A significant enhancement in solar hydrogen generation efficiency has been achieved by inductive coupled etching (ICP) surface roughening treatment using nano-sized nickel mask. As much as 7 times improvement of pho...A significant enhancement in solar hydrogen generation efficiency has been achieved by inductive coupled etching (ICP) surface roughening treatment using nano-sized nickel mask. As much as 7 times improvement of photocurrent is demonstrated in comparison with a planar one fabricated from the same parent wafer. Under identical illumination conditions in HBr solution, the incident photon conversion efficiency (IPCE) shows an enhancement with a factor of 3, which even exceed 54% at 400 nm wavelength. We believe the enhancement is attributed to several facts including improvement in absorption, reacting area, carder localization and carrier lifetime.展开更多
This work is intended to define a new possible methodology for TiO2 doping through the use of electrochemical deposition of tantalum directly on the titanium nanotubes obtained by a previous galvanostatic anodization ...This work is intended to define a new possible methodology for TiO2 doping through the use of electrochemical deposition of tantalum directly on the titanium nanotubes obtained by a previous galvanostatic anodization treatment in an ethylene glycol solution. This method does not seem to cause any influence on the nanotube structure, showing final products with news and interesting features with respect to the unmodified sample. Together with a decrease in the band gap and flat band potential of the TiO2 nanotubes, the tantalum doped specimen reports an increase of the photo conversion efficiency under UV light.展开更多
基金supported by the Special Funds for Major State Basic Research Project of China(Grant Nos.2011CB301900,2012CB619304,and 2010CB327504)the Hi-tech Research Project of China(Grant No.2011AA03A103)+4 种基金the National Nature Science Foundation of China(Grant Nos.60990311,61274003,60936004,and 61176063)the Program for New Century Excellent Talents in University of China(Grant No.NCET-11-0229)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK2011010)the Funds of Key Laboratory of China(Grant No.9140C140102120C14)the Research Funds from NJU-Yangzhou Institute of Opto-electronics of China
文摘A significant enhancement in solar hydrogen generation efficiency has been achieved by inductive coupled etching (ICP) surface roughening treatment using nano-sized nickel mask. As much as 7 times improvement of photocurrent is demonstrated in comparison with a planar one fabricated from the same parent wafer. Under identical illumination conditions in HBr solution, the incident photon conversion efficiency (IPCE) shows an enhancement with a factor of 3, which even exceed 54% at 400 nm wavelength. We believe the enhancement is attributed to several facts including improvement in absorption, reacting area, carder localization and carrier lifetime.
文摘This work is intended to define a new possible methodology for TiO2 doping through the use of electrochemical deposition of tantalum directly on the titanium nanotubes obtained by a previous galvanostatic anodization treatment in an ethylene glycol solution. This method does not seem to cause any influence on the nanotube structure, showing final products with news and interesting features with respect to the unmodified sample. Together with a decrease in the band gap and flat band potential of the TiO2 nanotubes, the tantalum doped specimen reports an increase of the photo conversion efficiency under UV light.