A new capillary electrophoresis apparatus was designed. Piezoelectric ceramics transformer technology was first applied in capillary electrophoresis, a high voltage and stable source was made. Amperometric detector wa...A new capillary electrophoresis apparatus was designed. Piezoelectric ceramics transformer technology was first applied in capillary electrophoresis, a high voltage and stable source was made. Amperometric detector was used in which the working electrode was closely opposite to the end of capillary. The apparatus was characterized in good reproducibility, safety and very low cost.展开更多
0.144(K0.5Bi0.5)TiO3-0.85(Na0.5Bi0.5)TiO3-0.006BaTiO3(KBT-NBT-BT) lead-free piezoelectric ceramics were prepared using a conventional solid state method.The influence of Sb2O3 doping on the crystal phase,surface...0.144(K0.5Bi0.5)TiO3-0.85(Na0.5Bi0.5)TiO3-0.006BaTiO3(KBT-NBT-BT) lead-free piezoelectric ceramics were prepared using a conventional solid state method.The influence of Sb2O3 doping on the crystal phase,surface microstructure and properties of the KBT-NBT-BT lead-free piezoelectric ceramics were investigated using X-ray diffraction(XRD),scanning electron microscope(SEM) and other analytical methods.The results show that all compositions are of pure perovskite structure solid states.Sb2O3 doping does not influence the microstructure of KBT-NBT-BT lead-free piezoelectric ceramics obviously in the Sb2O3 doping range of 0.1-0.5 wt.%.Sb2O3 functions as a donor when doped small amount,while functions as a acceptor when doped large amount.The piezoelectric strain constant(d33) increases first and then decreases;the dielectric constant(ε33^T/ε0) and the dielectric loss(tanδ) decrease continuously when the amount of Sb2O3 dopant increases.When the doping amount of Sb2O3 is 0.1 wt.%,the KBT-NBT-BT piezoelectric ceramics with good comprehensive properties are obtained,whose d33,ε33^T/ε0 and tanδ are 147 pC/N,1510 and 4.2%,respectively.展开更多
CaBi_(4)Ti_(4)O_(15)(CBT)-based Aurivillius high-temperature piezoceramics with different Sb-Mn co-doping amounts were synthesized via the conventional sintering technique.The influences of doping amount on the produc...CaBi_(4)Ti_(4)O_(15)(CBT)-based Aurivillius high-temperature piezoceramics with different Sb-Mn co-doping amounts were synthesized via the conventional sintering technique.The influences of doping amount on the product were studied via their crystal structure,microstructure,and piezoelectric performance.It is found that an appropriate Sb-Mn co-doping amount can effectively optimize the crystal structure and decrease the oxygen vacancy concentration in CBT ceramics,leading to enhanced electrical properties.Optimized electrical performance with a high Curie temperature(TC)of 792℃and a remarkable piezoelectric coefficient(d33)of 25 p C/N were achieved at a doping amount(x)of 0.05.Furthermore,this ceramic is found to exhibit an excellent thermal stability,with d33 retaining 88%of its original value after annealing at 600℃for 2 h.Moreover,this ceramic shows a high electrical resistivity(ρ)of 1.35×10^(8)Ω·cm with a small dielectric loss(tanδ)of 1.7%at 400℃.Because of such outstanding piezoelectric performance,it is believed that these Sb-Mn co-doped CBT ceramics could be potential candidates for high-temperature piezoelectric applications.展开更多
Quinary system piezoelectric ceramics PSN-PZN-PMS-PZT were prepared by using a two-step method. The effects of CeO2 doping on piezoelectric and dielectric properties of the system were investigated at morphotropic pha...Quinary system piezoelectric ceramics PSN-PZN-PMS-PZT were prepared by using a two-step method. The effects of CeO2 doping on piezoelectric and dielectric properties of the system were investigated at morphotropic phase boundary (MPB). The results reveal that the relative dielectric constant ε33^T|ε0, the Curie temperature To, the piezoelectric constant d33, the mechanical quality factor Qm, and the electromechanical coupling coefficient Kp are changed with the increase of CeO2 content. On the other hand, the effects of CeO2 doping on the dielectric properties of PSN-PZN-PMS-PZT piezoelectric ceramics at high electric field are consistent with the change at weak electric field. The values of dielectric constant and dielectric loss are enhanced with the increasing of electric field.展开更多
Mechanical and electrical damages are introduced to study the fracture mechanics of piezoelectric ceramics in this paper. Two kinds of piezoelectric fracture criteria are established using the method of least squares ...Mechanical and electrical damages are introduced to study the fracture mechanics of piezoelectric ceramics in this paper. Two kinds of piezoelectric fracture criteria are established using the method of least squares combined with a damage analysis of the well-known piezoelectric fracture experiments of Park and Sun’s. One is based on a linear combination of the mechanical and electrical damages and the other on their nonlinear combination. When the combined damage D is up to its critical value Dc, piezoelectric fracture occurs. It is found from the qualitative comparison of the numerical results with the experimental data that the nonlinearly combined damage fracture criterion can give a better prediction of piezoelectric fracture. And it is concluded from the nonlinearly combined damage fracture criterion that a negative electric feld impedes fracture whereas the efect of a positive electric feld on fracture depends on its magnitude.展开更多
Ti-Modified (Na0.5K0.5)(TixNb1-x)O3 (NKNT) piezoelectric ceramics were fabricated by double-layer buried powder process at 1020°C for 2 h. The microstructures,and piezoelectric and dielectric properties of the le...Ti-Modified (Na0.5K0.5)(TixNb1-x)O3 (NKNT) piezoelectric ceramics were fabricated by double-layer buried powder process at 1020°C for 2 h. The microstructures,and piezoelectric and dielectric properties of the lead-free NKNT ceramics were investigated. X-ray diffraction re-sults indicated that Ti4+ had diffused into the (Na0.5K0.5)NbO3 lattices to form a solid solution with a perovskite structure. The introducing of Ti into the (Na0.5K0.5)NbO3 solid solution effectively reduced the sintering temperature and...展开更多
in order to realize the co-firing with Ag/Pd electrodes in multilayer devices, Pb(Zn1/3Nb2/3)(1-x-y) ZrxTiyO3(0.25<x<0.35, 0.25<y<0.35) piezoelectric ceramics thereafter designated PZN-PZT) modified by La2...in order to realize the co-firing with Ag/Pd electrodes in multilayer devices, Pb(Zn1/3Nb2/3)(1-x-y) ZrxTiyO3(0.25<x<0.35, 0.25<y<0.35) piezoelectric ceramics thereafter designated PZN-PZT) modified by La2O3 has been prepared by conventional technique with sintering temperature from 1100 degreesC to 1140 degreesC. X-ray diffraction patterns demonstrated that pure perovskite phase was obtained. Secondary electron image (SEI) showed that crystalline grains in ceramics were well grown. d(33) of manufactured sample was as high as 560 x 10(-12)C/N. k(p) was about 0.61 and tg delta about 30 x 10(-3). The existence of liquid phase examined by electron diffraction in PZN-PZT sample is beneficial to sintering of the ceramic.展开更多
MgO-modified Li0.06(Na0.5K0.5)0.94NbO3O3 (L6NKN) lead-free piezoelectric ceramics were synthesized by normal sintering at a rela- tively low temperature of 1000℃. The crystalline phase, microstructure, and electr...MgO-modified Li0.06(Na0.5K0.5)0.94NbO3O3 (L6NKN) lead-free piezoelectric ceramics were synthesized by normal sintering at a rela- tively low temperature of 1000℃. The crystalline phase, microstructure, and electrical properties of the ceramics were investigated with a special emphasis on the influence of MgO content. The addition of MgO effectively improves the sintembility of the L6NKN ceramics. X-my diffr cfion analysis indicates that the morphotropic phase boundary (MPB) separating orthorhombic and tetragonal phases for the ceramics lies in the range of Mg doping content (x) from 0.3at% to 0.7at%. High electrical properties of the piezoelectric constant (d33=238 pC/N), planar electromechanical coupling coefficient (kp=41.5%), relative dielectric constant (εr=905), and remanent polarization (Pr=38.3 μC/cm2) are obtained from the specimen with x=0.5at%, which suggests that the Li0.06(Na0.5K0.5)0.94Nb(1-2x/5)MgxO3 (x=0.5at%) ceramic is a promising lead-free piezoelectric material.展开更多
(1 - x)PbZr0.54Tio.4603-xKNbO3 (0 〈 x 〈 25mo1%) (abbreviated as PZT-xKN) piezoelectric ceramics were successfully fabricated by a traditional sintering technique at 1225℃ for 30 min. The influence of KNbO3 co...(1 - x)PbZr0.54Tio.4603-xKNbO3 (0 〈 x 〈 25mo1%) (abbreviated as PZT-xKN) piezoelectric ceramics were successfully fabricated by a traditional sintering technique at 1225℃ for 30 min. The influence of KNbO3 content on the crystal structure and electrical properties of the PZT-xKN piezoelectric ceramics was studied. Samples with 0 〈 x 0.20 show a pure peroskite structure, indicating that ul KNbOdiffused ito the crystal lattice of PZT to form a single solid solution in this compositional range. A second Pb3Nb4013 phase is observed in the PZT-0.25KN sample, showing that the maximum solid solubility of KNbO3 in PZT matrix ceramic is less than 25mo1%. Compared with pure PZT piezoelectric ceramics, samples containing KNbO3 have smaller crystal grains. PZT-0.15KN exhibits excellent piezoelectric properties with d33 : 209 pC/N.展开更多
Piezoelectric shunt damping has been widely used in vibration suppression, sound absorption, noise elimination, etc. In such applications, the variant elastic constants of piezoelectric materials are the essential par...Piezoelectric shunt damping has been widely used in vibration suppression, sound absorption, noise elimination, etc. In such applications, the variant elastic constants of piezoelectric materials are the essential parameters that determine the performances of the systems, when piezoelectric materials are shunted to normal electrical elements, i.e., resistance, inductance and capacitance, as well as their combinations. In recent years, many researches have demonstrated that the wideband sound absorption or vibration suppression can be realized with piezoelectric materials shunted to negative capacitance. However, most systems using the negative-capacitance shunt circuits show their instabilities in the optimal condition, which are essentially caused by the singular variation properties of elastic constants of piezoelectric materials when shunted to negative capacitance. This paper aims at investigating the effects of negative-capacitance shunt circuits on elastic constants of a piezoelectric ceramic plate through theoretical analyses and experiments, which gives an rational explanation for why negative capacitance shunt circuit is prone to make structure instable. First, the relationships between the elastic constants c11, c33, c55 of the piezoelectric ceramic and the shunt negative capacitance are derived with the piezoelectric constitutive law theoretically. Then, an experimental setup is established to verify the theoretical results through observing the change of elastic constant c55 of the shunted piezoelectric plate with the variation of negative capacitance. The experimental results are in good agreement with the theoretical analyses, which reveals that the instability of the shunt damping system is essentially caused by the singular variation property of the elastic constants of piezoelectric material shunted to negative capacitance.展开更多
The effects of Pb content on crystallographic phase, microstructure, electric-properties of PMSZT piezoelectric ceramics were studied. The crystallographic phase and microstructure of the ceramics were examined by usi...The effects of Pb content on crystallographic phase, microstructure, electric-properties of PMSZT piezoelectric ceramics were studied. The crystallographic phase and microstructure of the ceramics were examined by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The experimental result shows that the samples consist of a mixture of tetragonal and rhombohedral phases in the range of lead contents x=0.95-1.06, grains grow up homogeneously and the minimum value of Curie temperature was obtained with x-=1.02. With Pb content x〈l.02 or x〉1.02, the Curie temperature moves towards a high temperature. A well-situated electric-properties of ET33/E0 (1660), d33 (344pC/N), Kp (0.684), Qm (2350),tan 3(0.0030) were obtained when lead content x=1.02.展开更多
Lead-free piezoelectric NaxK1-xNbO3(x = 0.3-0.8)(NKN) ceramics were fabricated by normal sintering at 1060°C for 2 h.Microstructures and electrical properties of the ceramics were investigated with a special ...Lead-free piezoelectric NaxK1-xNbO3(x = 0.3-0.8)(NKN) ceramics were fabricated by normal sintering at 1060°C for 2 h.Microstructures and electrical properties of the ceramics were investigated with a special emphasis on the influence of Na content.The grain size of the produced dense ceramic was decreased by increasing Na content.A discontinuous change in the space distance was found at the composition close to Na0.7K0.3NbO3 ceramic, which indicates the presence of a transitional composition between two different orthorhombic phases, which is similar to the behavior of morphotropic phase boundary(MPB) in NaxK1-xNbO3 ceramics.Such MPB-like behavior contributes to the enhanced piezoelectric coefficient d33 of 122 pC/N, planar-mode electromechanical coupling coefficient kP of 28.6%, and dielectric constant εr of 703, respectively for the Na0.7K0.3NbO3 ceramic.Cubic temperature TC and the transitional temperature TO-T from orthorhombic to tetragonal phase are observed at around 420°C and 200°C, respectively.展开更多
As advanced functional materials,piezoelectric ceramics are widely used in various fields,including the medical,aviation,and military industries.With the advancement of science and technology,the piezoelectric ceramic...As advanced functional materials,piezoelectric ceramics are widely used in various fields,including the medical,aviation,and military industries.With the advancement of science and technology,the piezoelectric ceramics needed in special fields have become more intelligent,diverse and lightweight.The shapes and structures of piezoelectric ceramics are becoming more complex.Traditional piezoelectric ceramic preparation technology has been unable to meet the high-speed and complex production demands of various industries.Considering this situation,3D printing technology has attracted much attention in the field of piezoelectric ceramics.In this paper,the applications of several main 3D printing techniques in the field of piezoelectric ceramics are mainly introduced,and their development statuses,process characteristics and achievements are summarized.The advantages and disadvantages of each printing technique are summarized and compared.The challenges and possible future trends of 3D printing when manufacturing piezoelectric ceramics are summarized and proposed.展开更多
The relationship between composition and the electric mechanical properties for La2O3-doped lead niobium stibium zirconate titanate(La2O3-doped PNSZT) piezoelectric ceramics,in which there are tetragonal and rhombohed...The relationship between composition and the electric mechanical properties for La2O3-doped lead niobium stibium zirconate titanate(La2O3-doped PNSZT) piezoelectric ceramics,in which there are tetragonal and rhombohedral coexistent phases, was studied. A series of piezoelectric ceramics with good properties was obtained, having dielectric constants (ε= 1500 ~ 2500), plane electromechanical coupling factor(Kp = 0.45 ~ 0.65), mechanical quality factor( Qm = 500 ~ 1600). These materials are used for making ultrasonic sensor and filter, and marine acoustic launching and receiving device, and so on. It has been explored that the influence of composition on the lattice constant and phase composition of La2O3-doped PNSZT piezoelectric ceramics by XRD(X-ray diffraction) . The character of dielectric constant changing of La2O3-doped PNSZT piezoelectric ceramics before polarization and after polarization was studied. The affecting mechanism about composition on the electric machine properties of phase coexistent La2O3-doped PNSZT piezoelectric ceramics was analyzed and discussed.展开更多
The physical interpretation of the M-integral is investigated in the analysis of crackdamaged piezoelectric problems. The relation between the M-integral and the change of the total electric enthalpy (CTEE), i.e., M...The physical interpretation of the M-integral is investigated in the analysis of crackdamaged piezoelectric problems. The relation between the M-integral and the change of the total electric enthalpy (CTEE), i.e., M = 2CTEE, is derived with a theoretical derivation procedure for two^dimensional piezoelectric problems. It is shown that the M-integral may provide a more natural description of electric enthalpy release due to the formation of the pre-existing microcracks associated with the damaged body, rather than the description of the total potential energy release rate as interpreted for conventional brittle solids. For crack-damaged piezoelectric ceramics, numerical calculation of the M-integral is discussed. Based on the pseudo-traction electric displacement method, M = 2CTEE has also been proved by the numerical results.展开更多
Electroelastic behavior of a cracked piezoelectric ceramics plate subjected to four Cases of combined mechanical-electrical loads is analyzed. The integral transform method is applied to convert the problem involving ...Electroelastic behavior of a cracked piezoelectric ceramics plate subjected to four Cases of combined mechanical-electrical loads is analyzed. The integral transform method is applied to convert the problem involving an impermeable anti-plane crack to dual integral equations. Solving the resulting equations, the explicit analytic expressions for electroelastic field along the crack line and the intensity factors of relevant quantities near the crack tip and the mechanical strain energy release rate we obtained, The known results for an infinite piezoelectric ceramics plane containing an impermeable anti-plane crack are recovered from the present results only if the thickness of the plate h --> infinity.展开更多
The microstructures and electrical properties of Bi0.5(Na1-x-yKxLiy)0.5TiO3 lead-free piezoelectric ceramics were studied.These ceramics were prepared by conventional ceramic technique.XRD analysis reveals that the ...The microstructures and electrical properties of Bi0.5(Na1-x-yKxLiy)0.5TiO3 lead-free piezoelectric ceramics were studied.These ceramics were prepared by conventional ceramic technique.XRD analysis reveals that the ceramics possess almost pure perovskite phase when y≤0.2.The SEM results show that,with more amounts of Li+,the crystalline grain growing speed is accelerated,and the sintering temperature can effectively be decreased.The measurements of piezoelectric properties indicate that the ceramics with relatively low amount of Li+ and high amount of K+ have comparatively large piezoelectricity.The dielectric measurements show that the ceramics have properties like relaxor ferroelectrics and diffuse phase transition(DPT) at Td and Tc,respectively.The results of ferroelectric measurements reveal the system has relatively higher remanent polarization Pr(27.6 μC/cm2) and lower coercive field Ec(37.5 kV/cm).展开更多
Piezoelectric ceramics based on PZT ceramics were prepared in solid state reaction with mixture of PbO, TiO2 and ZrO2, etc. XRD and SEM were used to confirm that the main phase in the material is tetragonal P4mm symme...Piezoelectric ceramics based on PZT ceramics were prepared in solid state reaction with mixture of PbO, TiO2 and ZrO2, etc. XRD and SEM were used to confirm that the main phase in the material is tetragonal P4mm symmetry. Samples sintered are of high density. Measurement on polarized products indicate that dielectric constant, piezoelectric constant, electromechanic coupling factor and mechanical quality factor are epsilon(r)=2015, d33=578.06X10(12)C/N, K-33=0.81 and Q(m)=543.8,,respectively.展开更多
Abstract: Lead-free piezoelectric ceramics of (1 - x) Bi0.5K0.5TiO3-BaTiO3 (BKT-BT) were fabricated by the solid state reaction method with normal sintering. The influence of BT addition on the crystal structure,...Abstract: Lead-free piezoelectric ceramics of (1 - x) Bi0.5K0.5TiO3-BaTiO3 (BKT-BT) were fabricated by the solid state reaction method with normal sintering. The influence of BT addition on the crystal structure, phase transition and dielectric properties was investigated. The crystal structure and ferroelectric phase transition were studied by XRD (X-ray diffraction) and dielectric measurements. The complete solid solution of BKT-BT was observed for all compositions. In XRD results, all compositions showed a single phase perovskite structure with tetragonal symmetry at room temperature. With increasing BT content, the separation between diffraction peaks corresponded to increasing tetragonality. The phase transition temperature of ferroelectric tetragonal-paraelectric cubic (Tc) decreased with increasing BT content. As the amount of BT concentration increased, the ceramic became denser, and almost no porosity was finally obtained.展开更多
There are three types of cracks: impermeable crack, permeable crack and conducting crack, with different electric boundary conditions on faces of cracks in piezoelectric ceramics, which poses difficulties in the analy...There are three types of cracks: impermeable crack, permeable crack and conducting crack, with different electric boundary conditions on faces of cracks in piezoelectric ceramics, which poses difficulties in the analysis of piezoelectric fracture problems. In this paper, in contrast to our previous FEM formulation, the numerical analysis is based on the use of exact electric boundary conditions at the crack faces, thus the common assumption of electric impermeability in the FEM analysis is avoided. The crack behavior and elasto-electric fields near a crack tip in a PZT-5 piezoelectric ceramic under mechanical, electrical and coupled mechanical- electrical loads with different electric boundary conditions on crack faces are investigated. It is found that the dielectric medium between the crack faces will reduce the singularity of stress and electric displacement. Furthermore, when the permittivity of the dielectric medium in the crack gap is of the same order as that of the piezoelectric ceramic, the crack becomes a conducting crack, the applied electric field has no effect on the crack propagation.展开更多
文摘A new capillary electrophoresis apparatus was designed. Piezoelectric ceramics transformer technology was first applied in capillary electrophoresis, a high voltage and stable source was made. Amperometric detector was used in which the working electrode was closely opposite to the end of capillary. The apparatus was characterized in good reproducibility, safety and very low cost.
文摘0.144(K0.5Bi0.5)TiO3-0.85(Na0.5Bi0.5)TiO3-0.006BaTiO3(KBT-NBT-BT) lead-free piezoelectric ceramics were prepared using a conventional solid state method.The influence of Sb2O3 doping on the crystal phase,surface microstructure and properties of the KBT-NBT-BT lead-free piezoelectric ceramics were investigated using X-ray diffraction(XRD),scanning electron microscope(SEM) and other analytical methods.The results show that all compositions are of pure perovskite structure solid states.Sb2O3 doping does not influence the microstructure of KBT-NBT-BT lead-free piezoelectric ceramics obviously in the Sb2O3 doping range of 0.1-0.5 wt.%.Sb2O3 functions as a donor when doped small amount,while functions as a acceptor when doped large amount.The piezoelectric strain constant(d33) increases first and then decreases;the dielectric constant(ε33^T/ε0) and the dielectric loss(tanδ) decrease continuously when the amount of Sb2O3 dopant increases.When the doping amount of Sb2O3 is 0.1 wt.%,the KBT-NBT-BT piezoelectric ceramics with good comprehensive properties are obtained,whose d33,ε33^T/ε0 and tanδ are 147 pC/N,1510 and 4.2%,respectively.
基金financial support from the Key Research and Development Project of Zhejiang Province,China(No.2017C01056)。
文摘CaBi_(4)Ti_(4)O_(15)(CBT)-based Aurivillius high-temperature piezoceramics with different Sb-Mn co-doping amounts were synthesized via the conventional sintering technique.The influences of doping amount on the product were studied via their crystal structure,microstructure,and piezoelectric performance.It is found that an appropriate Sb-Mn co-doping amount can effectively optimize the crystal structure and decrease the oxygen vacancy concentration in CBT ceramics,leading to enhanced electrical properties.Optimized electrical performance with a high Curie temperature(TC)of 792℃and a remarkable piezoelectric coefficient(d33)of 25 p C/N were achieved at a doping amount(x)of 0.05.Furthermore,this ceramic is found to exhibit an excellent thermal stability,with d33 retaining 88%of its original value after annealing at 600℃for 2 h.Moreover,this ceramic shows a high electrical resistivity(ρ)of 1.35×10^(8)Ω·cm with a small dielectric loss(tanδ)of 1.7%at 400℃.Because of such outstanding piezoelectric performance,it is believed that these Sb-Mn co-doped CBT ceramics could be potential candidates for high-temperature piezoelectric applications.
文摘Quinary system piezoelectric ceramics PSN-PZN-PMS-PZT were prepared by using a two-step method. The effects of CeO2 doping on piezoelectric and dielectric properties of the system were investigated at morphotropic phase boundary (MPB). The results reveal that the relative dielectric constant ε33^T|ε0, the Curie temperature To, the piezoelectric constant d33, the mechanical quality factor Qm, and the electromechanical coupling coefficient Kp are changed with the increase of CeO2 content. On the other hand, the effects of CeO2 doping on the dielectric properties of PSN-PZN-PMS-PZT piezoelectric ceramics at high electric field are consistent with the change at weak electric field. The values of dielectric constant and dielectric loss are enhanced with the increasing of electric field.
基金Project supported by the National Natural Science Foundation of China(No.10172036)and by the Scientific ResearchFoundation for Returned Overseas Chinese Scholars,State Education Ministry.
文摘Mechanical and electrical damages are introduced to study the fracture mechanics of piezoelectric ceramics in this paper. Two kinds of piezoelectric fracture criteria are established using the method of least squares combined with a damage analysis of the well-known piezoelectric fracture experiments of Park and Sun’s. One is based on a linear combination of the mechanical and electrical damages and the other on their nonlinear combination. When the combined damage D is up to its critical value Dc, piezoelectric fracture occurs. It is found from the qualitative comparison of the numerical results with the experimental data that the nonlinearly combined damage fracture criterion can give a better prediction of piezoelectric fracture. And it is concluded from the nonlinearly combined damage fracture criterion that a negative electric feld impedes fracture whereas the efect of a positive electric feld on fracture depends on its magnitude.
基金the National Natural Science Foundation of China (No. 50842028)the National High-Tech Research and Development Program of China (No. 2006AA03Z436).
文摘Ti-Modified (Na0.5K0.5)(TixNb1-x)O3 (NKNT) piezoelectric ceramics were fabricated by double-layer buried powder process at 1020°C for 2 h. The microstructures,and piezoelectric and dielectric properties of the lead-free NKNT ceramics were investigated. X-ray diffraction re-sults indicated that Ti4+ had diffused into the (Na0.5K0.5)NbO3 lattices to form a solid solution with a perovskite structure. The introducing of Ti into the (Na0.5K0.5)NbO3 solid solution effectively reduced the sintering temperature and...
文摘in order to realize the co-firing with Ag/Pd electrodes in multilayer devices, Pb(Zn1/3Nb2/3)(1-x-y) ZrxTiyO3(0.25<x<0.35, 0.25<y<0.35) piezoelectric ceramics thereafter designated PZN-PZT) modified by La2O3 has been prepared by conventional technique with sintering temperature from 1100 degreesC to 1140 degreesC. X-ray diffraction patterns demonstrated that pure perovskite phase was obtained. Secondary electron image (SEI) showed that crystalline grains in ceramics were well grown. d(33) of manufactured sample was as high as 560 x 10(-12)C/N. k(p) was about 0.61 and tg delta about 30 x 10(-3). The existence of liquid phase examined by electron diffraction in PZN-PZT sample is beneficial to sintering of the ceramic.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China (No20090006110010)the National Basic Research Priorities Program of China (No2007CB613301)the Program of University-Industry Cooperation Supported by the Ministry of Education and Guangdong Province of China (No2008B090500262)
文摘MgO-modified Li0.06(Na0.5K0.5)0.94NbO3O3 (L6NKN) lead-free piezoelectric ceramics were synthesized by normal sintering at a rela- tively low temperature of 1000℃. The crystalline phase, microstructure, and electrical properties of the ceramics were investigated with a special emphasis on the influence of MgO content. The addition of MgO effectively improves the sintembility of the L6NKN ceramics. X-my diffr cfion analysis indicates that the morphotropic phase boundary (MPB) separating orthorhombic and tetragonal phases for the ceramics lies in the range of Mg doping content (x) from 0.3at% to 0.7at%. High electrical properties of the piezoelectric constant (d33=238 pC/N), planar electromechanical coupling coefficient (kp=41.5%), relative dielectric constant (εr=905), and remanent polarization (Pr=38.3 μC/cm2) are obtained from the specimen with x=0.5at%, which suggests that the Li0.06(Na0.5K0.5)0.94Nb(1-2x/5)MgxO3 (x=0.5at%) ceramic is a promising lead-free piezoelectric material.
基金financially supported by the Program of University-Industry Cooperation supported by the Ministry of Education and Guangdong Province of China (No.2008B090500262)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No. 20090006110010)
文摘(1 - x)PbZr0.54Tio.4603-xKNbO3 (0 〈 x 〈 25mo1%) (abbreviated as PZT-xKN) piezoelectric ceramics were successfully fabricated by a traditional sintering technique at 1225℃ for 30 min. The influence of KNbO3 content on the crystal structure and electrical properties of the PZT-xKN piezoelectric ceramics was studied. Samples with 0 〈 x 0.20 show a pure peroskite structure, indicating that ul KNbOdiffused ito the crystal lattice of PZT to form a single solid solution in this compositional range. A second Pb3Nb4013 phase is observed in the PZT-0.25KN sample, showing that the maximum solid solubility of KNbO3 in PZT matrix ceramic is less than 25mo1%. Compared with pure PZT piezoelectric ceramics, samples containing KNbO3 have smaller crystal grains. PZT-0.15KN exhibits excellent piezoelectric properties with d33 : 209 pC/N.
文摘Piezoelectric shunt damping has been widely used in vibration suppression, sound absorption, noise elimination, etc. In such applications, the variant elastic constants of piezoelectric materials are the essential parameters that determine the performances of the systems, when piezoelectric materials are shunted to normal electrical elements, i.e., resistance, inductance and capacitance, as well as their combinations. In recent years, many researches have demonstrated that the wideband sound absorption or vibration suppression can be realized with piezoelectric materials shunted to negative capacitance. However, most systems using the negative-capacitance shunt circuits show their instabilities in the optimal condition, which are essentially caused by the singular variation properties of elastic constants of piezoelectric materials when shunted to negative capacitance. This paper aims at investigating the effects of negative-capacitance shunt circuits on elastic constants of a piezoelectric ceramic plate through theoretical analyses and experiments, which gives an rational explanation for why negative capacitance shunt circuit is prone to make structure instable. First, the relationships between the elastic constants c11, c33, c55 of the piezoelectric ceramic and the shunt negative capacitance are derived with the piezoelectric constitutive law theoretically. Then, an experimental setup is established to verify the theoretical results through observing the change of elastic constant c55 of the shunted piezoelectric plate with the variation of negative capacitance. The experimental results are in good agreement with the theoretical analyses, which reveals that the instability of the shunt damping system is essentially caused by the singular variation property of the elastic constants of piezoelectric material shunted to negative capacitance.
基金the National Natural Science Foundation of China (No.10232030)Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education(No.x06050)
文摘The effects of Pb content on crystallographic phase, microstructure, electric-properties of PMSZT piezoelectric ceramics were studied. The crystallographic phase and microstructure of the ceramics were examined by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The experimental result shows that the samples consist of a mixture of tetragonal and rhombohedral phases in the range of lead contents x=0.95-1.06, grains grow up homogeneously and the minimum value of Curie temperature was obtained with x-=1.02. With Pb content x〈l.02 or x〉1.02, the Curie temperature moves towards a high temperature. A well-situated electric-properties of ET33/E0 (1660), d33 (344pC/N), Kp (0.684), Qm (2350),tan 3(0.0030) were obtained when lead content x=1.02.
基金supported by the National Natural Science Foundation of China (No. 50842028)the National Basic Research Priorities Program of China (No. 2007CB613301)
文摘Lead-free piezoelectric NaxK1-xNbO3(x = 0.3-0.8)(NKN) ceramics were fabricated by normal sintering at 1060°C for 2 h.Microstructures and electrical properties of the ceramics were investigated with a special emphasis on the influence of Na content.The grain size of the produced dense ceramic was decreased by increasing Na content.A discontinuous change in the space distance was found at the composition close to Na0.7K0.3NbO3 ceramic, which indicates the presence of a transitional composition between two different orthorhombic phases, which is similar to the behavior of morphotropic phase boundary(MPB) in NaxK1-xNbO3 ceramics.Such MPB-like behavior contributes to the enhanced piezoelectric coefficient d33 of 122 pC/N, planar-mode electromechanical coupling coefficient kP of 28.6%, and dielectric constant εr of 703, respectively for the Na0.7K0.3NbO3 ceramic.Cubic temperature TC and the transitional temperature TO-T from orthorhombic to tetragonal phase are observed at around 420°C and 200°C, respectively.
基金This work was financially supported by the Scientific Research Fund-ing Project of the Educational Department of Liaoning Province in 2020,grant number LQ2020008.
文摘As advanced functional materials,piezoelectric ceramics are widely used in various fields,including the medical,aviation,and military industries.With the advancement of science and technology,the piezoelectric ceramics needed in special fields have become more intelligent,diverse and lightweight.The shapes and structures of piezoelectric ceramics are becoming more complex.Traditional piezoelectric ceramic preparation technology has been unable to meet the high-speed and complex production demands of various industries.Considering this situation,3D printing technology has attracted much attention in the field of piezoelectric ceramics.In this paper,the applications of several main 3D printing techniques in the field of piezoelectric ceramics are mainly introduced,and their development statuses,process characteristics and achievements are summarized.The advantages and disadvantages of each printing technique are summarized and compared.The challenges and possible future trends of 3D printing when manufacturing piezoelectric ceramics are summarized and proposed.
文摘The relationship between composition and the electric mechanical properties for La2O3-doped lead niobium stibium zirconate titanate(La2O3-doped PNSZT) piezoelectric ceramics,in which there are tetragonal and rhombohedral coexistent phases, was studied. A series of piezoelectric ceramics with good properties was obtained, having dielectric constants (ε= 1500 ~ 2500), plane electromechanical coupling factor(Kp = 0.45 ~ 0.65), mechanical quality factor( Qm = 500 ~ 1600). These materials are used for making ultrasonic sensor and filter, and marine acoustic launching and receiving device, and so on. It has been explored that the influence of composition on the lattice constant and phase composition of La2O3-doped PNSZT piezoelectric ceramics by XRD(X-ray diffraction) . The character of dielectric constant changing of La2O3-doped PNSZT piezoelectric ceramics before polarization and after polarization was studied. The affecting mechanism about composition on the electric machine properties of phase coexistent La2O3-doped PNSZT piezoelectric ceramics was analyzed and discussed.
文摘The physical interpretation of the M-integral is investigated in the analysis of crackdamaged piezoelectric problems. The relation between the M-integral and the change of the total electric enthalpy (CTEE), i.e., M = 2CTEE, is derived with a theoretical derivation procedure for two^dimensional piezoelectric problems. It is shown that the M-integral may provide a more natural description of electric enthalpy release due to the formation of the pre-existing microcracks associated with the damaged body, rather than the description of the total potential energy release rate as interpreted for conventional brittle solids. For crack-damaged piezoelectric ceramics, numerical calculation of the M-integral is discussed. Based on the pseudo-traction electric displacement method, M = 2CTEE has also been proved by the numerical results.
文摘Electroelastic behavior of a cracked piezoelectric ceramics plate subjected to four Cases of combined mechanical-electrical loads is analyzed. The integral transform method is applied to convert the problem involving an impermeable anti-plane crack to dual integral equations. Solving the resulting equations, the explicit analytic expressions for electroelastic field along the crack line and the intensity factors of relevant quantities near the crack tip and the mechanical strain energy release rate we obtained, The known results for an infinite piezoelectric ceramics plane containing an impermeable anti-plane crack are recovered from the present results only if the thickness of the plate h --> infinity.
基金Supported by Program for New Century Excellent Talents in University(No.NCET-07-0329)
文摘The microstructures and electrical properties of Bi0.5(Na1-x-yKxLiy)0.5TiO3 lead-free piezoelectric ceramics were studied.These ceramics were prepared by conventional ceramic technique.XRD analysis reveals that the ceramics possess almost pure perovskite phase when y≤0.2.The SEM results show that,with more amounts of Li+,the crystalline grain growing speed is accelerated,and the sintering temperature can effectively be decreased.The measurements of piezoelectric properties indicate that the ceramics with relatively low amount of Li+ and high amount of K+ have comparatively large piezoelectricity.The dielectric measurements show that the ceramics have properties like relaxor ferroelectrics and diffuse phase transition(DPT) at Td and Tc,respectively.The results of ferroelectric measurements reveal the system has relatively higher remanent polarization Pr(27.6 μC/cm2) and lower coercive field Ec(37.5 kV/cm).
文摘Piezoelectric ceramics based on PZT ceramics were prepared in solid state reaction with mixture of PbO, TiO2 and ZrO2, etc. XRD and SEM were used to confirm that the main phase in the material is tetragonal P4mm symmetry. Samples sintered are of high density. Measurement on polarized products indicate that dielectric constant, piezoelectric constant, electromechanic coupling factor and mechanical quality factor are epsilon(r)=2015, d33=578.06X10(12)C/N, K-33=0.81 and Q(m)=543.8,,respectively.
文摘Abstract: Lead-free piezoelectric ceramics of (1 - x) Bi0.5K0.5TiO3-BaTiO3 (BKT-BT) were fabricated by the solid state reaction method with normal sintering. The influence of BT addition on the crystal structure, phase transition and dielectric properties was investigated. The crystal structure and ferroelectric phase transition were studied by XRD (X-ray diffraction) and dielectric measurements. The complete solid solution of BKT-BT was observed for all compositions. In XRD results, all compositions showed a single phase perovskite structure with tetragonal symmetry at room temperature. With increasing BT content, the separation between diffraction peaks corresponded to increasing tetragonality. The phase transition temperature of ferroelectric tetragonal-paraelectric cubic (Tc) decreased with increasing BT content. As the amount of BT concentration increased, the ceramic became denser, and almost no porosity was finally obtained.
基金The project supported by the National Natural Science Foundation of China (19672026, 19891180)
文摘There are three types of cracks: impermeable crack, permeable crack and conducting crack, with different electric boundary conditions on faces of cracks in piezoelectric ceramics, which poses difficulties in the analysis of piezoelectric fracture problems. In this paper, in contrast to our previous FEM formulation, the numerical analysis is based on the use of exact electric boundary conditions at the crack faces, thus the common assumption of electric impermeability in the FEM analysis is avoided. The crack behavior and elasto-electric fields near a crack tip in a PZT-5 piezoelectric ceramic under mechanical, electrical and coupled mechanical- electrical loads with different electric boundary conditions on crack faces are investigated. It is found that the dielectric medium between the crack faces will reduce the singularity of stress and electric displacement. Furthermore, when the permittivity of the dielectric medium in the crack gap is of the same order as that of the piezoelectric ceramic, the crack becomes a conducting crack, the applied electric field has no effect on the crack propagation.