Tin halide perovskites recently have attracted extensive research attention due to their similar electronic and band structures but non-toxicity compared with their lead analogues. In this work, we prepare high-qualit...Tin halide perovskites recently have attracted extensive research attention due to their similar electronic and band structures but non-toxicity compared with their lead analogues. In this work, we prepare high-quality CsSnX_(3)(X=Br,I) microplates with lateral sizes of around 1–4 μm by chemical vapor deposition and investigate their low-temperature photoluminescence(PL) properties. A remarkable splitting of PL peaks of the CsSnBr_(3)microplate is observed at low temperatures. Besides the possible structural phase transition at below 70 K, the multi-peak fittings using Gauss functions and the power-dependent saturation phenomenon suggest that the PL could also be influenced by the conversion from the emission of bound excitons into free excitons. With the increase of temperature, the peak position shows a blueshift tendency for CsSnI_(3), which is governed by thermal expansion. However, the peak position of the CsSnBr3microplate exhibits a transition from redshift to blueshift at ~160 K. The full width at half maximum of CsSnX_(3)broadens with increasing temperature, and the fitting results imply that longitudinal optical phonons dominate the electron–phonon coupling and the coupling strength is much more robust in CsSnBr3than in CsSnI_(3). The PL intensity of CsSnX_(3)microplates is suppressed due to the enhanced non-radiative relaxation and exciton dissociation competing with radiative recombination. According to the Arrhenius law, the exciton binding energy of CsSnBr_(3)is ~38.4 meV, slightly smaller than that of CsSnI_(3).展开更多
Due to the rapid progress of information technology, organizations anticipate significant changes in the planning, scheduling, and optimization aspects of operation and supply chain management (SCM) shortly. Two prima...Due to the rapid progress of information technology, organizations anticipate significant changes in the planning, scheduling, and optimization aspects of operation and supply chain management (SCM) shortly. Two primary types of risk have an impact on supply chain management and design. The first group deals with the difficulties in matching supply and demand, whereas the second group deals with disruptions to regular business operations. The essay offers a theoretical framework that combines the cooperative efforts of risk assessment and mitigation, which are critical for effectively handling potential supply chain interruptions. This content provides insightful viewpoints on the strategic resources and operational structure needed to improve organizational success. We utilized the partial least squares (PLS) method to address the problem of multicollinearity and measurement mistakes in examining cause-and-effect constructs. The statistical method, Least Squares (PLS), used in structural equation modeling, is based on partial variance. The Partial Least Squares (PLS) strategy uses a two-stage estimate procedure to calculate weights, loadings, and route estimations. Initially, several simple and complex regressions were performed with the provided model. The procedure was repeated until a solution was found, resulting in a set of weights used to determine the latent variable scores. In the second step, non-iterative PLS regression yields loadings, path coefficients, mean scores, and location parameters. According to the structural study, implementing Sustainable Supply Chain Management (SSCM) can significantly improve a business’s operational and financial performance. The findings offer a comprehensive understanding of several elements of supply chain management (SSCM), including information systems, organizational configurations, supply chain network architecture (SCND), and supply chain strategy (SCS). The supply chain is essential for effectively moving goods over great distances and encouraging cooperation between parties. Therefore, these connections are established precisely, quickly, and cheaply via a knowledgeable and efficient supply chain. Two key components are necessary for a supply chain (SC) to be successful: efficient collaboration and the smooth integration of information-sharing platforms.展开更多
Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effecti...Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effectively incorporated into CMC/PEO polymers,as shown by X-ray diffraction(XRD)and attenuated total reflectance fourier transform infrared(ATR-FTIR)analysis.The roughness growth is at high levels of TO nanocrystals(TO NCs),which means increasing active sites and defects in CMC/PEO.In differential scanning calorimetry(DSC)thermograms,the change in glass transition temperature(Tg)val-ues verifies that the polymer blend interacts with TO NCs.The increment proportions of TO NCs have a notable impact on the dielectric performances of the nanocomposites,as observed.The electrical properties of the CMC/PEO/TO nanocomposite undergo significant changes.The nanocomposite films exhibit a red alteration in the absorption edge as the concentration of TO NCs increases in the polymer blend.The decline in the energy gap is readily apparent as the weight percentage of TO NCs increases.The photoluminescence(PL)emission spectra indicate that the sites of the luminescence peak maximums show slight variation;peaks get wider,while their intensities decrease dramatically as the concentration of TO increases.These nanocomposite materials show potential for multifunctional applications including optoelectronics,antireflection coatings,pho-tocatalysis,light emitting diodes,and solid polymer electrolytes.展开更多
Under solvothermal conditions,six new coordination polymers(CPs)[Mn(L)(phen)(H_(2)O)]_(n)(1),[Co(L)(phen)(H_(2)O)]_(n)(2),[Cu(L)(phen)(H_(2)O)]_(n)(3),[Zn_(2)(L)_(2)(phen)2(H_(2)O)]_(n)(4),[Zn(L)(phen)]_(n)(5),and[Cd(...Under solvothermal conditions,six new coordination polymers(CPs)[Mn(L)(phen)(H_(2)O)]_(n)(1),[Co(L)(phen)(H_(2)O)]_(n)(2),[Cu(L)(phen)(H_(2)O)]_(n)(3),[Zn_(2)(L)_(2)(phen)2(H_(2)O)]_(n)(4),[Zn(L)(phen)]_(n)(5),and[Cd(L)(phen)2]_(n)(6)were synthesized by reactions of dicarboxylate ligand 2,2'-(1,2-phenylenebis(methylene))bis(sulfanediyl)dinobutyric acid(H_(2)L)and 1,10-phenanthroline(phen)with the corresponding metal salts.Complexes 1-6 have been structurally characterized by single-crystal X-ray diffraction analyses,elemental analysis,IR,thermogravimetric analysis,and powder X-ray diffraction.The structures of 1-6 are 1D chains,which are further connected by hydrogen bonding interac-tions to form 3D supramolecular structures.Among them,1 and 2 are isomorphic with L2-of syn-conformation,while L2-shows anti-conformation in 3-6.In addition,the solid-state photoluminescence property of 4-6 was investigated.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11974279, 12074311, 12004310, and 12261141662)。
文摘Tin halide perovskites recently have attracted extensive research attention due to their similar electronic and band structures but non-toxicity compared with their lead analogues. In this work, we prepare high-quality CsSnX_(3)(X=Br,I) microplates with lateral sizes of around 1–4 μm by chemical vapor deposition and investigate their low-temperature photoluminescence(PL) properties. A remarkable splitting of PL peaks of the CsSnBr_(3)microplate is observed at low temperatures. Besides the possible structural phase transition at below 70 K, the multi-peak fittings using Gauss functions and the power-dependent saturation phenomenon suggest that the PL could also be influenced by the conversion from the emission of bound excitons into free excitons. With the increase of temperature, the peak position shows a blueshift tendency for CsSnI_(3), which is governed by thermal expansion. However, the peak position of the CsSnBr3microplate exhibits a transition from redshift to blueshift at ~160 K. The full width at half maximum of CsSnX_(3)broadens with increasing temperature, and the fitting results imply that longitudinal optical phonons dominate the electron–phonon coupling and the coupling strength is much more robust in CsSnBr3than in CsSnI_(3). The PL intensity of CsSnX_(3)microplates is suppressed due to the enhanced non-radiative relaxation and exciton dissociation competing with radiative recombination. According to the Arrhenius law, the exciton binding energy of CsSnBr_(3)is ~38.4 meV, slightly smaller than that of CsSnI_(3).
文摘Due to the rapid progress of information technology, organizations anticipate significant changes in the planning, scheduling, and optimization aspects of operation and supply chain management (SCM) shortly. Two primary types of risk have an impact on supply chain management and design. The first group deals with the difficulties in matching supply and demand, whereas the second group deals with disruptions to regular business operations. The essay offers a theoretical framework that combines the cooperative efforts of risk assessment and mitigation, which are critical for effectively handling potential supply chain interruptions. This content provides insightful viewpoints on the strategic resources and operational structure needed to improve organizational success. We utilized the partial least squares (PLS) method to address the problem of multicollinearity and measurement mistakes in examining cause-and-effect constructs. The statistical method, Least Squares (PLS), used in structural equation modeling, is based on partial variance. The Partial Least Squares (PLS) strategy uses a two-stage estimate procedure to calculate weights, loadings, and route estimations. Initially, several simple and complex regressions were performed with the provided model. The procedure was repeated until a solution was found, resulting in a set of weights used to determine the latent variable scores. In the second step, non-iterative PLS regression yields loadings, path coefficients, mean scores, and location parameters. According to the structural study, implementing Sustainable Supply Chain Management (SSCM) can significantly improve a business’s operational and financial performance. The findings offer a comprehensive understanding of several elements of supply chain management (SSCM), including information systems, organizational configurations, supply chain network architecture (SCND), and supply chain strategy (SCS). The supply chain is essential for effectively moving goods over great distances and encouraging cooperation between parties. Therefore, these connections are established precisely, quickly, and cheaply via a knowledgeable and efficient supply chain. Two key components are necessary for a supply chain (SC) to be successful: efficient collaboration and the smooth integration of information-sharing platforms.
文摘Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effectively incorporated into CMC/PEO polymers,as shown by X-ray diffraction(XRD)and attenuated total reflectance fourier transform infrared(ATR-FTIR)analysis.The roughness growth is at high levels of TO nanocrystals(TO NCs),which means increasing active sites and defects in CMC/PEO.In differential scanning calorimetry(DSC)thermograms,the change in glass transition temperature(Tg)val-ues verifies that the polymer blend interacts with TO NCs.The increment proportions of TO NCs have a notable impact on the dielectric performances of the nanocomposites,as observed.The electrical properties of the CMC/PEO/TO nanocomposite undergo significant changes.The nanocomposite films exhibit a red alteration in the absorption edge as the concentration of TO NCs increases in the polymer blend.The decline in the energy gap is readily apparent as the weight percentage of TO NCs increases.The photoluminescence(PL)emission spectra indicate that the sites of the luminescence peak maximums show slight variation;peaks get wider,while their intensities decrease dramatically as the concentration of TO increases.These nanocomposite materials show potential for multifunctional applications including optoelectronics,antireflection coatings,pho-tocatalysis,light emitting diodes,and solid polymer electrolytes.
文摘Under solvothermal conditions,six new coordination polymers(CPs)[Mn(L)(phen)(H_(2)O)]_(n)(1),[Co(L)(phen)(H_(2)O)]_(n)(2),[Cu(L)(phen)(H_(2)O)]_(n)(3),[Zn_(2)(L)_(2)(phen)2(H_(2)O)]_(n)(4),[Zn(L)(phen)]_(n)(5),and[Cd(L)(phen)2]_(n)(6)were synthesized by reactions of dicarboxylate ligand 2,2'-(1,2-phenylenebis(methylene))bis(sulfanediyl)dinobutyric acid(H_(2)L)and 1,10-phenanthroline(phen)with the corresponding metal salts.Complexes 1-6 have been structurally characterized by single-crystal X-ray diffraction analyses,elemental analysis,IR,thermogravimetric analysis,and powder X-ray diffraction.The structures of 1-6 are 1D chains,which are further connected by hydrogen bonding interac-tions to form 3D supramolecular structures.Among them,1 and 2 are isomorphic with L2-of syn-conformation,while L2-shows anti-conformation in 3-6.In addition,the solid-state photoluminescence property of 4-6 was investigated.