino acids(EAAs)deprivation is a potential antitumor approach because EAAs are critical for tumor growth.To efficiently inhibit tumor growth,continuous deprivation of EAAs is required,how-ever,continuous deprivation without precise control will introduce toxicity to normal cells.Herein,a programmable double-unlock nanocomplex(ROCK)was prepared,which could self-supply phenylalanine ammonia-lyase(PAL)to tumor cells for phenylalanine(Phe)deprivation.ROCK was double-locked in physiological conditions when administered systemically.While ROCK actively targeted to tumor cells by integrinαvβ3/5 and CD44,ROCK was firstly unlocked by cleavage of protease on tumor cell membrane,exposing CendR and R8 to enhance endocytosis.Then,hyaluronic acid was digested by hyaluronidase overexpressed in endo/lysosome of tumor cells,in which ROCK was secondly unlocked,resulting in pro-moting endo/lysosome escape and PAL plasmid(pPAL)release.Released pPAL could sustainably express PAL in host tumor cells until the self-supplied PAL precisely and successfully deprived Phe,thereby block-ing the protein synthesis and killing tumor cells specifically.Overall,our precise Phe deprivation strategy effectively inhibited tumor growth with no observable toxicity to normal cells,providing new insights to efficiently remove intratumoral nutrition for cancer therapy.